UPQC电流谐波与电压跌落补偿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电能质量的优劣影响到国民经济效益,随着电网结构和电力负荷成份的日益复杂,多种电能质量问题在同一配电系统中或在同一用电负荷中同时出现的情况越来越多。因此,具有综合补偿能力的统一电能质量调节器(UPQC)成为提高电能质量的研究热点。UPQC改变了电能质量控制中电压或电流问题分别补偿的现状,整体满足系统电流和电压的补偿要求,具有很好的发展前景。本文在探讨UPQC工作原理及拓扑结构的基础上,深入研究其补偿分量的实时检测算法、控制策略及实际电路装置的设计问题。
     主要研究内容和创新点:
     1.以三相三线制结构的左串右并形式UPQC拓扑作为研究对象,提出UPQC并联侧基于粒子群优化的模糊控制(PSO-FUZZY)谐波电流补偿信号检测法。利用粒子群算法优化并联积分环节的模糊控制器比例因子,调节模糊控制输出k值。针对粒子群寻优易陷入局部最小的问题,提出改进的粒子群算法,在迭代过程中加入若干粒子扩大搜索范围。MATLAB仿真和实验的结果验均证了该检测方法的有效性。
     2.基于不同电压补偿策略电压、电流矢量特点,分析了串、并联补偿单元的能量流动特征,推导有功功率和无功功率计算公式。在此基础上,针对伴有相位跳变的电压跌落问题,提出UPQC串联侧基于瞬时无功功率理论考虑相位跳变的最小能量补偿电压检测方法。依据UPQC串联侧提供有功能量最小原则确定三种电源电压波动情况下的补偿最优角,确定了目标电压函数,求取串联侧补偿参考量。通过Matlab仿真及实验验证了该方法的有效性。
     3.基于UPQC并联补偿单元数学模型,结合谐波电流补偿原理,提出电流滞环最优矢量控制方法,由当前最优矢量与电流误差所在区域共同决定下一时刻输出的最优矢量,区域判断避免了电压矢量的重复计算,解决了传统滞环控制方法的三相独立控制精度不高的问题。方法的优越性得到了MATLAB仿真和UPQC实验验证。
     4.在最小能量法基础上,通过严谨的理论推导设计了UPQC实验平台。包括功率器件选取,并联侧连接电感的感值、铁芯、匝数和导线线径的设计,串联变压器的容量和变比的设计,串/并联侧输出滤波电路的设计以及直流侧电容的容值和耐压的设计。
Power quality related to the merits of the overall effectiveness of the national economy. With the increasing complexity of grid structure and the power load components, a number of types of power quality problems which are at the same power distribution system or in the same load at the same time have increased. Therefore, unified power quality conditioner (UPQC) which has comprehensive ability of compensation becomes the hot research topic of power compensation. The status quo of respective voltage compensation and respective current compensation can be changed by UPQC. It can meet the synchronous compensation requirements of load voltage sag and power supply harmonic current and has far development prospects. To improve the actual quality of power supply problems, to improve the actual supply of power quality problems, in-depth study UPQC including of principle, topology, the compensation component of real-time detection algorithm, control strategy and the actual circuit design problems.
     The main research contents and innovation:
     1. The three-phase three-wire UPQC topological structure is considered as the research object on the basis of researching various topology structures. Series compensator is connected in series with the supply voltage through a transformer and parallel compensator is connected in parallel with the load. The detecting algorithm of harmonic current compensation signal based on PSO-FUZZY control is proposed. The factors of fuzzy controller with integrator are optimized by particle swarm optimization to adjust the output of fuzzy controller. Aiming at the problem of easily falling into local minimum during particle swarm optimization process, an improved algorithm of PSO is proposed, in which several particles are added to expand the searching scope in the iterative process. The feasibility of the detection algorithm is verified by MATLAB/Simulink simulation results and experimental results.
     2. Based on current and voltage vector characteristics of the different voltage compensation strategy, energy flow characteristics of series and parallel compensation unit is analyzed, the active power and reactive power calculation formula is derived. Aiming at the problem of voltage sag with phase jump, considering phase jump based on instantaneous reactive theory minimum energy compensating voltage detection algorithm is proposed. Compensation optimal angle is get according to the principle of minimum active power provided by series converter in three circumstances of supply voltage fluctuations. Target function of voltage is acquired and compensation output of series side is get. The feasibility of the symmetrical component minimum energy compensation algorithm is verified by MATLAB/Simulink simulation results and experimental results.
     3. Based on the mathematical model of UPQC parallel compensation unit, combined with harmonic current compensation principle, the current hysteresis optimal vector control method is proposed to make up for the low accuracy of traditional three-phase hysteresis control method. The optimal output vector of next moment is determined by the area of current optimal vector and current error. The simple way to determine the area of supply voltage vector and current error vector is acquired according to coordinate geometry. Repeated computation is avoided and compensation accuracy is improved. Simulation model is built to verify the superiority. And experimental verification is carried out in the UPQC experimental device based on DSP platform. The feasibility of the method is verified by MATLAB/Simulink simulation results and experimental results.
     4. Design the experiment platform UPQC though detailed theoretical derivation and rigorous mathematical calculation based on the minimum energy method. Including the power devices selection, parallel side of the sense of connection inductance value, core, turns and wire diameter design, capacity and ratio of transformations design in series, output filter circuit design in series and parallel, as well as the capacity values and the design pressure of DC capacitor design.
引文
[1] Fijita H, Akagi H, The unified power duality conditioner: the integration of series and shunt- active filters, IEEE Trans on Power Electronics, 1998, 13 (2): 315~322.
    [2]肖湘宁,韩民晓,徐永海等,电能质量分析与控制,北京:中国电力出版社,2004.7~19.
    [3]李义达,陈乔夫,贾正春,电力系统谐波源的种类和滤波方法综述,电气传动,2005, 35(12):3~7.
    [4]王兆安,杨君,刘进军等,谐波抑制和无功功率补偿,北京:机械工业出版社,1998,2~8,31~49.
    [5]陈志业,尹丽华,李鹏,电能质量及其治理新技术,电网技术,2002,26(7):67~70.
    [6]肖国春,刘进军,王兆安,电能质量及其控制技术的研究进展,电力电子技术,2000,12(6):58~60.
    [7]李俊,史伟伟,唐国庆等,配电网中改善电能质量的技术及其研究进展,电网技术,2005,12:15~17.
    [8] Singh B, Murthy S S, Gupta, S, Analysis and design of STATCOM-based voltage regulator for self-excited induction generators. IEEE Transactions on Energy Conversion, 2004, 19(4): 783~790.
    [9] Akagi H, New Trends in Active Filter for Power Conditioning, IEEE Trans on Industry Application, 1996, 32 (6) : 1312~1322.
    [10] Peng F Z, Application Issues of Active Power Filters, IEEE Industry Applications Magazine, 1998, 4 (5): 21~30.
    [11]叶忠明,董博藩,钱兆明,几种混合有源电力滤波器分析,电工电能新技术,1998,17(2):23~28.
    [12]颜晓庆,杨君,王兆安,并联混合型电力有源滤波器的研究,电力电子技术,1998,32 (4): 4~6.
    [13]胡铭,陈珩,有源滤波技术及其应用,电力系统自动化,2002,24(3):66~69.
    [14]孙辉,魏庆海,邹积岩等,电能质量调节技术及其应用大连理工大学学报,
    [57] Strzelecki R, Benysek G, Power flow in typical series-parallel hybrid filters topologies, Power Quality and Supply Reliability Conference, 2008, 225~228.
    [58] Khadkikar V, Chandra A, Barry A O,etc., Steady state power flow analysis of unified power quality conditioner (UPQC), International Conference on Industrial Electronics and Control Applications, 2005.1~6.
    [59]支丽欣,尹忠东,韩俊彪等,动态电压恢复器的能量控制研究,高电压技术,2006,32(11):149~152.
    [60] Vilathgamuwa D M, Perera A A D R, Choi S S, Voltage sag compensation with energy optimized dynamic voltage restorer, IEEE Transactions on Power Delivery, 2003, 18(3):928~936.
    [61] Choi S S, Li B H, Vilathgamuwa D M, Dynamic voltage restoration with minimum energy injection, IEEE Transaction on Power Systems, 2000, 15(1):51~57.
    [62]袁川,杨洪耕,动态电压恢复器的改进最小能量控制,电力系统自动化,2004,28(21):49~53.
    [63]张永平,李鹏,李和明,考虑补偿策略的动态电压恢复器补偿量检测方法,电力自动化设备,2006,26(1):8~12.
    [64] Akagi H, Kanazawa Y, Nabae A, Instantaneous reactive power compensators comprising switching devices without energy storage components, IEEE Trans on Ind Appl, 1984, 20 (3): 625~630.
    [65] Tanaka T, Akagi H, A new method of harmonic power detection based on the instantaneous active power in three phase circuits, IEEE Trans on Power Delivery, 1995, 10 (4): 1737~1742
    [66]王兆安,李民,三相电路瞬时无功功率的研究,电工技术学报,1992,7(3):15~18.
    [67] Watanbe E H, Stephan R M, Aredes M, New concept of instantaneous active and reactive power in electrical system with generic loads, IEEE Trans on Power Delivery, 1993, 8 (2): 891~902.
    [68]李庚银,陈志业,丁巧林,用于有源补偿器的广义瞬时无功电流实时检测方法,电力系统自动化,1997,21(10):28~31.
    [69]李庚银,dqo坐标下广义瞬时无功功率定义及补偿,中国电机工程学报,1996,16(3):176~179.
    [70] Furuhashi T, Okuma S A, Study on the theory of instantaneous reactive power, IEEE Tran s on Ind Electr, 1990, 37 (1): 214~221.
    [71]叶忠明,董伯藩,钱照明,谐波电流的提取方法比较,电力系统自动化,1997,21(2): 21~25.
    [72]马大铭,朱东起,高景得,三相电压不对称时谐波和无功电流的准确检测,清华大学学报:自然版,1997,37 (4):7~10.
    [73]卓放,王跃,王兆安,三相四线制电路中的瞬时无功功率及有源电力滤波器,电工技术杂志,2001,4:1~4.
    [74]赵晓,付青,基于瞬时无功理论的谐波检测方法研究,现代电子技术,2006,6:132 ~ 133, 141.
    [75]王晓钰,刘进军,何益宏等,用于通用电能质量控制器的一种简单补偿策略和统一控制方法,电工技术学报,2004,19(12):47~52.
    [76]李圣清,罗飞,张昌凡,基于ip及iq运算方式的改进型谐波电流检测方法,电气传动,2003,2:48~50.
    [77]马莉,周景海,吕征宇等,一种基于变换的改进型谐波检测方案的研究,电机工程学报,2002,20(10):55~57,63.
    [78]薛蕙,杨仁刚,改进的瞬时无功和谐波电流检测理论,电力系统及其自动化学报,2002, 14(2):8~11.
    [79]王群,王兆安,一种基于人工神经网络的电力谐波测量方法,电力系统自动化,1998,22 (10):35~39.
    [80] Kazemi A, Sarlak M, Barkhordary M, An Adaptive Noise Canceling Method for Single-Phase Unified Power Quality Conditioner, 1ST IEEE Conference on Industrial Electronics and Applications, 2006, 1~6.
    [81]王群,吴宁,谢品方,一种基于神经元的自适应谐波电流检测方法,电力系统自动化,1997,21(10):13~16.
    [82]刘兆燊,李建林,韩珏等,瞬时无功及谐波电流的闭环检测电路,电力系统及其自动化学报,2005,17(1):45~47,58.
    [83]高大威,孙孝瑞,三相不对称非线性负荷情况下的畸变电流检测,电力系统自动化,2000, 24 (13):45~47.
    [84] Luo Shi guo, Hou Zheng cheng. An adaptive detecting method for harmonic and reactive current, IEEE Trans on Ind Electr, 1995, 42 (1):85~89.
    [85] Tey L H, So P L, Y C Chu, Unified power quality conditioner for improving power quality using ANN with hysteresis control. International Conference on Power System Technology– POWERCON, 2004, 1441~1446.
    [86] Shi Yuhui, Russel Eberhart, A modified particle swarm optimizer, The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998.69~73.
    [87] Yang Guangyou, A Modified Particle Swarm Optimizer Algorithm, 8th International Conference on Electronic Measurement and Instruments, 2007, 2-675~2-679.
    [88]侯云鹤,鲁丽娟,熊信艮等,改进粒子群算法机器在电力系统负荷分配中的应用,2004,24(7):95~100.
    [89] An Sufang, Liu Kunqi, Liu Bo, etc., Improved weighted fuzzy reasoning algorithm based on particle swarm optimization, Proceeding of the Sixth International Conference on Machine Learning and Cybernetics, 2007.1304~1308.
    [90]吴昌友,王福林,董志贵,改进粒子群优化算法在电力负荷组合预测模型中的应用,电网技术,2009,33(2):27~30.
    [91] Rukonuzzaman M, Nakaoka M, Fuzzy logic current controller for three-phase voltage source PWM-inverters, Conference Record of IEEE, 2000, (2): 1163-1169.
    [92]汤兵勇,路林吉,王文杰,模糊控制理论与应用技术,北京:清华大学出版社,2002.1~54.
    [93] Hofmann W, Krause M, Fuzzy control of AC-drives fed by PWM-inverters, Power Electronics and Motion Control International Conference, 1992, (1): 82~87.
    [94]李彦栋,王凯斐,卓放等,动态电压恢复器锁相技术和控制策略的研究,电力电子技术,2004,38(2):24~26.
    [95] Fitzer C, Barnes M, Green P, Voltage sag detection technique for a dynamic voltage restorer, IEEE Transactions on Industry Applications, 2004, 40(1): 203~212.
    [96] Ramasamy A K, Krishnan Iyer R, Ramachandaramuthy V.K., Dynamic Voltage Restorer For Voltage Sag Compensation, International Conference on Power Electronics and Drives Systems, 2005, 2: 1289~1294.
    [97] Moreno-Munoz A, Oterino D, Gonzalez M, Study of sag compensation with DVR, IEEE Mediterranean Electrotechnical Conference, 2006, 990~993.
    [98]袁性忠,姜新建,黄宇奇,动态电压恢复器的复合控制策略,电力系统自动化,2006,30(19):61~68.
    [99]杨潮,韩英铎,黄瀚等,动态电压调节器串联补偿电压研究,电力自动化设备,2001,21(5):1~5.
    [100]周晖,齐智平,动态电压恢复器检测方法和补偿策略综述,电网技术,2006,30(6):23~29.
    [101]周雪松,张智勇,马幼捷等,动态电压恢复器检测方法与补偿策略的研究,电力电子技术,2006,40(3):123~125.
    [102]冯小明,杨仁刚,动态电压恢复器电压补偿策略的研究,2004,28(6):68~72.
    [103]谢旭,胡明亮,梁旭等,动态电压恢复器的补偿特性与控制目标,电力系统自动化,2002,26(8):41~44.
    [104]罗小莉,杨宇,动态电压质量问题检测方法,电力自动化设备,2007,27(1):115~118.
    [105]彭春萍,陈允平,孙建军,动态电压恢复器及其检测方法的探讨,电力自动化设备,2003,23(1):68~71.
    [106]史伟伟,唐国庆,李俊,动态电压恢复器的控制策略,东南大学学报(自然科学版),2007,37(1):64~69.
    [107]杨晓萍,许辉,吴成林,动态电压恢复器电压补偿策略及其仿真研究,电工技术杂志,2004,58~61.
    [108]李彦栋,王凯斐,卓放等,新型软件锁相环在动态电压恢复器中的应用,电网技术,2004.28(8):42~45.
    [109]赵国亮,刘宝志,肖湘宁等,一种无时延的改进d-q变换在动态电压扰动识别中的应用,电网技术,2004,28(7):53~57.
    [110]肖湘宁,徐永海,刘连光,考虑相位跳变的电压凹陷动态补偿器研究,中国电机工程学报,2002,22(1):64~69.
    [111]冯小明,杨仁刚,动态电压恢复器的形态学—dq变换综合检测算法,中国电机工程学报,2004,24(11):193~198.
    [112]杨亚飞,颜湘武,娄尧林,一种新的电压骤降特征量检测方法,电力系统自动化,2004,28(2):41~44.
    [113]肖湘宁,徐永海,刘昊,电压凹陷特征量检测算法研究,电力自动化设备,2002,22(1):19~22.
    [114]丁洪发,段献忠,何仰赞,一种用于不对称配电系统的新型动态电压恢复器,中国电机工程学报,2000,20(11):46~50.
    [115]曾雨竹,张仲超,曾继伦等,改善有源电力滤波器系统动态性能的电压控制策略,电力系统自动化,2006,30(13):43~46,63.
    [116]周林,孟婧,徐会亮等,并联有源电力滤波器三角载波与滞环比较控制策略比较与仿真,中国电力,2008,41(4):25~29.
    [117]乐健,姜齐荣,韩英铎,一种新型的四桥臂三电平并联有源电力滤波器的空间矢量控制策略,中国电机工程学报,2006,26(14):59~65.
    [118]戴瑜兴,张义兵,陈际达,有源滤波器逆变电流的滞环比较控制策略,湖南师范大学自然科学学报,2003,26(3):37~40,45.
    [119]徐君,徐德洪,并联有源滤波器非理想条件电流滞环控制分析,电力电子技术,2007,41(1):60~63.
    [120]汤赐,罗安,赵特,新型注入式混合有源滤波器的数学模型及电流控制方法,电工技术学报,2008,23(3):72~78.
    [121]粟时平,李圣怡,并联有源滤波器的最优电压滞环电流控制,电力自动化设备,2002,22(4):14~17.
    [122]曾国宏,郝荣泰,有源滤波器滞环电流控制的矢量方法,电力系统自动化,2003,27(5):31~40.
    [123]郭自勇,周有庆,刘宏超,一种基于电压空间矢量的有源滤波器滞环电流控制新方法,2007,27(1):112~117.
    [124]杜雄,周雒维,谢品芳,直流侧APF主电路参数与补偿性能的关系,中国电机工程学报,2004,24(11):39~42.
    [125]徐迎春,徐德鸿,并联有源电力滤波器交流侧滤波电感的优化设计,电源技术应用,2004,7(4):193~196,214.
    [126]王玲,黄凤华,有源电力滤波器中连接电感的特性分析及优化,电气传动,2008,38(9):52~55.
    [127]武健,何娜,徐殿国,三相并联有源滤波器输出滤波器设计方法研究,电力电子技术,2001,38(6):16~20.
    [128]北京德恩电子有限公司产品手册第2分册,金属磁粉产品手册,2005.24.
    [129]尹忠东,张卫华,韩民晓,动态电压恢复器注入变压器过饱和抑制,电力系统自动化,2004,28(24):28~31.
    [130]尹忠东,陈安源,动态电压调节器串联注入变压器的一种设计方法,变压器,2005,42(9):14~19.
    [131]中国国家标准化管理委员会,GBT 10228-2008,干式电力变压器技术参数和要求,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700