基于重力/地形导纳的月球物理参数反演和月球热模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前主要月球重力场模型已经实现了月球的全球覆盖,全球有效阶次已得到显著地提高,月球地形模型的有效阶次已达历史之最,可以满足月球物理研究的需求。由于月震数据有限,且月震台站分布不均,无法利用月震数据分析月球的全球特征,因此,利用重力和地形数据分析月球物理参数的全球特征已成为可能,利用重力/地形导纳求解月壳厚度、岩石圈弹性厚度、月球表面热流密度已成为当前的主要手段。LLR数据表明月-地间距在不断地增大,早期月-地间距较小,月球所受潮汐力较大,利用重力/地形导纳求解岩石圈的弹性厚度,可以探究早期潮汐效应对月球热演化的影响。本文所做的工作如下:
     1.利用球面函数对主要月球重力场模型进行了局部谱分析,同时利用GEODYN-Ⅱ定轨软件仿真分析了不同轨道特征的探月卫星对月球重力场模型的改进。结果表明CEGM02较适合于作月球物理解释,SGM150j较适合于作探月卫星精密定轨。综合以往探月卫星如嫦娥一号、嫦娥二号、SELENE、LP、Clementine、 Lunar Orbiters、GRAIL等探月卫星轨道跟踪数据,并对数据基准进行统一,采用最优化的数据融合方案和Kaula约束准则,可进一步解算高精度的月球重力场模型,为未来月球重力场模型的研制和月球物理参数的求定提供参考。
     2.针对月震数据有限、月震台站分布不均、传统方法单独反演月球物理参数的不适宜性,提出联合月球重力/地形导纳和非线性反演方法粒子群PSO算法同时求解物理参数如载荷比、月壳厚度、月壳密度、岩石圈弹性厚度等,并分析了不同月球重力场模型参与重力/地形导纳和相关性分析的差异。结果表明主要月球重力场模型在月球正面较适合于作重力/地形导纳研究,CEGM02和SGM150j较适合于作月球背而重力/地形导纳分析;粒子群PSO算法能够同时反演月球物理参数的最优解,计算效率高于传统迭代方法。本文方法比较适合于月球物理参数多参数的反演,可为月球内部精细结构研究提供有宜的参考。
     3.不同研究使用的数据不同,采用的数据处理方法也不同,计算得到的月核大小及其组成各异。由于各类信息的缺乏对月球深部结构的分析存在极大的不确定性,利用月球平均密度p和转动惯量因子I/MR2作为约束参数,采用六层月球分层模型研究了月核的大小及其密度组成。结果表明月核大小约为410km,相应的密度大约为5.768g/cm3,说明月核的组成成分可能为Fe-FeS的合金,与大多数学者的研究结果相似。计算求得的月球圈层结构及内部密度分布具有一定的参考价值。
     4.针对早期月-地间距较近,月球所受潮汐力较大,利用变分基本引理将月球热演化的控制方程转换成相应的弱解形式,并对弱解形式进行无量纲处理。利用重力/地形导纳求解的弹性厚度进一步求解表而热流密度,并以此为约束条件,使用有限元方法研究了潮汐力在不同初始温度条件下对月球热演化的影响。结果表明潮汐效应会加快热对流的产生,促使月-地连线方向产生大尺度的对流柱,加速月球内部热量的释放。综合其它物理机制可能为月球不对称热演化、月壳二分性、玄武岩二分性、月岩剩磁等成因提供解释。
Gravity coefficients of most lunar gravity field models are becoming more valid globally. And the lunar topography model derived from LOLA data is even expressed to degree and order720. This makes lunar geophysical research thus become possible. Because of the selenographical limited extent of network, lunar geophysical parameters cannot be obtained globally just from limited seismic data. Another powerful method that can be used to probe the lunar subsurface structure globally is through the collaborative analysis of gravity and topography data. Then the lunar crustal thickness, lithosphere elastic thickness and surface heat flux can be obtained from gravity/topography admittance. Besides, LLR data indicates that the distance between the moon and the earth is increasing. This shows that the distance might be smaller in the early stage when the moon suffered a larger tidal force exerted by the earth. Tidal force should therefore be considered in the lunar thermal evolution. Using heat flux derived from elastic thickness as a constraint, the tidal effect on the thermal evolution can then be predicted. So this work in this thesis is as follows:
     1. We analyzed degree RMS of various gravity field models by using localized spherical harmonic functions. The contribution of various orbits in the lunar gravity field model was also investigated through the orbit determination software GEODYN-Ⅱ. Results indicate that CEGM02takes an advantage in the lunar geophysical parameters estimation, but SGM150j is more suitable for the precision orbit determination. With the joint of data from Chang'E-1, Chang'E-2, SELENE, LP, Clementine, Lunar Orbiters and GRAIL, we can solve a more accurate lunar gravity field model, when considering new optimization methods and Kaula constraint. This research can provide a good reference for the production of new gravity field model and the estimation of lunar geophysical parameters.
     2. Because of the limited lunar seismic data, the limited selenographical extent of network and the traditional methods failing in the best inversion solution, some lunar geophysical parameters such as load ratio, crustal thickness, crustal density and lithosphere elastic thickness can be simultaneously calculated with the joint of lunar gravity/topography admittance and nonlinear inversion method Particle Swarm Optimization namely PSO. Using this method, we also analyzed the admittance and correlation difference of various gravity field models. Results show that all the models are appropriate for gravity/topography admittance and correlation analysis on the nearside of the moon. But as to the farside, CEGM02and SGM150j show a superior advantage in such analysis. Moreover, through the algorithm PSO, all the parameters of the best-fit model can be calculated with a reducing calculation time. It can be concluded that multi-parameters inversion can be successful with the joint admittance and PSO, which is unquestionably beneficial for lunar internal structure investigation.
     3. Separate data and approach often lead to a discrepancy in the size of the lunar core and its composition. And the lack of information about the interior structure often results in uncertainty. Up to now, the lunar average density and its inertia moment factor Ⅰ/MR2are widely used to place constraints on its interior structure. We modeled the moon as a sphere with six layers by using such method. Results show that the size of the lunar core is about410km and its corresponding density is approximately5.768g/cm3. This indicates that the core may be composed of Fe-FeS alloy, which is similar with other findings. Consequences concluded here could provide a useful reference for further studies.
     4. The distance between the moon and the earth may be slight in the early stage, when the moon might suffer a larger tidal force exerted by the earth. This is why tidal force should be considered in the lunar thermal evolution, especially in its initial stage. We converted the governing equation of the thermal evolution into dimensionless weak form. Using the finite element method analysis, the thermal evolution of the moon was investigated with different initial temperatures when considering tidal effect on different stages. Results indicate that tidal force can speed up the generation of convection, and cause large-scale convection column in center-to-center direction from the moon to the earth, which accelerates the interior heat release. Consequences here could provide some interpretation for lunar asymmetric thermal evolution, crust dichotomy, basalt dichotomy and remanence in the rock with the combination of other physical mechanism.
引文
曹建峰,黄勇,胡小工,等.USB与VLBI联合确定“嫦娥一号”卫星撞击点的位置[J].宇航学报,2010,3 1(7):1724-729.
    焦述强,金振民.大陆岩石圈有效弹性厚度研究及其动力学意义[J].地质科技情报,1996,15(2):8-12.
    纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2008:249.
    李斐,鄢建国,平劲松.月球探测及月球重力场的确定[J].地球物理学进展,2006,21(1):31-37.
    李斐,柯宝贵,王文睿,鄢建国.利用重力地形导纳估计月壳厚度[J].地球物理学报,2009,52(8):2001-2007.
    李斐,鄢建国,平劲松,等.基于大倾角卫星轨道数据的月球重力场模型仿真解算[J].地球物理学报,2011,54(3):666-672.
    李丽,牛奔.粒子群优化算法[M].北京:冶金工业出版社,2010:154.
    陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,2004:318.
    林杨挺.月球形成和演化的关键科学问题[J].地球化学,2010,39(1):1-10.
    郝卫峰.基于嫦娥一号激光测高数据的月球车着陆点选择研究[D].武汉:武汉大学测绘遥感信息工程国家重点实验室,2012:
    欧阳]自远.月球科学概论[M].北京:中国宇航出版社,2005:362.
    平劲松,黄倩,鄢建国,等.基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01[J].中国科学G辑,2008,38(11):1601-1612.
    鄢建国,李斐,平劲松,唐歌实,黄倩,曹建峰,刘俊泽.基于“嫦娥一号”跟踪数据的月球重力场模型CEGM-01 [J].地球物理学报,2010,53(12):2843-2851.
    鄢建国,平劲松,Matsumoto K, Goossens S,唐歌实,李斐,刘俊泽,李金岭.嫦娥一号绕月卫星对月球重力场模型的优化[J].中国科学:物理学力学天文学,2011,41(7):870-878.
    王威,鄢建国,史弦,古劲松.绕月飞行器近圆形轨道演化的数值分析[J].武汉大学学报(信息科学版),2007,32(1):19-23.
    王家映.地球物理反演理论[M].北京:高等教育出版社,2007:187.
    王文睿,李斐,鄢建国,柯宝贵.月球重力异常的小波多度分析[J].地球物理学报,2009,52(7):1693-1699.
    曾攀.有限元基础教程[M].北京:高等教育出版社,2009:380.
    赵进义,易照华.天体力学[M].上海科学技术出版社,1979:230.
    朱广彬,李建成,文汉江,等.卫星重力梯度数据确定地球重力场的Slepian局部谱分析方法[J].测绘学报,2012,41(1):1-7.
    Agnor C B, Canup R M, Levison H F. on the character and consequences of large impacts in the late stage of terrestrial planet formation [J]. Icarus,1999, 142:219-237.
    Akim E L. Determination of the Gravitational Field of the Moon from the Motion of the Artificial Lunar Satellite'Lunar-10'[J]. Doklady Akademii Nauk SSSR, 1966,170:799-802.
    Alley K M, Parmentier E M. Numerical experiments on thermal convection in a chemicallyu stratified viscous fluid heated from below:implications for a model of lunar evolution [J]. Phys Earth Planet Interiors,1998,108:15-32.
    Andrews-Hanna J C, Asmar S W, Head III J W, et al. Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry [J]. Science, 2012.
    Araki H, Tazawa S, Noda H, etal. Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry [J]. Science,2009,323(5916):897-901.
    Arbab I A. On the Tidal Evolution of the Earth-Moon System:A Cosmological Model [J]. Progress in Physics,2009,1:54-58.
    Archinal B A, Hare T M, Becker T L. New lunar cartographic products registered to the unified lunar control network 2005 (ULCN2005) [C].39th lunar and planetary science conference,2008.
    Arkani-Hamed J. The lunar masoncs revisited [J]. J. Geophy. Res.,1998, 103(E2):3709-3739.
    Belleguic V, Lognonne P, Wieczorek M A. Constraints on the Martian lithosphere from gravity and topography data [J]. J. Geophys. Res.,2005,110:E11005.
    Bendat J S, Piersol A G. Random Data:Analysis and Measurement Procedures [M]. New York:John Wiley,2000.
    Benz W, Slattery W L, Cameron A G W. The origin of the Moon and the single impact hypothesis [J]. Icarus,1986,66:515-535.
    Beuthe M, Maistre S L, Rosenblatt P, et al. Density and lithospheric thickness of the Tharsis Province from MEX MaRS and MRO gravity data [J]. J. Geophy. Res.,2012, 117(E04002):1-32.
    Bills B C, Ferrari A J. A lunar density model consistent with topographic, gravitational, librational, seismic data [J]. J.Geophys.Res.,1977, 82,1306-1314.
    Bills B G. Geodetic constraints on the composition of Mars [J]. J. Geophys. Res,1990, 14(136):131-14.
    Blankenbach B, Busse F, Christensen U, et al. A benchmark comparison for mantle convection codes [J]. Geophys.J.Int.,1989,98:23-38.
    Boss A P. The origin of the Moon [J]. Science,1985,231:341-345.
    Breuer D, Labrosse S, Spohn T. Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites [J]. Space Sci Rev,2010,152:449-500.
    Bussey B, Spudis P. The Clementine Atlas of the Moon[M]. Cambridge:Cambridge Univ. Press,2004.
    Bussey D B J, Fristad K E, Schenk P M, et al. Constant illumination at the lunar north pole [J]. Nature,2005,434,842.
    Cameron A G W, Ward W R. The origin of the Moon [J]. Lunar Sci WII,1976,201-122.
    Cameron A G W. Higher-resolution simulations of the giant impact [A]. Origin of the Earth and Moon[M]. Canup RM, Righter K, University of Arizona Press,2000, 133-144.
    Cameron A G W. From interstellar gas to the Earth-Moon system[J]. Meteor Planet Sci, 2001,36:9-22.
    Canup R M and Asphaug E. Origin of the Moon in a giant impact near the end of the Earth's formation [J]. Nature,2001,412,708-712.
    Carlson R W. A brief review of infrared, visible and ultraviolet spectroscopy of Europa and recommendations for Jupiter Icy Moons Orbiter. Forum on Jupiter Icy Moons Orbiter [C]. Lunar and Planetary Institute,2003.
    Crosby A, McKenzie D. Measurements of the elastic thickness under ancient lunar terrain[J]. Icarus,2005,173:100-107.
    Darwin G. Phil Trans Roy Soc,1879,170:447.
    Dickey J 0, Bender J E, Faller J E, et al. Lunar laser ranging:A continuing legacy of the Apollo program[J]. Science,1994,265:482-490.
    Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory [C]. Proc.6th International Symposium on Micro Machine and Human Science (Nagoya, Jappan), IEEE Service Center, Piscataway, NJ,1995,39-43.
    Eberhart R C, Shi Y H. Tracking and Optimizing Dynamic Systems with Particle Swarms [C]. Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway, NJ:IEEE Press:2001,94-100.
    Elkins-Tanton L T, Burgess S, Yin Q Z. The lunar magma ocean:Reconciling the solidification process with lunar petrology and geochronology [J]. Earth and Planetary Letters,2011,204,326-336.
    Engelbrecht A P. Fundamentals of Computational Swarm Intelligence [J]. Wiley,2005.
    Evans A J, Zuber M T. The Possible Role of Water in the Early Thermal Evolution of the Moon [C].43rd LPSC,2012,22406.
    Floberghagen R. Lunar Gravimetry:Revealing the Far-Side [M]. Dordrecht:Kluwer Academic Publishers,2002,
    Foing B H. The moon as a platform for astronomy and space science[J]. Adv. Space. Res,1996,118(11):11-23.
    Forsyth D W. Subsurface loading and estimates of the flexural rigidity of continental lithosphere [J]. J. Geophy. Res.,1985,90(B14):12623-12632.
    Frisbee R. Advanced propulsion for the ⅩⅪst Century[M]. American Institute of Aeronautics and Astronautics,2003,2003-2589.
    Gerstenkorn H. The early history of the Moon [J]. The Moon,1970,1,509.
    Goddard Space Flight Center. "Next Generation Space Telescope".1999.
    Goldreich P. Hisoty of the lunar orbit [J]. Rev Geophys,1966,4:411-439.
    Grott M, Wieczorek M A. Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data [J]. Icarus,2012,221:43-52.
    Han S C. Improved regional gravity fields on the Moon from Lunar Prospector tracking data by means of localized spherical harmonic functions [J]. J. Geophysics. Res.,2008,113(E11012):1-5.
    Han S C, Mazarico E, Lemoine F G. Improved nearside gravity field of the Moon by localizing the power [J]. Geophysical Research Letters,2009,36(L11203):l-5.
    Han S C, Mazarico E, Rowlands D, et al. New analysis of Lunar Prospector radio tracking data brings the nearside gravity field of the moon with an unprecedented resolution [J]. Icarus,2011,215(2):455-459.
    Hartmann W K. Davis D R. Satellite-sized planetesimals and lunar origin [J]. Icarus, 1975,24:504-515.
    Head J W Ⅲ, Patterson G W, Collins G C, et al. Global geologic mapping of Ganymede: Outstanding questions and candidate contributions from JIMO [C]. Lunar and Planetary Institute,2003,9039.
    Heiskanen W A, Moritz H. Physical Geodesy [M]. W H Freeman, San Francisco, Calif. 1967.
    Hess P C, Parmentier E M. A model for the thermal and chemical evolution of the Moon's interior:Implications for the onset of mare volcanism [J]. Earth Planet Sci Lett,1995,134:501-514.
    Hirt C, Featherstone W E. A 1.5 km-resolution gravity field model of the Moon [J]. EPSL,2012,329:22-30.
    Huang Q, Wieczorek M A. Density and porosity of the lunar crust from gravity and topography [J]. J. Geophy. Res.,2012,117(E05003):1-9.
    Ishihara Y, Namiki N, et al. Localzied Gravity/Topography Correlation and Admittance Spectra on the Moon. Lunar and Planetary Science Conference.2009,40th,1623.
    Jolliff B L, Rochow K M, Korotev R L, et al. Lithologic distribution and geologic history of the Apollo 17 site:The record in soils and small rock particles from the highland massifs[J]. Meteoritics & Planetary Science,1996,31:116-145.
    Jolliff B L, Gillis J J, Haskin R L, et al. Major lunar crustal terranes:surface expressions and crust-mantle origins [J]. J. Geophys. Res.,2000,105,4197-4216.
    Jofflif B L, Wieczorek M A, Shearer C K, et al. New Views of the Moon [M]. Washington D C:Mineralogical Society of America,2006:721p.
    Jutzi M and Asphaug E. Forming the lunar farside highlands by accretion of a companion moon [J]. Nature,2011,476:69-72.
    Karato S I, Wu P. Rheology of the Upper Mantle:A Synthesis[J]. Science, 1993,260, (5109):771-778.
    Kaula W M. Theory of Satellite Geodesy [M]. Waltham, mass:Blaissell Publishing Company,1966.
    Kennedy J, Eberhart R. Particle swarm optimization [C]. Proceeding IEEE international Conference on Neural Networks,1995,4:1942-1948.
    Kennedy J, Eberhar R C.A discrete binary version of the particle swarm algorithm [C]. IEEE Conference on Systems, Man and Cybernetics,1997.
    Kennedy J, Eberhart R. Swarm Intelligence [M]. Inc., San Francisco CA:Morgan Kaufmann Publishers,2001.
    Kiefer W S. Gravity evidence for an extinct magma chamber beneath Syrtis Major, Mars: a look at the magmatic plumbing system [J]. EPSL,2004,222:349-361.
    Konopliv A S, Asmar S W, Carranza E, et al. Recent Gravity Models as a Result of the Lunar Prospector Mission [J]. Icarus,2001,150(1):1-18.
    Konopliv A S, Binder A B, Hood L L, et al. Improved gravity field of the Moon from lunar prospector [J]. Science,1998,281(5382):1476-1480.
    Konopliv A S, Asmar S W, et al. Recent gravity models as a result of the lunar prospector mission [J]. Icarus,2001,15(1):1-18.
    Korotev R L. Compositional Variation in Apollo 16 Impact-Melt Breccias and Inferences for the Geology and Bombardment History of the Central Highlands of the Moon[J]. Geochimica et Cosmochimica Acta,1994,58:3931-3969.
    Korotev R L, Jolliff B L, Zeigler R A. The KREEP Components of the Apollo 12 Regolith. 31st Annual Lunar and Planetary Science Conference,2000. no.1363
    Kuskov 0 L, Kronrod V A, Hood L L. Geochemical constraints on the seismic properties of the lunar mantle [J]. Phys. Earth Planet, inter.,2002,134:175-189.
    Lachenbruch A H. Preliminary Geothermal Model of the Sierra Nevada [J]. J. Geophys. Res.,1968,73(22):6977-6989.
    Laneuville M, Wieczorek M, Breuer D. Asymmetric Thermal Evolution of the Moon [C]. 43rd LPSC,2012,1928.
    Langseth M G, Keihm S J, Peters K. Revised lunar heatflow values [J]. Proc. Lunar. Sci.Conf.7th,1976,3143-3171.
    Lide D R. Handbook of Chemistry and Physics 81st edition [M].2000.
    MacDonald G J F. Stress history of the Moon [J]. Planet Space Sci,1960,2:249-255.
    Mackwell S J, Zimmerman M E, Kohlstedt D L. High-temperature deformation of dry diabase with application to tectonics on Venus [J]. J.Geophy.Res.,1998, 103(B1):975-984.
    Margot J L, Cambpell D B, Jurgens R F, et al. The topography of Tycho Crater [J]. J. Geophys. Res.,1999,104,11875-11882.
    Matsumoto A, Goossens S, et al. An improved lunar gravity field model from SELENE and historical traking data:Revealing the farside gravity features [J]. J. Geophysics. Res,2010,115 (E06007):1-22.
    Mazarico E, Lemoine F G, et al. GLGM-3:A degree-150 lunar gravity model from the historical tracking data of NASA Moon orbiters [J]. J. Geophysics. Res,2010, 115(E05001):1-14.
    McEwen J D, Hobson M P, Mortlock D J, et al. Fast directional continuous spherical wavelet transform algorithms [J]. IEEE Trans. Signal Process.,2007a, 55(2):520-529.
    McGovern P J, Solomon S C, Smith D E, et al. Localized gravity/topography admittance and correlation spectra on Mars:Implications for regional and global evolution [J]. J. Geophy. Res.,2002,107(E12):1-19.
    McGovern P J, Solomon S C, Smith D E, et al. Correction to "Localized gravity/topography admittance and correlation spectra on Mars:Implications for regional and global evolution" [J]. J. Geophy. Res.,2004,109, (E07007):1-5.
    McKenzie D, Barnett D N, Yuan D N. The relationship between Martian gravity and topography [J]. Earth and Planetary Science Letters,2002,195:1-16.
    McKenzie D. Estimating Te in the presence of internal loads [J]. J. Geophy. Res.,2003, 108 (B9):1-11.
    Mizutani H, Matsui T, et al. Accretion process of the moon [J]. Earth, Moon and Planets,1972,4(3):476-489.
    Mohit P S, Phillips R J. Viscoelastic evolution of lunar multiring basins[J]. J. Geophy. Res.,2006,111 (E12001):1-17.
    Morishima R, Watanabe S. Two types of co-accretion scenarios for the origin of the Moon [J]. Earth, Planets, Space,2001,53:213-231.
    Mumma M J, Smith H J. Astrophysics from the Moon [C]. AIP Conference Proceedings 2007,1990.
    Na S H. Tidal Evolution of Lunar Orbit and Earth Rotation [J]. Journal of The Korean Astronomical Society,2012,45:49-57.
    Nakamura Y, Latham G V, Lammlein D R. Deep lunar interior inferred from recent seismic data [J]. Geophy. Res. Lett.,1973,1:137-140.
    Nakamura Y. Seismic velocity structure of the lunar mantle [J]. J. Geophy. Res.,1983, 88:677-686.
    Namiki N. Admittance and Correlation of Localized Gravity and Topography of Freundlich-Sharonov Basin of the Moon. Lunar and Planetary Science Conference. 2010,41th,1885.
    Neumann G A, Zuber M T, Wieczorek M A, et al. Crustal structure of Mars from gravity and topography [J]. J. Geophy. Res.,2004,109(E08002):1-18.
    Nininger H H. Chips from the Blasted Moon [M]. New York:Desert Press,1947.
    Nininger H H. The moon as a source of tektites. Sky and Telescope,1943,2:12-15。
    0'Keefe J A. Tektites[M]. Chicago:Univ Chicago Press,1963.
    Ohtsuki K, Ida S. Planetary rotation by accretion of planetesimals with non-uniform spatial distribution formed by the planet's gravitational perturbation [J]. Icarus,1998,131:393-420.
    Pascal A. Directional wavelet analysis on the sphere:Application to gravity and topography of the terrestrial planets [J]. J. Geophy. Res.,2011, 116(E01003):l-16.
    Petrova n, gusev A. Core-mantle differential rotation in the Earth and the Moon as a clue about the planet interior [C]. International conference Geometrization of Physics Ⅲ,1997,71-72.
    Potter A E, Wilson TL. Physics and Astrophysics from a Lunar Base [C]. AIP Conference Proceedings 202,1990.
    Pritchard M E, Stevenson D J. Thermal Aspects of a Lunar Origin by Giant Impact [J]. Origin of the Earth and Moon,2000,179-196.
    Reindler L, Arkani H J. The strength of the lunar lithosphere [J]. ICARUS,2003, 162:233-241.
    Rowlands D D, Marshall J A, Mccarthy J, et al. GEODYN Ⅱ system description. Vols.1-5 [M], Contractor repot, Hughes STX Corp., Greenbelt, MD,2000.
    Schatz J F, Gene S. Thermal Conductivity of Earth Materials at High Temperatures[J]. J. Geophy. Res.,1972,77 (35):6966-6983.
    Schubert G. Subsolidus convection in the mantles of terrestrial planets [J]. Annual Review of the Earth and Planetary Sciences,1979,7:289-342.
    Schubet G, Bercovici D, Glatzmeier G A. Mantle dynamics in Mars and Venus:Influence of an immobile lithosphere on three-dimensional mantle convection[J]. J. Geophy. Res.,1990,95:14105-14129.
    Searls M L, Banerdt W B, Phillips R J. Utopia and Hellas basins, Mars:Twins separated at birth [J]. J. Geophy. Res.,2006,111 (E08005):1-13.
    Simons M, Solomon S C, Hager B H. Localization of gravity and topography:constraints on the tectonics and mantle dynamics of Venus [J]. Geophys. J.Int.,1997,131, 24-44.
    Slepian D. Some Comments on Fourier-analysis, Uncertainty and Modeling [J]. SIAM Rev,1983,25(3):379-393.
    Smith A, Crawford I A, Gowen R A, et al. Lunar Net-a proposal in response to an ESA M3 call in 2010 for a medium sized mission [J]. Exp Astron,2012,33:587-644.
    Smith D E, Zuber M T, Neumann Gregory A. Topography of the Moon from the Clementine lidar [J]. J. Geophy. Res.,1997,102(El):1591-1611.
    Smith D E, Zuber M T, Neumann G A, et al. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA) [J]. Geophysical Research Letters,2010,37(L18240):1-6.
    Spohn T, Konrad W, Breuer D, et al. The Longevity of Lunar Volcanism:Implications of Thermal Evolution Calculations with 2D and 3D Mantle Convection Models [J]. Icarus,2001,149:54-65.
    Stevenson D J. Lunar asymmetry and paleomagnetism [J]. Nautre,1980,287:520-521
    Stevenson D J. Origin of the Moon:The collision hypothesis [J]. Ann Rev Earth Planet Sci,1987,271-315.
    Stewart G R. Outstanding questions for the giant impact hypothesis [A]. In:Origin of the Earth and Moon[M]. Canup R M, Righter K(eds) Univ Arizona Press,2000, 217-226.
    Sugano T. Isostasy of the Moon from high-resolution gravity and topography data: Implication for its thermal history [J]. Geophysical Research Letters,2004, 31(L24703):1-5.
    Toksoz N M, Hsui A, Johnston D H. Thermal Evolution of the Terrestrial Planets [J]. The Moon and the Planets,1978,18:280-320.
    Tozer D C. Heat transfer and convection currents [A]. In:A symposium on continental drift[M]. Philosophical Transactions of the Royal Societry,1965,258:252-271.
    Turcotte D L, Willemann R J. Role of Membrane Stresses in the Support of Planetary Topography [J]. J. Geophys. Res.,1981,86 (B5):3951-3959.
    Turcotte D L, Schubert G. Geodynamics [M]. John Wiley, Hoboken N J,2002.
    Urey H C. The Planets:Their origin and development [J]. Yale Univ. Press,1952.
    Urey H C. Origin of tektites [J]. Nature,1957,179:556-557.
    Urey H C. Primary and secondary objects [J]. J. Geophy. Res.,1959,64:1721-1737.
    Volgyesi L, Moser M. The Inner Structure of the Moon [J]. Periodica. Polytechnica Chem.Eng.,1982,29(1):59-70.
    Van Susante P J. Design and Construction of a Lunar south Pole Infrared telescope (LSPIRT), IAF-02-Q4-3,2002.
    Verbeek R D M. Over Glaskogels van Billiton. Verslagen van der vergadering der Wissen Natuurkundig Afdeeling [J]. K Ned Akad Wet,1879,5:421-425.
    Warren P H. The Magma Ocean Concept and Lunar Evolution [J]. Ann. Rev. Earth. Planet. Sci,1985,13:201-40.
    Warren P H, Rasmussen K L. Megaregolith insulation, internal temperatures, and bulk uranium content of the Moon [J]. J. Geophys.Res.,1987,92,3453-3465.
    Warren P H, Haack H, Rasmussen K L. Megaregolith insulation and duration of cooling to isotopic closure within differentiated asteroids and the Moon [J]. J. Geophys. Res.,1991,96,5909-5923.
    Watts A B. An analysis of isostasy in the world's oceans. I:Hawiian-Emperor Seamount Chain [J]. J. geophys. Res.,1979,83:5989-6004.
    Watts A B. Isostasy and Flexure of the Lithosphere [M]. London:Cambridge University Press,2001.
    Weber R C, Lin P Y, Garnero E J, et al. Seismic Detection of the Lunar Core [J]. Sciencexpress,2011,1126:1-10.
    Weidenschilling S J, Greenberg R, Chapman C R, et al. Origin of the Moon from a circumterrestrial disk. In:Origins of the Moon [J]. Lunar and Planetary Institude,1986,17-55.
    Wetherill G W. Accumulation of the terrestrial planets and implications concerning lunar origin [J]. Origins of the Moon,1986,519-550.
    Wieczorek M A, Phillips R J. The structure and compensation of the lunar highland crust [J]. J. Geophys. Res.,1997,102 (E5):10933-10943.
    Wieczorek M A, Phillips R J. Potential anomalies on a sphere:Applications to the thickness of the lunar crust [J]. J. Geophys. Res.,1998,103(E1):1715-1724.
    Wieczorek M A, Phillips R J. Lunar multiring basins and the cratering process[J]. Icarus,1999,139,246-259.
    Wieczorek M A, Phillips R J. The Procellarum KREEP Terrane:implications for mare volcanism and lunar evolution [J]. J.Geophys.Res.,2000,105,20417-20430.
    Wieczorek M A, Zuber M T. The composition and origin of the lunar crust:Constraints from central peaks and crustal thickness modeling[J]. Geophy. Res. Lett.,2001, 28:4023-4026.
    Wieczorek M A. Localized spectral analysis on the sphere [J]. Geophy. J. Int.,2005, 162,655-675.
    Wieczorek M A, Jollif B L, Khan A, et al. The constitution and structure of the lunar interior [J]. Rev. Mineral. Geochem.,2006,60,221-364.
    Wieczorek M A. The gravity and topography of the terrestrial planets [J]. Treatise Geophy.,2007,10,165-206.
    Wieczorek M A, Sinos F J. Minimum-Variance Multitaper Spectral Estimation on the Sphere [J]. The Journal of Fourier Analysis and Applications,2007, 13(6):665-692.
    Wieczorek M A, Neumann G A, Nimmo F, et al. The Crust of the Moon as Seen by GRAIL [J]. Science,2013,339(6120):671-675.
    Wieczorek M A, Weiss B P, Stewart S T, et al. An impactor origin for lunar magnetic anomalies [J]. Science,335(6037):1212-1215.
    Willemann R J, Turcotte D L. Support of topographic and other loads on the moon and on the terrestrial planets [J]. Proc. Lunar Planet.Sci.,1981,12B,837-851.
    Williams J G, Boggs D H, Ratcliff J T. Lunar fluid core and solid-body tides [J]. Lunar and Planetary Science, XXXVI,2005.
    Williams J G. DE421 lunar orbit, physical librations, and surface coordinates. JPL IOM 335-JW, DB, WF-20080314-001, March 14,2008.
    Williams J G, Boggs D H. Lunar core and mantle. What does LLR see? [C]. Proceedings of the 16th International Workshop on Laser Ranging,2009,101-120.
    Wood J. Moon over Mauna Loa:A review of hypotheses of formation of Earth's Moon. In:Origins of the Moon [J]. Lunar and Planetary Institute,1986,17-55.
    Yan J G, Goossens S, Matsumoto K, et al. CEGMO2:An improved lunar gravity model using Chang'E-1 orbital tracking data [J]. Planet. Space SCI.,2012,62(1)1-9.
    Yan J G, Ping J S, Hunag Q, Cao J F. Change'E-1 Precision Orbit Determination and Lunar Gravity Field Solution [C]. APCC 15th,2009,107.
    Zhong S J, Parmentier E M, Zuber M T. A dynamic origin for the global asymmetry of lunar mare basalts [J]. Earth Planet Sci Lett,2000,177:131-140.
    Zuber M T, Smith D E, Asmar S W, et al. Gravity Recovery and Interior Laboratory (GRAIL) Mission:Status at the Intiation of the Science Mapping Phase [C].43rd LPSC,2012,1489.
    Zuber M T, Smith D E, Watkins M M, et al. Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission [J]. Science,2013, 339(6120):668-671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700