模拟月壤的填充模型及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月壤深层取样的目标之一是取回尽量保持原有层理信息的月壤样品。针对此目标,本文在比较传统土力学与离散元方法的基础上,利用离散元方法对内翻式软袋深层取样过程中模拟月壤的填充模型及特性进行仿真研究,并结合相关理论分析了主要结构参数和钻进规程参数对模拟月壤层理信息的具体影响方式,对月壤深层取样顺利实施、钻取机构的设计和研制以及深层取样规程的制定具有重要的意义。
     针对月壤的物理和力学特性,基于离散元方法软球模型,从细观角度建立了球形和非球形模拟月壤颗粒的接触力学模型和流动模型。
     基于二维离散元软件PFC2D,仿真分析了颗粒直径对模型精确度的影响,即粒径效应,并根据粒径效应提出了变颗粒直径建模方法。以此为基础,利用平移面模型在三维离散元软件EDEM中建立了内翻式软袋方式下模拟月壤深层取样过程的仿真模型。
     根据对月壤层理信息的要求,提出了层理信息的定量评价方法和评价指标。对取样管直压与内翻式软袋两种取样方式下的样品层理信息进行了对比分析。结果表明,内翻式软袋所取样品具有较好的层理信息。
     基于内翻式软袋方式下模拟月壤深层取样模型,仿真分析了取样管直径、软袋摩擦系数、进给速率、激振频率对模拟月壤深层取样过程中层理信息的具体影响方式。结果表明,只考虑模拟月壤的层理信息时,取样管直径和颗粒-软袋摩擦系数越大越好,进给速度越小越好,激振频率应该尽量远离模拟月壤固有频率。为钻取机构的设计和研制以及深层取样规程的制定提供了一定的参考依据。
One of the purposes of the lunar soil deep-sampling mission is to obtain samples of lunar soil with original bedding information. Considering this purpose, this reseach compared traditional soil mechanics with discrete element method (DEM). Via DEM, the filling model and characteristic of lunar soil simulant in lunar soil deep-sampling with turnover flexible membrane was studied. Moreover, the impact of main structural parameters and drilling regulation parameters upon lunar soil simulant bedding information was analysed. This research has important significance for implementation of the lunar soil deep-sampling, design and development of drilling device, the formulation of the lunar soil deep-sampling regulation.
     Based on physical and mechanical properties of lunar soil and DEM elastic spheres model, contact mechanics model and flow model of spherical and non-spherical lunar soil simulant were established.
     With two-dimensional DEM software, PFC2D, simulation and analysis of the impact of particle diameter upon precision of model, the size effect was performed, grounded on which variable diameter modeling method was proposed. On this basis, lunar soil deep-sampling simulation model with turnover flexible membrane was established in three-dimensional DEM software, EDEM, with moving plane.
     According to the requirement of bedding information, the method and index of quantitative evaluation for it were proposed. Comparing the bedding information of direct penetrability sampling tube with that of turnover flexible membrane sampling tube shows that the turnover flexible membrane sample has better bedding information.
     Grounded on lunar soil deep-sampling simulation model with turnover flexible membrane, the impact of diameter of sample tube, friction coefficient of turnover flexible membrane, feed rate, excitation frequency upon bedding information in lunar soil deep-sampling were simulated and analyzed. The results show that the bigger sample diameter and the particle-membrane friction coefficient are or the smaller feed speed is, the better bedding information will be, and vibrant frequency should be kept away from the the natural frequency of lunar soil stimulant, which provide a reference for design and development of drilling device and the formulation of the lunar soil deep-sampling regulation.
引文
[1]卢波.月球探测的意义及发展态势[J].国际太空,1998,(4):1-4.
    [2]欧阳自远,邹永廖,李春来,等.月球某些资源的开发利用前景[J].地球科学——中国地质大学学报,2002,27(5):498-503.
    [3]邹永廖,欧阳自远,徐琳,等.月球表面的环境特征[J].第四纪研究,2002,22(6):533-539.
    [4]欧阳自远,李春来,邹永廖,等.月球探测的进展与我国的月球探测[J].中国科学基金,2003,(4):193-197.
    [5] Robert C. The Mission of Luna 16[EB/OL]. [2010-06-10]. http://www.zarya. info/Diaries/Luna/Luna16.php
    [6] Robert C. The Mission of Luna 20[EB/OL]. [2010-06-10]. http://www.zarya. info/Diaries/Luna/Luna20.php
    [7]中国科学院地球话研究所.月质学研究进展[M].北京:科学出版社,1977:41-48
    [8] Robert C. The Mission of Luna 24[EB/OL]. [2010-06-10].http://www.zarya. info/Diaries/Luna/Luna24.php
    [9]鄢泰宁,冉恒谦,段新胜.宇宙探索与钻探技术[J].探矿工程,2010,37(1):3-7.
    [10] NASA. The Apollo Program[EB/OL]. [2010-06-10] http://spaceflight1.nasa. gov/ history/apollo/.
    [11] Piers Bizony. The Great Uncertainty of Apollo[J]. Engineering and Tech- nology,2009:20-23.
    [12] Basu A,Riegsecker S. Reliability of Caleulating Average Soil ComPosition of Apollo Landing Sites[C]. Workshop on New Views of the Moon: Integrated Remotely Sensed,Geophysical,and Sample Datasets,1998:20-21.
    [13] Allton J H. Catalog of Apollo Lunar Surface Geological Sampling Tools and Containers[R]. USA:Johnson Space Center,NASA,1989:5-83.
    [14] Xiaoqi Bao,Yoseph Bar-Cohen,Zensheu Chang,et al. Modeling and Computer Simulation of Ultrasonic/Sonic Driller/Corer(USDC)[J]. IEEE Transactions of Ultrasonics, Sonics and Frequency Control,2003,50(9):1147-1160.
    [15] Sherrit S,Bao X,Chang Z. Modeling of the Ultrasonic/Sonic Driller/Corer:USDC[C]. 2000 IEEE Ultasonics Symposium,2000,1:691-694.
    [16] Finzi A E,Zazzera F B,Dainese C. SD2 - How to sample a comet[J].Space Science Reviews,2007,128(1-4):281-299.
    [17] Marchesi M, Campaci R, Magnani P. Comet Sample Acquisition for ROSETTA Lander Mission[J]. European Space Agency,2001,(480):91-96.
    [18] Andrew D G,Andrew J C,Ralf J. Context for the ESA ExoMars Rover: the Panoramic Camera (PanCam) instrument[J]. International Journal of Astrobiology,2006,5(3) :269-275.
    [19]欧阳自远.我国月球探测的总体科学目标与发展战略[J].地球科学进展,2004,19(3):315-357.
    [20]叶坚,毛旭锋,夏建新.颗粒流研究最新进展与挑战[J].中央民族大学学报(自然科学版),2009,18(4):26-35.
    [21]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009:103-107,31-44,35.
    [22] S. S. Hsiau,M. L. Hunt. Granular Thermal Diffusion in Flows of Binary-sized Mixtures[J]. Acta Mechanica,1996,114(1-4):121-137.
    [23] C. K. K. Lun,S. B. Savage,D. J. Jeffrey,et al. Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield[J]. The Journal of Fluid Mechanics,1984,140:223-256.
    [24] J. T. Jenkins,F. Mancini. Kinetic Theory for Binary Mixtures of Smooth, Nearly Elastic Spheres[J]. Physics of Fluids A,1989,1(12):2050-2057.
    [25] T. Boutreuxa. Surface Flows of Granular Mixtures: II. Segregation with Grains of Different Size[J]. The European Physical Journal B,1998,6:419-424.
    [26] M. Lopez de Haro,E. G. D. Cohen,J. M. Kincaid. The Enskog Theory for Multicomponent Mixtures. I. Linear Transport theory[J]. The Journal of Chemical Physics. 1983,78(5):2746-2759.
    [27] J. M. Kincaidb,E. G. D. Cohen,M. Lopez de Haro. The Enskog Theory for Multicomponent Mixtures. IV. Thermal Diffusional[J]. The Journal of Chemical Physics. 1987,86(2):963-975.
    [28]王光谦,倪晋仁.颗粒流研究评述[J].力学与实践,1994,14(1):7-19.
    [29]吴清松,胡茂彬.颗粒流的动力学模型和实验研究进展[J].力学进展,2002,32(2):250~258.
    [30] Cundall P A. A Computer Model for Simulating Progressive Large ScaleMovements in Blocky System[J]. In Proc. Symp. Int. Rock Mech,1971,2(8):8-12.
    [31] Cundall P A. The Measurement and Analysis of Acceleration in Rock Slopes[D]. UK:University of London, Imperial College of Science and Technology Ph.D Dissertation,1971.
    [32] Strack O D L, Cundall P A. Part I Report to the National Science Foundation[C]. Minnesota:University of Minnesota,1978:36-46.
    [33] Cundall P A, Strack O D L. Part II Report to the National Seience Foundation[C]. Minnesota:University of Minnesota,1979:56-67.
    [34] Cundall P A,Strack O D L. A Discrete Numerical Model for Granular Assembles[J]. Geotechnique,1979,29(1) :47-65
    [35] Cundall P A,Strack Q D L. Modeling of Microscopic Mechanisms in Granular Material[J]. Studies in Applied Mechanics,1983,63(20):137-149.
    [36]王国强,郝万军,王继新.离散单元法及其在EDEM上的实践[M].西安:西北工业大学出版社,2010:119-153.
    [37]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,22(3):250-260.
    [38] Maini T,Cundall P A. Computer Modeling of Jointed Rock Masses[R]. USA:Defense Technical Information Center,1978.
    [39] Cundall P A. UDEC-A Generalized Distinct Element Program for Modeling Jointed Rock Report[R]. USA:European Research Office, U.S.Army,1980.
    [40] Cundall P A,Hart R D,ITASCA Consulting Group Inc Minneapolis Mn. Development of Generalized 2-D and 3-D Discrete Element Programs for Modeling Jointed rock[R].ITASCA Consulting Group,1985.
    [41] ITASCA Consulting Group Inc. Official publications of the UDEC Users Group[R]. USA:ITASCA Consulting Group Inc,1985.
    [42] ITASCA Consulting Group Inc. FLAC: Fast Lagrangian Analysis of Continua (Version 2.0) User Manual[M]. USA:ITASCA Consulting Group Inc,1987.
    [43] Coetzee M J,et al. FLAC Basisc[M] . USA:ITASCA Consulting Group Inc,1993.
    [44] Cundall P A,Strack O L.Particle Flow Code in 2 Dimensions[M]. USA:ITASCA Consulting Group Inc,1999.
    [45] Mishra B K,Murty C V R.On the Determination of Contact Parameters for Realistic DEM Simulation of Ball Mills[J].Powder Technology,2001,115(3):290-297.
    [46] Tsuji Y,Tanaka T,Ishida T.Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe[J].Powder Technology,1992,71(3):239-250.
    [47]王东,杨溢.大型离散元软件EDEM的功能特点[J].科技成果纵横,2009,(3) :75-76.
    [48]王泳嘉,宋文洲,赵艳娟.离散单元法软件系统2D-Block的现代化特点[J].岩石力学与工程学报,2000,19(增):1057-1060.
    [49]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483-490.
    [50]赵成刚,白冰.土力学原理(修订版)[M] .北京:清华大学出版社,2004:1-5.
    [51]李雄耀,王世杰,陈丰,等.月壤厚度的研究方法与进展[J].矿物学报,2007,27(1):64-68.
    [52]郑永春,欧阳自远,王世杰,等.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19.
    [53]邹猛,李建桥,贾阳,等.月壤静力学特性的离散元模拟[J].吉林大学学报(工学版),2008,38(2):383-387.
    [54] Gromov V. Physical and Mechanical Properties of Lunar and Planetary Soils[J].Earth Moon and Planets,1999,80(1-3):51-72.
    [55]郑永春.模拟月壤研制与月壤微波辐射研究[D].北京:中科院地球化学研究所博士学位论文,2005:21-22.
    [56]欧阳自远.月球科学概论[M].北京:中国宇航出版社,2005:160-167.
    [57] H. Hertz. On the Contact of Elastic Solids[J]. J. Reine Angew. Math,1882,92:156-171.
    [58] Mindlin R D,Deresiewicz H. Elastic Spheres in Contact Under Varying Oblique Forces[J]. Journal of Applied Mechanics,1953,20:327-344.
    [59] Kazuyoshi Iwashita,Masanobu Oda. Micro-deformation Mechanism of Shear Banding Process Based on Modified Distinct Element Method[J]. Power Technology,2000,109:192-205.
    [60]孙珊珊,苏勇,季顺迎.颗粒滚动-滑动转换机制及摩擦系数的试验研究[J].岩土力学,2009,30(曾):110-115.
    [61] Kazuyoshi Iwashita , Masanobu Oda. Rolling resistance at contacts in simulation of shear band development by DEM. Journal of EngineeringMechanics,1998,124(3):285-292.
    [62] M. J. Jiang,H. S. YU,D. HARRIS.A Novel Discrete Model for Granular Material Incorporating Rolling Resistance[J]. Computers and Geotechnics,2005,32:340-357.
    [63]姜安龙,高大钊.取土器直径对取样扰动的影响分析[J].工程勘察,2002,(4):13-14,38.
    [64]胡中雄,陈文华.关于土样扰动程度的评价[J].港口工程,1987,(5):46-52.
    [65]徐建平,周健,白冰.土体取样的扰动影响及其评价指标[J].佛山科学技术学院学报(自然科学版),2008,18(3):20-24.
    [66]刘志方,单凌志.土体取样扰动度的定量评价方法与试验研究[J].山西建筑,2008,34(6):147-148.
    [67]赵德明.月壤在取样管内填充特性的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2011:25-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700