CE-1干涉成像光谱仪信息处理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国首次发射的嫦娥-1卫星上计划搭载一台中国科学院西安光学精密机械研究所研制的干涉型成像光谱仪,用于配合x/γ谱仪完成月表重要元素及物质类型的分布与含量分析的科学目标。从仪器设计需求及科学目标实现两方面出发,论文着重研究了月表目标光学属性、光谱信息获取技术(干涉型成像光谱仪的定标、信息反演及性能评测)、物质类型及元素含量的高光谱遥感分析技术三部分内容。
     月表目标光学属性
     月表物质类型可以分为三个层次:月球矿物、月岩、月壤。论文以资料调研为主,测量试验为辅,系统研究了月表矿物岩石的反射光谱产生机理,总结了主要矿物岩石的光谱特征,同时探讨了月壤的影响因素、双向反射分布特性及偏振特性,讨论月壤的反射光谱模型,提出了光谱技术在月球探测中的应用范围。另外考虑了月表物质类型的辐射及空间分布特性,讨论了光学仪器动态范围要求、光谱分辨率及空间分辨率需求。
     月表光谱信息获取技术
     论文中主要分析了目前月表高光谱图像的获取手段的限制因素,并就获得绕月高光谱图像,分析了实现方案,讨论了当前应用在绕月探测中的成像光谱技术。干涉型成像光谱仪具有高通量、多通道等优势,是一种世界上先进的间接获取光谱信息的新技术,它获得的直接信息是干涉图,需要经过一系列处理才能得到光谱维信息,论文以CE-1干涉成像光谱仪为分析对象,研究了适用于同类成像光谱仪器的信息反演、定标及评价技术。
     月表物质类型及元素含量的高光谱遥感分析技术
     月表矿物及元素的含量及分布信息对月球科学的完善与发展具有十分重要的意义,是绕月卫星高光谱遥感的一项非常重要的任务,也是我国CE-1的四大科学目标之一。论文分析了月表探测对象及其高光谱信息描述与分析途径,分别介绍了四类解决途径:反射光谱吸收峰的分析方法、基于光学参数/矿物元素含量的统计分析方法、光谱相似分析方法以及混合像元分解方法,分析了它们在月表光谱分析中应用前景及需求,讨论了各自在CE-1干涉成像光谱仪数据处理中的适用性。
As first Chinese Lunar Exploration Satellite, Chang'E-1 will carry anInterference Imaging Spectrometer (ab.Ⅱ2S) made b y X i'an Institute o f Optics andPrecision Mechanics to determinate the contents and distribution of some materialsand elements on the lunar surface with x/γSpectrometer. Take into account the needsfor system design and realization of the scientific objectives, thesis are divided intothree parts to emphasize. They are optical characteristic of lunar targets, thetechnology to obtain spectral information of lunar surface (including calibration,spectral reversion, performance evaluation ofⅡS), the hyperspectral anaysistechnology about species and content of materials and elements on lunar surface.
     Optical characteristic of lunar targets
     Lunar targets are divided into three classes: lunar mineral, lunar rock and lunarsoil. In thesis, the methods of both information analysis by synthesis andexperimentation are adopted. The mechanism of reflectance spectrum and spectralcharacteristic of minerals and rocks on lunar surface are studied. The factors influencethe spectral character of lunar soil and BRDF and polarization characteristic of lunarsoil are discussed. The reflectance spectrum models of lunar soil are analyzed. Theapplications of spectral analysis in lunar exploration are discussed. Based on radiativeand spatial characteristic of lunar materials, the needs for optical instrument includingradiative dynamic range, spectral and spatial resolution are advanced.
     The technology to obtain spectral information of lunar surface
     The limiting factors of methods to gain lunar hyperspectral image are anaysised.Corresponding schemes to gain the hyperspectral image in circling orbit of moon arediscussed. As a new and advanced technology in the world to gain spectrum,interference imaging spectrometer is superior in high throghout and multichannel. But a series of digitial processing must be executed to get spectrum because the raw datais interference figure of targets. In thesis, taking Chang'E-1ⅡS as an example, thetechnology about calibration, spectral reversion, performance evaluation ofcongeneric instrument are studied.
     The hyperspectral anaysis technology
     The information about contents and distribution of some elements and materialson the lunar surface is significance to renew and develop lunar science. It is also theimportant mission of lunar hyperspectral remote sensing and one of scientificobjectives of Chinese Chang'E-1 project. The description and analytical methods ofhyperspectral information of lunar targets are discussed in thesis. Four techniques areintroduced: first analytic methods are based on absorption characteristic in reflectancespectrum, second methods are based on statistic between optical parameter andcontents of lunar materials and elements, the followed techniques are spectralsimilitude anaysis and spectral unmixing technology. The foregrounds andrequirements of every methods for hyperspectral data in the spectral anaysis of lunarsuface are discussed. The adaptability of those methods in the Chang'E-1 InterferenceImaging Spectrometer data processing is anaysised.
引文
1 欧阳自远.我国月球探测的总体科学目标与发展战略.地球科学进展,2004,19(3):351~358
    2 欧阳自远,李春来,邹永廖,et al.月球探测的进展与我国的月球探测.中国科学基金,2003,17(4):193~197
    3 邹永廖.月球:太空探测的中转站最佳科学研究场所.科学之友,2004,(3):42~42
    4 Foing B H, Racca G D, Marini A, et al. SMART-1 mission to the moon: Technology and science goals. Advances in Space Research, 2003, 31: 2323~2333
    5 Foing H B, Smart-S, Technology W T. SMART-1 Mission Goals and Science. ESA SP-462: Exploration and Utilisation of the Moon, 2000,: 408
    6 Noda H, Hanada H, Kawano N, et al. The SELENE Mission and Japanese Lunar Exploration Scenario. Journal of Korean Astronomical Society, 2005, 38: 311~314
    7 Matsumoto K, Kato M, Takizawa Y, et al. SELENE-B Japanese soft landing mission: Goals and Status, 35th COSPAR Scientific Assembly, 2004,: 3805
    8 Sasaki S, Iijima Y, Tanaka K, et al. The SELENE mission: Goals and status. Advances in Space Research, 2003, 31: 2335~2340
    9 Nozette S. The Clementine Mission: Past, Present, and Future. Acta Astronautica, 1995, 35: 161~169
    10 N ozette S. The Clementine Mission to the Moon: Scientific Overview. Science, 1994, 266: 1835~1843
    11 Goswami J N, Thyagarajan K, Annadurai M. Chandrayaan-1: Indian Mission to Moon. 37th Annual Lunar and Planetary Science Conference, 2006, 37: 1704
    12 栾恩杰.科技:中国将与他国共建月球基地.决策与信息,2005,(5):78~78
    13 欧阳自远.月球探测的进展与中国的月球探测.地质科技情报,2004,23(4):1~5
    14 薛彬,杨建峰,赵葆常.月球表面主要矿物反射光谱特性研究.地球物理学进展,2004,19(3):717~720
    15 吕群波,相里斌,薛彬,et al.高光谱图像中纯光谱提取方法.光子学报,2005,34(9):1336~1339
    16 薛彬,赵葆常,杨建峰,et al.改进的线性混合模型用于高光谱分离实验模拟.光子学报,2004,33(6):689~692
    17 薛彬,杨建峰,赵葆常.用于月球风化层遥感的光谱分离技术研究.光子学报,2005,34(10):1510~1513
    18 薛彬,赵葆常,杨建峰.成像光谱技术在月球探测中的应用.光子学报,2005,34(z1):62~65
    19 欧阳自远,邹永廖,李春来,et al.月球探测与人类社会的可持续发展.矿物岩石地球化学通报,2003,22(4):328~333
    20 欧阳自远.月球探测进展与我国的探月行动(上).自然杂志,2005,27(4):187~190
    21 Mccord T B, Adams J B. Progress in remote optical analysis of lunar surface composition. In: The Moon 7. Dordrecht-Holland: D.Reidel Publishing Company, 1973. 453~474P
    22 Kato M, Takizawa Y, Sasaki S, etal. SELENE, the Japanese Lunar Orbiting Satellites Mission: Present Status and Science Goals. 37th Annual Lunar and Planetary Science Conference, 2006, 37: 1233
    23 Maejima H, Sasaki S, Takizawa Y. Development of Selenological and Engineenng Explorer (SELENE). LPI Contributions, 2005, 1287: 62
    24 Mizutani H, Sasaki S, Iijima Y, et al. Scientific Research in SELENE Mission. The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, p. 39, 2002,: 39
    25 Rustan P L. Clementine mission. Proc. SPIE Vol. 2317, p. 217-225, Platforms and Systems, William L. Barnes; Brian J. Horais; Eds., 1995, 2317: 217~225
    26 Rustan P L. Clementine Program. 1 ed. Orlando, FL, USA: SPIE, 1994. 2~6P
    27 Foing B H. SMART-1 Mission: First Lunar Results. AGU Fall Meeting Abstracts, 2005, 51: 0892
    28 Rathsman P, Kugelberg J, Bodin P, et al. SMART-1: Development and lessons learnt. Acta Astronautica, 2005, 57: 455~468
    29 Racca G, Foing B H, Smart- P T. ESA's SMART-1 Mission: Status. 35th COSPAR Scientific Assembly, 2004,: 4057
    30 Ouyang Z, Zou Y, Li C. The Scientific Objectives Of Chinese First Lunar Exploration Project (AAS 03-756). International Lunar Conference 2003, 2004,: 449
    31 He S. China's moon project change: Stratagem and prospects. Advances in Space Research, 2003, 31: 2353~2358
    32 Bhandari N, Adimurthy V, Banerjee D, et al. Chandrayaan-1 Lunar Polar Orbiter: Science Goals And Payloads (AAS 03-703). International Lunar Conference 2003, 2004,: 33
    33 Bhandari N. Chandrayaan-1, Lunar polar orbiter. 35th COSPAR Scientific Assembly, 2004,: 2430
    34 浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2003
    35 徐希孺.遥感物理.北京:北京大学出版社,2005
    36 孙家捅.遥感原理与应用.武汉:武汉大学出版社,2003
    37 陈述彭,童庆喜,郭华东.遥感信息机理研究.北京:科学出版社,1998
    38 Hunt G R.遥感专辑一矿物和岩石的可见光及近红外光谱.北京:地质部情报研究所,1980
    39 Priest R E, Lewis I T, Sewall N R, et al. Clementine longwave infrared camera. 1 ed. Orlando, FL, USA: SPIE, 1995a. 405~416P
    40 Priest R E, Lewis I T, Sewall N R, et al. Near-infrared camera for the Clementine mission. 1 ed. Orlando, FL, USA: SPIE, 1995b. 393~404P
    41 Kordas J F, Lewis I T, Priest R E, et al. UV/visible camera for the Clementine mission. 1 ed. Orlando, FL, USA: SPIE, 1995. 175~186P
    42 Josset J-, Beauvivre S, Cerroni P, et al. SMART-1/AMIE Camera System. 37th Annual Lunar and Planetary Science Conference, 2006, 37:1847
    43 Mall U, Nathues A, Keller H. Near-Infrared Investigations of the Lunar Far Side with SIR on SMART-1. AGU Fall Meeting Abstracts, 2005, 51: 0893
    44 Nathues A, Mall U, Keller U. Near Infrared Spectrometry with SIR on SMART-1. ESA SP-462: Exploration and Utilisation of the Moon, 2000,: 101
    45 Ohtake M, Haruyama J, Mastunaga S, et al, Observation and Data Analyses Plan of the SELENE Multiband Imager. 37th Annual Lunar and Planetary Science Conference, 2006, 37: 1536
    46 Hirata N, Haruyama J, Demura H, et al. Data Processing Plan of Lunar Imager/Spectrometer on the SELENE Project. Lunar and Planetary Institute Conference Abstracts, 2002, 33: 1493
    47 Ohtake M, Demura H. Capability and Data Analysis of the Multiband Imager for the SELENE Mission. The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, p. 44, 2002,: 44
    48 Matsunaga T, Ohtake M, Hirahara Y, et al. Development of a visible and near-infrared spectrometer for Selenological and Engineering Explorer (SELENE). 1 ed. Sendai, Japan: SPIE, 2001. 32~39P
    49 Mall U, Nathues A, Keller H U, et al. SIR - 2: The NIR Spectrometer for the Chandrayaan-1 Mission. AAS/Division for Planetary Sciences Meeting Abstracts, 2005, 37
    50 Chowdhury A S K K A A R. Hyper-Spectral Imager in visible and near-infrared band for lunar compositional mapping. J. Earth Syst. Sci., 2005, 114(6): 721-724
    51 胥涛,Davidtblewett,李春来,et al.月球紫外.可见-近红外反射光谱的基本特征及解析方法.地球与环境,2004,32(3):27~33
    52 胥涛,李春来.月球表面元素含量的定量分析方法.空间科学学报,2001,21(4):332~340
    53 胥涛.利用反射光谱和热辐射探测月球表面物质的理论和方法.贵阳:中国科学院,2004.190P
    54 Holsclaw G M, Mcclintock W E, Robinson M S. Comparison of Newly Acquired Lunar Spectra with the Titanium Abundance Maps Derived from Clementine. 36th Annual Lunar and Planetary Science Conference, 2005, 36: 2376
    55 Chevrel S D, Pinet P C, Daydou Y, et al. Integration of the Clementine UV-VIS spectral reflectance data and the Lunar Prospector gamma-ray spectrometer data: A global-scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances. Journal of Geophysical Research (Planets), 2002, 1071: 15-1
    56 Staid M I, Pieters C M, Gaddis L R, et al. Spectral Comparisons of Mare Basalts from Clementine UVVIS and NIR Data. Lunar and Planetary Institute Conference Abstracts, 2002, 33: 1795
    57 Cahill J T, Lucey P G, Gillis J J, et al. Global Mapping of Mg-Number Derived from Clementine Data. AGU Fall Meeting Abstracts, 2004, 23: 0232
    58 Lemouelic S, Langevin Y, Erard S, et al. Discrimination Between Maturity and Composition from Integrated Clementine UltraViolet-Visible and Near-Infrared Data. Workshop on New Views of the Moon 2: Understanding the Moon Through the Integration of Diverse Datasets, p. 39, 1999,: 39
    59 Gillis J J, Lucey P G. Is random noise causing a poor correlation between the Lunar Prospector TiO[sub 2] data a nd Clementine U VVIS-color ratio? 1 e d. Honolulu, HI, USA: S PIE, 2004. 151~158P
    60 Staid M I. Remote determination of the mineralogy and optical alteration of lunar basalts using Clementine multispectral images: Global comparisons of mare volcanism., 2000,
    61 Van Der Meer F. Imaging Spectrometry:Basic Princilpes and Prospective Applications. hingham,MA,USA: Kluwer Academoc Puloshers, 2002
    62 张杰林,曹代勇.高光谱遥感技术在煤矿区环境监测中的应用.自然灾害学报,2005,14(4):158~162
    63 刘凯龙,孙向军,赵志勇,et al.地面目标伪装特征的高光谱成像检测方法.解放军理工大学学报:自然科学版,2005,6(2):166~169
    64 戴民主.高光谱遥感和成像技术在地质上的应用——高光谱矿物填图简介.核地知与行,2004,(3):16~18
    65 张杰林,曹代勇,刘德长.高光谱数据挖掘技术在资源勘查中的应用研究.地理与地理信息科学,2004,20(3):89~91
    66 刘伟东,张兵,郑兰芬,et al.高光谱遥感土壤湿度信息提取研究.土壤学报,2004,41(5): 700~706
    67 唐伯惠,姜小光,唐伶俐,et al.星载高光谱Hyperion数据在海滩涂调查应用中的分析.地球信息科学,2004,6(2):81~87
    68 王青华,王润生.高光谱遥感技术在岩石识别中的应用.国土资源遥感,2000,(4):39~43
    69 甘甫平,王润生.高光谱遥感信息提取与地质应用前景—以青藏高原为试验区.国土资源遥感,2000,(3):38~44
    70 刘玉洁,杨忠东.MODIS遥感信息处理原理与算法.北京:科学出版社,2001.346P
    71 Bell J F. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J Geophys Res, 2003, 108(E12)
    72 周成虎,骆剑承,杨晓梅等.遥感影像地学理解与分析.北京:科学出版社,1999
    73 李在清.光谱光度测量与标准.1ed.:中国计量出版社,1993.223页P
    74 赵永超;承继成;陈正超;耿修瑞.地物波谱中的不确定性问题.遥感学报,2003,(7(增)):80~90
    75 郑永春,王世杰,刘建忠,et al.模拟月壤研制的初步设想.空间科学学报,2005,25(1):70~75
    76 Lidihui , Jiangjingshan , Wuji , et al. Experimental research and statistical analysis on the dielectric properties o flunar soil simulators. 中国科学通报:英文版, 2005, 50(10): 1034~1043
    77 Sasaki S, Kurahashi E. Compositional Dependency of Space Weathering: Pulse Laser Irradiation and Reflectance Measurement on Olivine-Pyroxene Mixtures. Bulletin of the American Astronomical Society, 2001, 33: 1149
    78 Pieters C. M. T L A E A. Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteoritics and Planetary Science, 2000, 35: 1101~1107
    79 Wiesli, Ra, Beard, B., Taylor, La., And Johnson, Cm. Space weathering processes on airless bodies: Fe isotopw fractionaltion in the lunar regolith. Earth Planet. Sci. Lett, 2000, 216: 457~465
    80 Noble S K. Turning rock into regolith: The physical and optical consequences of space weathering in the inner solar system., 2004,
    81 Shkuratov L V S A Y G. A Theoretical Model of Lunar Optical Maturation: Effects of Submicroscopic Reduced Iron and Particle Size Variations. Icarus, 2001, 152,: 275-281
    82 Takahiro Hiroi C M P. Estimation of grain sizes and mixing ratios of powder mixtures of common geologic mmerls. J Geophys Res, 99(E5): 10867-10879
    83 Hinrichs J L. Near-infrared spectral dependence on temperature for mafic minerals, meteorites, and lunar soils: Implications for asteroid and lunar science., 2000,
    84 Hinrichs P G L A J. Detection of Temperature-Dependent Spectral Variation on the Asteroid Eros and New Evidence for the Presence of an Olivine-Rich Silicate Assemblage. Icarus,, 2002, 155:: 181~188
    85 F. Poulet, J. N. Cuzzi, D. P. Cruikshank, T. Roush A C M D O. Comparison between the Shkuratov and Hapke Scattering Theories for Solid Planetary Surfaces: Application to the Surface Composition of Two Centaurs. Icarus, 2002, 160: 313-324
    86 Shkuratov, Y., L. Starukhina, H. Hoffmann A G A. A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon. Icarus, 1999, 137: 235-246
    87 陈光余.红外辐射.In:孙再龙,ed.红外与光电系统手册.:8358所翻译,2001
    88 J. N. Maki, J. F. Bell, K. E. Herkenhoff, S. W. Squyres, A. Kiely M K. Mars Exploration Rover Engineering Cameras. J Oeophys Res, 2003, 108(E12)
    89 Pinet P, Cerroni P, Josset J -, et al. The advanced Moon micro-imager experiment (AMIE) on SMART-1: Scientific goals and expected results. Planetary and Space Science, 2005, 53: 1309~1318
    90 Shkuratov Y O, Kreslavsky M A, Stankevich D O, et al. The SMART-1 Mission: Photometric Studies of the Moon with the AMIE Camera. Solar System Research, 2003, 37: 251~259
    91 Josset J-, Amie T. Science goals and expected results from the smart-1 amie multi-coulour micro-camera. EGS-AGU-EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6-11 April 2003, abstract #14290, 2003,: 14290
    92 Pugacheva S G, Shevchenko V V. Photometry of the Moon with AMIE/SMART-1: Photometric. Parameter as Roughness Index. Lunar and Planetary Institute Conference Abstracts, 2003, 34: 1112
    93 相里斌;计忠瑛;王忠厚;袁艳.空间调制干涉光谱成像仪定标技术研究.光子学报,2004,33(7):850~854
    94 G. Baudin, Jph. Chessel, m. a. Cutter D L. Calibration for the medium-resolution imaging spectrometer.: SPIE, 1991. 16~28P
    95 Thomas G. Chrien, Robert O. Green M L E. Accuracy of the Spectral and Radiometric Laboratory Calibration of the Airborne Visible/infrared Imaging Spectrometer (AVIRIS).: SPIE, 1990. 37~50P
    96 Mark Folkman, Jay Peariman, Lushalan Liao P J. EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration. Ed. By William L. Smith, Yoshifumi Yasuoka.: SPIE, 2001. 40~52P
    97 盛裴轩,毛节泰,李建国.大气物理学.北京:北京大学出版社,2003
    98 Bracewell R N,Terman L M.傅立叶变换及其应用.西安:西安交通大学出版社,2005
    99 吴谨光.现代傅立叶变换光谱技术及应用.北京:科学技术出版社,1994
    100 张知廉.傅立叶变换光谱.北京:北京大学出版社,1990
    101 Kauppinen J, Partanen J. Fourier Transform in Spectroscopy.: Wiley-VCH Vertag GmbH, 2001
    102 Hillier J K, Buratti B J, Hill K. Multispectral Photometry of the Moon and Absolute Calibration of the Clementine UV/Vis Camera. Icarus, 1999, 141: 205~225
    103 http://www.planetary.brown.edu/clementine/calibration.html.
    104 赵永超.高光谱遥感中典型地物目标的波谱特征分析和信息提取模型—几个关键问题的研究报告.北京:中国科学院遥感应用研究所(博士后研究工作报告),2001
    105 张兵.时空信息辅助下的高光谱数据挖掘.北京:中国科学院遥感应用研究所,2002
    106 韩心志,焦世举.航天光学遥感辐射度学.哈尔滨:哈尔滨工业大学出版社,1994.229P
    107 姜景山,王文魁.空间科学与应用.北京:科学出版社,2001.707P
    108 Philiip D. Hammer,david L. Peterson W H S. Imaging inrerferometry for terrestrial remote sensing-digital array scanned interferometer instrument developments., 1993. 153~163P
    109 中科院上海技术物理研究所教育中心.高级红外光电工程导论.
    110 欧阳自远,邹永廖.月球的地质特征和矿产资源及我国月球探测的科学目标.国土资源情报,2004,(1):36~39
    111 邹永廖,欧阳自远.月球表面的环境特征.第四纪研究,2002,22(6):533~539
    112 欧阳自远,邹永廖.月球某些资源的开发利用前景.地球科学:中国地质大学学报,2002,27(5):498~503
    113 王青华,王润生.高光谱遥感技术在岩石识别中的应用.国土资源遥感,2000,(4):39~43
    114 S hkuratov Y, P inet P, O melchenko V, et al. Derivation of Elemental Abundance Maps at 15-km Spatial Resolution from the Merging of Clementine Optical and Lunar Prospector Geochemical Data. Lunar and Planetary Institute Conference Abstracts, 2004, 35: 1162
    115 Pieters C M, Shkuratov D G S A Y G. Statistical Analysis of the Links among Lunar Mare Soil Mineralogy, Chemistry, and Reflectance Spectra. Icarus, 2002, 155:285-298
    116 Mustard J F, Li L, He G. Nonlinear spectral mixture modeling of lunar multispectral data: Implications for lateral transport. J Geophys Res, 1998, 103: 19419~19426
    117 Mustard J F, Li L, He G. The importance of nonlinear mixture modeling for analysis of lunar multispectral data. Lunar and Planetary Institute Conference Abstracts, 1997, 28: 995
    118 Plaza J, Plaza A J, Martinez P, et al. Nonlinear mixture models for analyzing laboratory simulated-forest hyperspectral data. 1 ed. Barcelona, Spain: SPIE, 2004. 480~487P
    119 Tompkins S. Unmixing the Lunar Surface. Solar System Remote Sensing, p. 87, 2002,: 87
    120 Hapke B. Bidirectional Reflectance Spectroscopy5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering. Icarus, 2002, 157: 523~534
    121 Hapke B. Theory of reflectance and emittance spectroscopy. Topics in Remote Sensing, Cambridge, UK: Cambridge University Press, c1993, 1993,
    122 王松桂,史建宏,尹素菊,吴密霞.线性模型引论.北京:科学出版社,2004.293P
    123 李庆亭,张莲蓬,杨锋杰.高光谱遥感图像最大似然分类问题及解决方法.山东科技大学学报:自然科学版,2005,24(3):61~64
    124 许卫东.高光谱遥感分类与提取技术.红外,2004,(5):28~34
    125 Abatzoglou T J, Mendel J M. Constrained Total Least Squares. Dallas, 1987. 1485~1488. P
    126 Hu Y. H., Lee H. B. S F L. Optimal Linear Spectral Unmixing. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37(1): 639~644
    127 Nascimento J M, Dias J M. Independent component analysis applied to unmixing hyperspectral data. 1 ed. Barcelona, Spain: SPIE, 2004. 306~315P
    128 杨竹青;李勇胡;德文.独立成分分析方法综述.自动化学报,2002,28(5):762~773
    129 杨竹青;毛锦;胡德文.独立成分分析方法在图象处理中的应用.计算机工程与科学,2002,24(5):71~74
    130 杨竹青:胡德文.独立成分分析方法在盲源信号分离中的应用.,2002,10(3):200~203
    131 Comon P. Independent component analysis: A new concept. Signal Processing, 1994, 36: 287~314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700