可重构多机动模式移动机器人及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动机器人在诸如战场、医疗、服务等领域的应用日趋广泛和行星探测时代的来临,对未知环境中自主移动机器人技术与理论的需求日益增长。未知环境是指未知几何构造、未知地面地形地貌以及含有其它未知因素的环境;机器人对环境一无所知,无任何先验信息,且环境中不存在路标、灯塔等人为参照物;从空间角度看,通常是三维的。要在这样或类似的环境中研究移动机器人自主导航的理论与技术,拥有一个具有稳定性、通过性、越障性、可靠性和机动性的硬件移动平台绝对是必要的,因为任何先进的算法和理论都需要通过高机动性和高通过能力的载体来实现。
     本文针对“未知环境中自主工作智能移动机器人导航系统研究”的国家863项目,在综述国内外关于移动机器人走行部拓扑结构、控制体系、机动性和通过性等移动机器人的相关理论和关键技术的基础上,综合利用精密机械、网络通信、传感技术等学科的技术,研制开发出一种多机动模式可重构移动机器人。对所涉及的移动机器人的相关关键技术进行了深入研究。
     研制一种四轮独立驱动和独立转向(4WD4WS)的移动机器人机械本体、控制系统的软硬件。机器人的重构特性可使之变换出具有不同轴距、轮距、重心高度、净空和稳定裕量的机器人构型以适应不同导航任务;而其具有仿生特性的轮子,可使机器人具有沙地通过能力。所开发的以PC104为核心、以直流电机控制网为控制底层,以管理协调子模块为枢纽的控制系统硬件和基于网络的机器人参数测控软件,为分级并行竞争式控制体系结构、小空间系统综合技术、分布式供电与电源实时管理技术的实施提供物理支撑载体。
     针对所研制的移动机器人可重构的特点,运用解析与投影几何方法,建立相对比较系数,从移动机器人的稳定性、几何通过性、操纵性和运动空间等角度定量地分析机器人重构构型的主要性能指标并给出重构构型优化的结果。尽管具有复合倾角的轮子(车轮有内/外倾角,轮臂有前/后倾角)在机器人与车辆中有所涉猎,但在其运动学的理论分析方面还鲜见报道。本文针对具有复合倾角的轮子的移动机器人建立空间三维运动学模型,并分析复合倾角对机器人运动学性能的影响,为以后的运动控制做理论准备。
     基于运动学约束,证明在理想条件下(刚性轮子和地面之间点接触并保持纯滚动)四轮独立驱动和四轮独立转向(4WD4WS)移动机器人基于瞬心的统一运动规律。提出实际条件下基于任意分布速度瞬心的移动机器人统一运动控制算法
With the development of mobile robot application in many domains such as battle field, medicine, service and aerospace, the requirement toward autonomous theory and technology in unknown environment has increased dramatically. There is not any man-made reference and any priori information such as land marker or light tower in unknown environment which is usually three-dimensional. It is necessary for researchers to have a sophisticated mobile platform with stability, trafficability, terrainability, reliability and mobility, as any navigation algorithm should be realized by a mobile carrier with high trafficability and high maneuverability.
     On the basis of investigation and synthesis of the relative theory and key technology on the topological structure of locomotion, control system architecture, maneuverability, trafficability, the integration of exact mechanical engineering, net-based communication and sensor technology, an innovative robot with reconfiguration and biomimetic characteristics has been developed for 863 Program of China—Study on Autonomous Navigation System for Intelligence Mobile Robot in Unknown Environment. The key technology related to the mobile robot has been put into fur study.
     A mobile robot prototype with independent propulsion and individual steering i.e. 4WD4WS has been developed. The mission-oriented mobile robot has the adaptability of terrain, sensors and payload with the scope of 20 kilograms. Different prototypes with diversified wheelbase, wheel stance, clearance, stability margin and altitude of center of gravity can be achieved by reconfiguration. A wheel with high trafficability on sand terrain can be achieved by reconfiguration with bionic features. The hardware of control system of robot with PC104, network-based motor suite, the management MCS module and the monitor software based on networks has laid foundation to the implement of the hierarchical parallel competitive control architecture, system integration for the mechatronic device in small space, the on-line distributed power management and the motion control.
     Based on the approach of geometry projection integrated with analytic geometry, the reconfigurable prototypes of robot are analyzed by modeling relative comparative coefficients in terms of geometrical trafficability, static stability, maneuverability and
引文
1 蔡鹤皋. 机器人技术的发展与在制造业中的应用. 机械制造与自动化. 2004,(01): 6~10
    2 王树国, 付宜利. 我国特种机器人发展战略思考.自动化学报. 2002, 28(s): 70~76
    3 Paule S. Schenker, Terry L. Huntsberger, Eric T. Baungartner, eat al. Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic colonization. Autonomous Robots.1997,(4):159~173
    4 Bares J, Whittaker W L. Configuration of autonomous walkers for extreme terrain. The International Journal of Robotics Research. 1993,12(6):535~559
    5 J. Bares and D. Wettergreen. Dante II: Technical Description, Results and Lessons Learned. International Journal of Robotics Research. 1999,18(7), 621~649
    6 Jun Morimoto, Jun Nakanishi, Gen Endo, et al. Poincar′e-Map-Based Reinforcement Learning For Biped Walking. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, April 2005: 2392~2397
    7 Takashi Kubota, Testuo Yoshimitsu. Asteroid Exploration Rover. IEEE ICRA 2005 Planetary Rover Workshop, Barcelona, Spain, April, 2005
    8 刘方湖,陈建平,马培荪.行星探测机器人的研究现状和发展局势.机器人.2002, 24(3):268~273
    9 Charles R.weisbin, Davaid B. Lavery, Guillermo Rodriguez. Robots in Space: U.S. Missions and technology requirements into the Next Century. Autonomous Robots.1997,4:159~173
    10 季学武.车辆—沙地相互作用关系及仿驼足轮胎关键技术的研究. 吉林工业大学博士学位论文.1994:4~5
    11 http://www.telerobotics.jpl.nasa.gov/infrastructure/genealogy/images/inflatable.jpg
    12 http://mpfwww.jpl.nasa.gov/MPF/rovercom/rovcom.html
    13 Sreenivasan S V, Wilcox B H. Stability and traction control of an activelyactuated micro- rover. Journal of Robotic Systems. 1994, 11(6):487~502
    14 Leppanen I., Salmi S., et al. WorkPartner, HUT Automation’s new hybrid walking machine.CLAWAR’98 First International Symposium,Brussels, Belgium, 26-28 November, 1998:1123~1128
    15 http: //www. legacy.eos.ncsu.edu/microrobotics/erl_microbotics.html
    16 FRANC? OIS MICHAUD, DOMINIC L′ETOURNEAU. Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel Articulations. Autonomous Robots. 2005,18:137~156
    17 http: // www. cs. cmu. edu/ afs/ cs/ project/ space/ www/gyrover/gyrover. html7
    18 Koshiyama A, Yamafuji K. Design and control of an all- directionsteering type mobile robot. The International Journal of Robotic Research.1993, 12 (5):411 ~ 419
    19 Shigeo Hirose. Super-Mechano-Colony and SMC Rover with Detachable Wheel Units.Proc. COE workshop, 1999: 67~72
    20 http://www.snsagami.org/shoukai/katsudou/kenrobo/saga_ken/image/utyuken/1006127.html
    21 E.Rollins, J.Luntz, A.Foessel, et al. Nomad: a Demonstration of the Transforming Chassis. Proceedings of the 1998 IEEE International conference on Robotics & Automation, Leuven, Belgium, May 1998: 679~684
    22 http:/ / www. cs. cmu.edu/ - lri/ nav96. Shtml
    23 Kubota T, Kuroda Y, Kunii Y.Micro planetary rover "Micro5". 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space (ISAIRAS 99), June 1999: 373~378
    24 Jet Propulsion Laboratory, Mars Pathfinder Web Site, [On-line], Available: http://mars.jpl.nasa.gov/MPF/index1.html, (April 8, 1998)
    25 Richard Volpe. Rover Technology Development and Mission Infusion. IEEE ICRA 2005 Planetary Rover Workshop. Barcelona, Spain, April, 2005
    26 Estier T., Cransaz Y., Merminod B., et al. An innovative Space Rover with Extended Climbing Abilities. Proceedings of space and Robotics, Albuquerque, USA, February 27-March 2, 2000: 781~786
    27 G.Andrade,F.Ben Amar,et al. Modeling robot-Soil Interaction for planetary rover motion control. Proc.of the 1998 IEEE International Conference on Intelligent Robots and Systems, Vitoria, B.C., Canada, October 1998: 212~217
    28 http://www.plantary.org/rrgtm/tpr-rover-rus.html
    29 http://www.sl.epflchl\index.html/content:research/system/octopus/octopus.html
    30 Peng Chen, Shinichiro Mitsutake, Takashi Isoda, and Tielin Shi. Omni-Directional Robot and Adaptive Control Method for Off-Road Running. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. April 2002. 18(2):111~116
    31 闫国荣, 张海兵. 一种新型轮式全方位移动机构.哈尔滨工业大学学报.2001, 33(6): 854~857
    32 http: //ysserve.cs.shinshu-u.ac.jp/Lecture/Fujisawa1/node8.html
    33 http: //ysserve.cs.shinshu-u.ac.jp/Lecture/Fujisawa1/node9.html
    34 白小波.一种新型万向轮结构及其构成的移动机器人.中国第五界机器人学术会议论文集,哈尔滨,1998:247~254
    35 赵冬斌,易建强等.全方位移动机器人结构和运动分析.机器人.2002,5 (5):16~20
    36 Jorge Angeles. An Innovative Drive for Wheeled Mobile Robots, Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), 156~162
    37 http: //www.robotswanted.com/robotgallery/androbot/index.html
    38 http: //ysserve.cs.shinshu-u.ac.jp/Lecture/Fujisawa1/node5.html
    39 Peter Berkelman, Mei chen, Jesse Easudes, et al. Design of a Day /Night Lunar Rover. Technical Report CMU-RI-TR-95-24, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, July 1995
    40 http: //groups.csail.mit.edu/drl/courses/cs54-2001s/synchro.html
    41 Apostolopoulos, D.Systematic Configuration of Robotic Locomotion. Technical Report CMU-RI-TR-96-30, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, July 1996
    42 李 佳 宁 , 易 建 强 . 移 动 机 器 人 体 系 结 构 研 究 进 展 . 机 器 人 , 2003, 25(7):756~760
    43 夏伟.移动机器人控制系统研究.浙江大学硕士学位论文.2003:2~8
    44 Willian E Ford. What is an Open Architecture Robot Controller. IEEE International Symposium on Intelligent Control. 1994:1~9
    45 沈跃,刘慧.开放式结构平台上的 SIASUN - 06B 机器人控制系统的研究.组合机床与自动化加工技术.2004,(5):101~ 103
    46 Stefano Caselli, Francesco Monica, and Monica Reggiani. YARA: A Software Framework Enhancing Service Robot Dependability. Proceedings of the 2005IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005:1982~1987
    47 徐益.移动机器人控制系统设计.浙江大学硕士学位论文.2003:58~62
    48 谈世哲等.基于Windows NT 的开放式机器人控制系统的设计. 组合机床与自动化加工技术. 2001, (2):17~21
    49 马晓薇. 基于混合智能的移动机器人路径规划技术研究. 哈尔滨工业大学博士学位论文. 2000: 51~58
    50 徐国华,谭民.移动机器人的发展现状及其趋势.机器人技术与应用.2001,3:6~12
    51 吴雄英,胡国清,黄玉程等.自主移动机器人体系结构状况与发展研究自动化博览.2005,(3):21~ 24
    52 Linda Kobayashi, and Susan Y. Lee, et al. Extensible Hardware Architecture for Mobile Robots. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005:3095~3100
    53 曹会宾.移动机器人移动机构及运动控制的研究. 哈尔滨工业大学硕士学位论文.2004: 2~18
    54 Moore, H., Hutton, R., Scott, R., Spitzer, et al. Surface Materials of the Viking Landing Sites of Mars. Journal of Geophysical Research. 1977,82 (28): 76~87
    55 李杰,季学武,庄继德.新疆塔克拉马干沙漠沙土基本力学特性的实验研究.汽车技术,1996,(9):12~22
    56 H.Shibly, K.Iagnemma, et al. An equivalent soil mechanics formulation for rigid wheels in deformable terrain with application to planetary exploration rovers. Journal of Terramechanics.2005, 42:1~13
    57 冯启山.刚性轮与松软地面相互作用研究及仿真软件开发.吉林大学硕士学位论文.2002: 7~15
    58 李杰.车辆行走机构与沙地相互作用及仿驼蹄轮胎力学模型的研究.吉林工业大学博士学位论文.1997:96~102
    59 刘聚德.沙地行驶理论.机械工业出版社, 1996:256~263
    60 张元胤.车辆沙地系统边界运动条件实验研究.青岛建筑工程学院硕士学位论文.2000:56~57
    61 苏相国 . 月壤机械性能测量器的设计 . 哈尔滨工业大学硕士学位论文.2002:1~31
    62 庄继德.汽车通过性.机械工业出版社,1981:1~37
    63 http://science.nasa.gov/newhome/headlines/msad04feb98_1.htm
    64 庄继德.现代轮胎技术.机械工业出版社,2001:11~23
    65 Bogatchev, V.Gromov, et al.Wheel propulsive devices for mobile robots: design and characteristics.[on line], Available: http://www.privte.peterlink.ru/RCL
    66 http://www./as.fr/rsimon/eden/robots/lama.php
    67 E.Rollins, J.Luntz, A. Foessel, et al. Nomad: a Demonstration of the Transforming Chassis. Proceedings of the 1998 IEEE International conference on Robotics & Automation, Leuven, Belgium, May 1998:113~118
    68 Ashley W. Stroupe, Sanjiv Singh and Reid Simmons, et al. Technology for autonomous space systems. The technology report CMU-RI-TR-00-02, the Robotic Institute in Carnegie Melon University, September 2002
    69 http: //www.snaagami.org/shoukai/katsudou/kenrobot/saga-ken/kenkyu01.html
    70 邓宗权,高海波,胡明等.行星越障式月球车的设计.哈尔滨工业大学学报.2003,35(2):203~209
    71 陈秉聪.车辆行走机构形态学及仿生减粘脱土理论.机械工业出版社, 2001:23~38
    72 李水良,魏道付等.步行轮机钩及其运动控制方案.洛阳工学院学报.1995,16(1):63~68
    73 http: //www.privte.peterlink.ru/RCL
    74 Gregory S. Chirikjian, Yu Zhou and Jackrit Suthakorn. Self-replicating Robotics for Lunar Development. IEEE/ASME Transactions on Mechatronics. 2004,7 (4):462~479
    75 Iagnemma, K, and Dubowsky, S. Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with application to Planetary. Rovers, Springer Tracts in Advanced Robotics (STAR) Series.Springer, June 2004, 12(6):1449~1459
    76 http://www.frc.ri.cmu.edu/projects/meteorrobot/Nomad/Nomad.html
    77 Muir P F, Neumann C P. Kinematic modeling of wheeled mobile robots. Journal of Robotic Systems. 1987, 4(2): 281~340
    78 Tarokh M, McDermot G, Hayati S, Hung J. Kinematic modeling of a high mobility Mars rover. Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan,1999: 992~998
    79 R.Rajagopalan, A Generic Kinematic Formulation for Wheeled Mobile Robots. Journal of Robotic Systems. 1997, 14(2):77~99
    80 刘方湖. 管道形轮腿式月球探测机器人及其运动特性的研究.上海交通大学博士学位论文.2002:60~69
    81 熊光明,龚建伟,徐正飞,陆际联等.轮式移动机器人滑动转向研究综述.机床与液压.2003,(6):9~12
    82 代汝泉.汽车运行性能.国防工业出版社,2003:113~116
    83 史恩秀,黄美玉,史文浩等.全方位 AGV 复合转向方法的运动分析与仿真.西安理工大学学报.2004, 20(2):126~130
    84 Thomas Bak, Hans Jakobsen. Agriculture robot platform with four steering for weed detection. Biosystems Engineering.2004, 87(2):125~36
    85 B.C. Besselink.computer controlled steering system for vehicles having two independently driven wheels. Computers and Electronics in Agriculture.2003:209~226
    86 Martin Proetzsch, Tobiasch, Luksch and Karsten Berns. Fault-tolerant Behavior-based Motion Control for Off-road Navigation. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005: 4708~4713
    87 Roland Siegwart & Pierre Lamon. Locomotion Concepts, Motion Control and
    3D Position Tracking for Planetary Rovers. ICRA 2005 Planetary Rover Workshop, Barcelona, Spain, April 2005
    88 Mattia Castelnovi, Ronald Arkin, Thomas R. Collins, et al. Reactive Speed Control System Based on Terrain Roughness Detection. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005: 903~908
    89 Iagnemma, K, and Dubowsky, S. Traction Control of Wheeled Robotic Vehicles with Application to Planetary Rovers. International Journal of Robotics Research.2004, 23(10):1029~1040
    90 庄继德.计算汽车地面力学. 机械工业出版社,2001:14~16
    91 王佐伟,吴宏鑫,梁斌等.月球探测车力学建模与协调控制.第 22 届中国控制会议,湖北宜昌,2003:554~559
    92 龚建伟.移动机器人横向与纵向控制方法研究.北京理工大学博士学位论文.2002:104~105
    93 Myung-Jin Jung and Jong-Hwan Kim. Fault Tolerant Control Stray for OmniKity-III. Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, May 2001: 3370~3375
    94 P.F.Muir and C.P. Neuman. Kinematics Modeling of Autonomated Guidedvehicles. Technology Report CMU-RI-Tr-86-12, The Robotic Institute, Carnegie-Mellon University, Pittsburgh, PA, 1986
    95 Liam Pedersen.Targeting Rocks! Challenges for Robotic Exploration. ICRA 2005 Planetary Rover Workshop, Barcelona, Spain, April 2005
    96 David Wettergreen, Nathalie Cabrol, James Teza, et al. First Experiments in the Robotic Investigation of Life in the Atacama Desert of Chile. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005: 885~890
    97 蔡自兴.俄罗斯星球机器人开发一瞥—访 ROVER 科技公司.华中科技大学学报,2004,32(10):11~14
    98 欧阳自远.月球探测,任重道远.科学画报,2003,(1):20~21
    99 Yoji KURODA, Teppei TESHIMA, Yoshinori SATO. Mobility Performance Evaluation of Planetary Rovers in Consideration of Different Gravitational Acceleration. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, Canada, August 2005:1413~1418
    100 Peter Berkelman, Mei Chen, Jesse Easudes, et al. Design of a Day/Night Lunar rover. Technical report of Carnegie Mellon University CMU-RI-TR-95-24, June, 1995
    101 Roland Siegwart, Pierre Lamon. Locomotion Concepts, Motion Control and 3D Position Tracking for Planetary Rovers. Planetary Rover Workshop, ICRA 2005, Barcelona, April, 2005
    102 Joe roony, John D. hobbs, Toward kinematics classification schemes for planetary surface locomotion systems. Mechatronics. 2003,13:153~174
    103 Bapna et al. Nomad: A Demonstration of the Transforming Chassis. Proceedings of ICRA 98, Leuven Belgium, May 1998: 597~604
    104 Hayati S, Volpe R, Backes P, et al. The Rocky 7 rover: a Mars science craft prototype. Proceedings of IEEE International Conference on Robotics and Automation, 1997: 2485~2464
    105 http://www.sl.epflchl\index.html/content:research/systems/octopus/octopus.html
    106 Roland Sigwart, Illah R.nourbakhsh. Introduction to Autonomous Mobile Robots. The Press of Massachusetts Institute of Technology, Massachusetts, 2004:31~45
    107 徐佩君.骆驼越沙行走机理研究及其在不幸车辆上的应用探讨.吉林工业大学博士学位论文.1992:42~67
    108 吴在德,吴肇汉.外科学.人民卫生出版社,2005:11~47
    109 Eric Park, Linda Kobayashi, and Susan Y. Lee. Extensible Hardware Architecture for Mobile Robots. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005:3095~ 3100
    110 周大威. 全方位移动半自动控制清扫机器人的研究.哈尔滨工业大学博士学位论文.2000:57~62
    111 R.M.H.Cheng and Ramesh Rajagopalen. Kinematics of Automatic Guided Vehicles with an Inclined steering Column and an Offset Distance: Criterion for Existence of Inverse Kinematics Solution. Journal of Robot System.1992, 9(8): 1059~1081
    112 于志生.汽车理论.机械工业出版社,2002:183~185
    113 王 佐 伟 , 梁 斌 , 吴 宏 鑫 . 六 轮 月 球 车 运 动 学 建 模 与 分 析 . 宇 航 学报.2003,l24(5):456~461
    114 Jonathan Fiene Gunter Niemeyer. Switching Motor Control: An Integrated Amplifier Design for Improved Velocity Estimation and Feedback. Proceedings of the 2004 IEEE International Conference on Robotics & Automation. New Orleans, LA, April 2004: 4504~4509
    115 Benjamin Shamah. Experimental Comparison of Skid Steering Explicit Steering for a Wheeled Robot. The technology report CMU-RI-TR-99-06, the Robotic Institute in Carnegie Melon University, September 1999
    116 杜伟,宋德朝,高申兰. 8 自由度全方位移动机器人行走数学模型的精度控制.制造业自动化.2004, 26 (9):20~23
    117 Honmayoun Seaji, Traversability index: A new concept for planetary rovers. Proceedings of the International of the 1999 IEEE Conference on Robotics & Automation, Detroit, Michigan, May 1999;2006~2013
    118 Donald B.Gennery. Taversability Analysis and Path Plan for a Planetary Rover Autonomous Rover,1999,6:131~146
    119 Pierrick Grandjean,Larry Mathies. Perception control for Obstacle detection by a cross-country rover. International of the 1993 IEEE Conference on Robotics & Automation, Detroit, Michigan, May 1993: 20~27
    120 Yasuyoshi Yokokohji, Satoshi Chaen and Tsuneo Yoshikawa. Evaluation of Traversability of Wheeled Mobile Robots on Uneven Tetrrains by FractalTerrain Model. Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA, April 2004: 2183~2188
    121 Dubowsky, S., Iagnemma, K., Liberatore, S., et al. A Concept Mission: Microbots for Large-Scale Planetary Surface and Subsurface Exploration. Proceedings of the Space Technology and Applications International Forum (STAIF), 2005:1449~1459
    122 Julier S, Uhalmann J K. The spherical simplex unscented transformation. American Control Conference, Denver, 2003: 2430~2434
    123 边明远,李克强.基于车轮信息的制动车辆参考车速算法研究.农业机械学报.2005,36(6):5~7
    124 宋亦旭,谈大龙.一种轮式机器人实时速度估计方法.机械工程学报.2005, 14 (5):60~64
    125 Aniel M. Helmick, Yang Cheng, et al. Slip compensation for a Mars Rover. 2005 IEEE /RSJ International Conference on Intelligent Robots and Systems, Alberta, Canada, August 2005:1419~1425
    126 Youchi Hori,yasushi Toyoda and Yoshimasa Tsuruoka. Traction control of electric Vehicle based on the Estimation of road Surface Condition Vehicle System Dynamics Supplement 25, Swets&Zeitlinger, 1996; 413~425
    127 Robert Bauer, Winnie Leung, Tim Barfoot. Experimental and Simulation Results of Wheel-Soil Interaction for Planetary Rovers. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Alberta, Canada, August 2005:1427~1432
    128 C. Watyotha, D. Gee-Clough, V.M. Salokhe. Experiment of circumferential angle, lug spacing and slip on lug wheel forces. Journal of Terramechanics. 2001,38:1~14
    129 P.F.Muir and C.P. Neuman. Kinematics Modeling of Autonomated Guided Vehicles. Technology Report CMU-RI-Tr-86-12, the Robotic Institute, Carnegie-Mellon University, Pittsburgh, PA, 1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700