原生质体融合提高植物内生放线菌抗菌活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内生放线菌作为新的微生物资源具有广泛的应用前景,无论在控制植物病害的生物防治领域,还是从中寻找新型杀菌剂或药物先导化合物方面都极具开发价值。为了提高植物内生放线菌的抗菌活性,将本研究室分离保存的2株植物内生放线菌SF4、SG2和1株具有较好抗菌活性的生防放线菌SC1作为亲本,开展双亲和三亲本的原生质体融合,通过研究,获得了综合亲本优良性状的新型高效菌株。
     通过蔗糖质量浓度、Gly质量浓度、亲本菌株对数生长期、酶的种类与浓度、酶解时间与温度以及亲本菌株灭活条件的确定,以原生质体形成率和再生率为指标,确定及优化了亲本菌株的融合条件。
     实验得出,亲本菌株SF4和SG2的融合条件为:蔗糖质量浓度:SF4为30﹪,SG2为20﹪;Gly质量浓度:SF4和SG2均为0.5﹪;对数生长期:SF4为48~81h,SG2为33~72h;酶的种类:溶菌酶;酶的浓度:SF4为15 mg·mL-1,SG2为10 mg·mL-1;酶解温度:均为35℃;酶解时间:SF4为90min,SG2为60min;热灭活温度:均为55℃;热灭活时间:SF4为15min ,SG2为10min;紫外线灭活时间:SF4为4min,SG2为2min。
     根据以上优化条件,以2个亲本或3个亲本菌株进行原生质体融合,获得了25株融合子。通过遗传稳定性、菌落形态特征以及皿内抑菌活性测定进行融合子筛选,共获得6株整体性能稳定且有较好抑菌活性的融合菌株。
     通过抗菌机理、形态与培养特征、产孢量和菌丝生长量、生理生化特征、内生性以及多胺测定对融合菌株进行进一步的检测,发现融合菌株与亲本菌株既有差别,又有相同之处,说明亲本原生质体融合后形成的融合菌株既保留了亲本的某些性状,而其自身又产生了一些新的性状。
     最后通过分子生物学方法对亲本菌株及其融合菌株进行检测,利用细菌通用引物对融合菌株及其亲本16S rDNA进行扩增,均获得大小约1.5kb的片段,用限制性内切酶对扩增产物进行酶切,以亲本菌株为对照,酶切图谱中既具备与亲本相同的一些条带,也有完全不同于亲本的新条带,这可能与融合菌株产生的一些新性状相对应。
     总之,本研究利用原生质体融合技术,实现了植物内生放线菌之间以及植物内生放线菌与土壤放线菌之间的融合,为开发和利用植物内生放线菌资源提供了新思路,同时也为拓宽原生质体融合技术的应用范围提供了新的证明。
As a new microbial resource, the plant endophytic actinomycetes have wide application prospects. The plant endophytic actinomycetes have a high potential not only as bio-control agents to control plant diseases, but also to find novel pesticides or new medicines produced as secondary metabolites. Improving the biocontrol character of endophytic actinomycetes, the protoplast fusion between endophytic actinomycetes SF4, SG2 and actinomycetes SC1 was studied for getting the recombinants recombined excellent characteristics of both parents.
     The conditions of protoplast formation and regeneration were optimized by the concentration of Sucrose, concentration of Gly, the growth logarithm period of the parents、the kind and the concentration of the enzyme, the time and the temperature of lysing, the time of thermal and UV light inactivation. Concentration of Sucrose: SF4-30﹪, SG2-20﹪; Concentration of Gly: 0.5﹪; The growth logarithm period: SF4-48-81h, SG2-33-72h; The kind of enzyme: lysozyme; Concentration of lysozyme: SF4-15 mg·mL-1, SG2-10 mg·mL-1; Temperature of lysing: 35℃; Time of lysing: SF4-90min, SG2-60min; Temperature of thermal inactivation: 55℃; Time of thermal inactivation: SF4 -15min, SG2-10min; Time of UV light inactivation: SF4 -4min, SG2-2min;
     Two parents and three parents were used to fusion, following all conditions optimized, and 25 recombinants were selected according to colony characteristics, and 6 recombinants were selected basied on succession culture of seven generations、antibiotic activity in vitro and growth speed of mycelia.
     According to the inhibiting mechanism to the target pathogens, the morphological characteristics, the culture properties on different media, biochemical and physiological characteristics and growth speed of mycelium, the recombinants were identified if they were true. The result showed that there were the different as well as the same between the recombinants and strains SF4, SG2 and SC1. Conclusion was gotten that the recombinants inherited characteristics of the parents and produced some new properties. A single band about 1500bp were gained in all strains by amplifying 16S rDNA with universal primers of bacteria, and were digested with endoenzyme respectively, and the different patterns were obtained for each enzyme. In the patterns, some new stripes which were different from the parents’were found.
     In this study, achieving protoplast fusion between endophytic antinomycetes and biocontrol antinomyectes by the technology of protoplast fusion, which providing a new idea for exploring and utilizing the resources of endophytic actinomycetes, and broadening application area of the technology of protoplast fusion at the same time.
引文
[1] Andrews J H. Biological control in the phyllosphere[J]. Ann Rev Phytopathol, 1992, 30: 603-635.
    [2] Lemanceau P, Lantour X. Effects of the plant on the soil-borne microflofta: application to the fluorescent pseudomonas[R]. The 7th international Congress of Plant Pathology (ICPP) 2. 4.7s
    [3] Tjamos E C G, Papavizas R J, Cook(eds). Biological Control of Plant Disease: Progress and challenges for the future [M]. Plenum, New York.1992
    [4] 刘云霞,张清文. Bt 杀虫基因向水稻内生细菌的转化研究[J]. 农业生物技术学报,1997,5(2):188-193.
    [5] 徐静,张清文,丁军,等. Bt cry A(c)杀虫基因向棉花内生细菌 Bacillus cereus 染色体中整合的研究[J] .农业生物技术学报,2001,9(4):378-382.
    [6] Downing K J, Thomson J A. Introduction of the serratia marcescens chiA gene into an endophytic pseud omonas fluorescens for the biocontrol of phytopathgenic fungi[J]. Can J Microbiol, 2000, 46(4):363-369.
    [7] Matsukuma, S Okuda. Isolation of Actinomycetes from pine litter layers[J]. Actinomycetology, 1994, 8:57-65.
    [8] Okazaki T, Takahashi, Kizuka M, et al. Studies on actinomycetes isolated from plant leaves [J]. Annu Rep Sankyo Res Lab, 1995, 47:97-106.
    [9] Sessitsch A,Reiter B , Pfeifer U,et al. Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and actinomycetes-specific PCR of 16Sr RNA genes[J]. FEMS Microbiol Ecol. 2002, 39(1):23-32.
    [10] Masafumi Shimizu, Yoshiko Nakagawa, Yukio Sato, et al. Studies on endophytic actinomycetes (1) streptomyces sp. isolated from rhododendron and its antifungal activity[J]. Plant Pathol, 2000, 66:360-366.
    [11] Nishimuba T, Meguro A, Hasegawa S, et al. An endophytic actinomycete, atreptomyces sp. Aok-30, isolated from mountain laurel and its antifungal activity. Plant Pathol, 2002, 68:390-397.
    [12] Coombs J.T, and Franco C.M.M, Isolation and identification of actinobacteria from surface-sterilized wheat roots[J]. Applied and Environmental Microbiology. 2003, (69):5603-5608.
    [13] Sivasithamparam K, Sivasithamparam K. Root cortex–the final frontier for the biocontrol of root-rot with fungal antagonists: a case study on a sterile red fungus[J]. Annual Review of Phytopathology, 1998, 36:439-452.
    [14] Sivasithamparam K. Biological control of wheat diseases. In: Gnanamanickam, S.S. (Ed.), Biological Control of Crop Diseases. Marcel Dekker, Inc., New York, 2002, 65–85.
    [15] Matsukuma, S Okuda. Isolation of Actinomycetes from pine litter layers[J]. Actinomycetology, 1994, 8:57-65.
    [16] Okazaki T, Takahashi, Kizuka M, et al. Studies on actinomycetes isolated from plant leaves [J]. Annu Rep Sankyo Res Lab, 1995, 47:97-106.
    [17] Masafumi Shimizu, Yoshiko Nakagawa, Yukio Sato, et al. Studies on endophytic actinomycetes (1) streptomyces sp. isolated from rhododendron and its antifungal activity[J]. Plant Pathol, 2000, 66:360-366.
    [18] Nishimuba T, Meguro A, Hasegawa S, et al. An endophytic actinomycete, atreptomyces sp. Aok-30, isolated from mountain laurel and its antifungal activity. Plant Pathol, 2002, 68:390-397.
    [19] Smith G E. Inhibition of Fusarium oxysporum f. lycopersici by a species of Micromonospora isolated from tomato[J]. Phytopathology, 1957, 47:429–432.
    [20] Sivasithamparam K, Sivasithamparam K. Root cortex–the final frontier for the biocontrol of root-rot with fungal antagonists: a case study on a sterile red fungus[J]. Annual Review of Phytopathology, 1998, 36:439–452.
    [21] Sivasithamparam K. Biological control of wheat diseases. In: Gnanamanickam, S.S. (Ed.), Biological Control of Crop Diseases. Marcel Dekker, Inc., New York, pp. 65–85. 2002.
    [22] Tan H M, Cao L X,.He Z F, et al, Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro[J]. World J Microbiol Biotechnol, 2006, 22:1275-1280.
    [23] 邱志琦,曹理想,谭红铭,等. 番茄内生链霉菌 S-5 的分离及其除草活性.农业生物技术学报,2005,13(4):538-543.
    [24] Sardi P, Saracchi M, Quaroni S, et al. Isolation of endophytic Streptomyces strains from surfacesterilized roots[J]. Applied and Environmental Microbiology, 1992, 58:2691–2693.
    [25] Araujo J M, Silva A C, Azevedo, JL,et al. Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.)[J]. Brazilian Archives of Biology and Technology, 2000, 43: 447-451.
    [26] Stamford T L, Stamford N P, Coelho L C, et al. Production and characterization of thermostable a-amylase from Nocardiopsis sp. endophyte from yam bean[J]. Bioresource Technology, 2001, 76:137–141.
    [27] Stamford T L, Stamford N P, Coelho L C, et al. Production and characterization of a thermostable glucoamylase from Streptosporangium sp. endophyte of maize leaves[J]. Bioresource Technology, 2002, 83:105–109.
    [28] Kunoh H. Endophytic actinomycetes: attractive biocontrol agents[J]. Journal of General Plant Pathology, 2002, 68:249–252.
    [29] El-Tarabily K.A., An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupine caused by Plectosporium tabacinu[J]. Australian Journal of Botany 2003, 51:257–266.
    [30] Goodfellow M, Williams ST: Ecology of Actinomycetes[J]. Ann Rev Microbiol. 1983, 37: 189-216.
    [31] Williams ST, Lanning S, Wellington EMH: Ecology of actinomycetes. In: Goodfellow M, Mordarski M, Williams ST (eds): The Biology of the Actinomycetes. London: Academic Press, 1984, 481-528.
    [32] Fravel D R, Rhodes D J, Larkin R P. Production and commercialization of biocontrol products. in: Integrated Pest and Disease Management in Greenhouse Crops. R. Albajes, M. L. Gullino, J. C. van Lenteren, and Y. Elad, eds. Kluwer Academic Publishers, Dordrecht. 1999, 365-376.
    [33] John C S, Gang Peng. Manipulation and Vectoring of Biocontrol Organisms to Manage Foliage and Fruit Diseases in Cropping Systems[J]. Annu. Rev. Phytopathol, 1993, 31: 473-493.
    [34] Mathre D E, Cook R J, Callan N W. From discovery to use: Traversing the world of commercializing biocontrol agents for plant disease control[J]. Plant Dis. 1999, 83: 972-983.
    [35] 贺字典, 高玉峰. 生防菌在植物病害防治中的研究进展(综述)[J]. 河北职业技术师范学院学报. 2003, 17(2): 56-59.
    [36] Burr T J, Norelli J L, Katz B, et al. Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid[J]. Phytopathology, 1988, 78: 410-413.
    [37] Coyier D L, Covey R P, Tolerance of Erwinia amylovora to streptomycin sulfate in Oregon and Washington[J]. Plant Dis. Rep. 1975, 59: 849-852.
    [38] Matson J A, Claridje C, Bush J A, et al. AT 2433-A1, AT 2433-A2, AT 2433-B1, and AT 2433-B2 novel antitumor antibiotic compounds produced by Actinomadura melliaura. Taxonomy, fermentation isolation and biological properties. J Antibiot Tokyo 1989, 42(11): 1547-1555.
    [39] Tohyama H, Miyadoh S, Ito M, et al: A new indole N-glycoside antibiotic SF-2140 from an Actinomadura. Taxonomy and fermentation of producing microorgansim. J Antibiot Tokyo 1984, 37(10): 1144-1148.
    [40] Goodman R N. The influence of antibiotics on plants and plant disease control. In: Antibiotics: their chemistry and non-medical uses. H.S. Goldberg, ed. D. van Nostrand and Company, Inc. Princeton, NJ. 1959, 322-448.
    [41] Kondo S, Gomi S, Uotani K, et al: New hydroxybenanomicins produced by Actinomadura. Drugs Exp Clin Res 1992; 18(6): 217-24.
    [42] Levin B R, Perrot V, Walker N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 2000, 154: 985-997.
    [43] 戴高明, 周世明. 防治小麦赤霉病微生物菌株的筛选与利用[J]. 植物保护学报, 1995, 22(2): 112-116.
    [44] 丁爱云, 郑继法. 烟草几种重要病害拮抗菌的筛选[J]. 中国烟草科学, 1999, 20 (1): 10-11.
    [45] 孙广宇, 宗兆锋主编. 植物病理学实验技术[M]. 北京: 中国农业出版社, 2002. 7.
    [46] 宗兆锋, 钮绪燕, 李君彦等. 西瓜枯萎病拮抗菌的筛选研究[J]. 西北农业大学学报, 1995, 23(2): 60-64.
    [47] Sundin G W, and Bender C L. Molecular genetics and ecology of transposon-encoded streptomycin resistance in plant pathogenic bacteria. In: Molecular Genetics and Evolution of Pesticide Resistance. T. M. Brown, ed. American Chemical Society, Washington D.C. 1996b.
    [48] Sweigard J A, Carroll A M, et al. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant-Microbe Interact.1998, 11: 404-412.
    [49] Tyler J A, Richard C H, Richard R B. Approaches to molecular characterization of fungal biocontrol agents: some case studies, Can. J. Plant Pathol, 2000, 23: 8-12.
    [50] Moorman G W and Lease R J. Benzimidazole- and dicarboximide-resistant Botrytis cinerea from Pennsylvania greenhouses[J]. Plant Dis. 1992, 76: 477-480.
    [51] 宗兆锋, 钮绪燕. 菌药接合防治土传病害[J]. 陕西农业科学, 1995, (1): 38-39.
    [52] Stockwell V O, Johnson K B and Loper J E. Compatibility of bacterial antagonists of Erwinia amylovora with antibiotics used for fire blight control[J]. Phytopathology 1996a, 86: 834-840.
    [53] 林稚兰, 黄秀梨主编. 现代微生物学与实验技术. 北京: 科学出版社, 2002.
    [54] 孙剑秋, 周东坡. 微生物原生质体技术. 生物学通报, 2002, 37(7): 9~11.
    [55] 罗立新, 潘力, 郑穗平. 细胞工程. 广州: 华南理工大学出版社, 2003.
    [56] 陈劲春, 尉渤, 周代福. 原生质体技术在工业微生物育种中的应用. 工业微生物, 1997, 27(4): 34~36.
    [57] 林红雨, 陈策实, 尹光琳. 欧文氏菌和棒杆菌的属间融合研究. 微生物学通报, 1999, 26(1): 3~6.
    [58] 周东坡, 平文祥, 孙剑秋等. 通过灭活原生质体融合选育啤酒酵母新菌株. 微生物学报, 1999, 39(5): 454~460.
    [59] 文铁桥, 赵学慧. 酵母菌属间原生质体融合构建高温酵母菌株. 微生物学报, 1999, 39(2): 141~147.
    [60] Cheng Yali, Belanger R. Protoplast preparation and regeneration from spores of the biocontrol fungus Pseudozyma flocculosa. FEMS Microbiology Letters, 2000, 19(2): 287~291.
    [61] Dubey A K, Suresh C, Kavitha R, et al. Evidengce that the glucoamylases and ∝-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme. FEBS Letters, 2000, 471(2~3): 251~255.
    [62] 陈五岭, 张芳琳, 景建洲等. 灭活原生质体融合技术选育苏云金杆菌新菌种——原生质体融合条件的研究. 西北大学学报(自然科学版), 1998, 28(2): 147~149.
    [63] 陈五岭, 张芳琳. 景建洲等. 灭活原生质体融合技术在苏云金杆菌菌种选育上的应用(Ⅱ)——融合产物的鉴定. 西北大学学报(自然科学版), 1998, 28(5): 419~422.
    [64] 刘秋, 吴元华, 于基成等. 链霉菌原生质体融合技术研究进展. 沈阳农业大学学报, 2002-10, 33(5): 383-386.
    [65] Kim ByongKak, Kang JuHye, Jin Mirim, et al. Mycelial protoplast isolation and regeneration of Lentinus lepidus. Life Sciences Including Pharmacology Letters, 2000, 66(14): 1359~1367.
    [66] 周东坡,张宝国. 通过灭活原生质体融合选育啤酒酵母新菌株. 微生物学报, 1999, 39(5):454-460.
    [67] Hamari Z, Juhasz A, Gacser A, et al. Intron Mobility Results in Rearrangement in Mitochondrial DNAs of Heterokaryon Incompatible Aspergillus japonicus Strains after Protoplast Fusion. Fungal Genetics and Biology, 2001, 33(2): 83~95.
    [68] 梁平彦, 陈开英. 曲霉属种间原生质体融合后病毒传递及遗传重组——Ⅱ.黑曲霉与米曲霉种间杂交. 遗传学报, 1987, 14(2): 127-134.
    [69] L Ferenczy. Current microbial, 1982, 7: 157-160.
    [70] M J BiBB, J M Ward, D A Hopwood. Nature, 1978, 274: 398-400.
    [71] 江行娟, 杨庆云, 任大明等. 枯草杆菌中通过细胞融合的质粒转移. 遗传学报, 1981, 8(1): 1-7.
    [72] 方霭祺. 生物工程学报, 1990, 6(3): 224-229.
    [73] 王萍, 檀耀辉. 生物工程学报, 1988, 4(3): 180-185.
    [74] 王宪, 范云六. 生物工程学报, 1987, 3(1): 29-37.
    [75] 刘伊强, 王雅萍, 潘乃等. 利用原生质体融合技术选育防治植物病虫害的基因重组菌株. 遗传学报, 1993, 20(6): 524-530.
    [76] 陈海昌, 唐屹, 张岭花等. 原生质体融合技术提高啤酒酵母凝絮性的研究. 微生物学通报, 1994, 21(4): 213-217.
    [77] 江慧修, 张金岭, 戈琳等. 凝集性酵母融合株MWF29的啤酒酿造试验研究. 微生物学通报, 1992, 19(1): 21-23.
    [78] 贺敏霞, 史济平, 诸志文. 卡诺菌sp.48原生质体的分离及再生. 生物工程学报, 1989, 5(4): 303-308.
    [79] 林荣团, 杨毓芬, 李焕娄. 生物工程学报, 1990, 6(2): 134-139.
    [80] D A Hopwood, K F Chater. Philos Trans Rsoc. London, 1980. BZ90: 313-328.
    [81] K Kirimura, Y Itohiya, Y Marsuo, et al. Agric Biol Chem, 1990, 54(5): 1281-1283.
    [82] 古屋武, 石毛雅夫, 内田一生等. 日本农芸化学会志, 1983, 57(1): 1-3.
    [83] 牛岛重臣. 日本酿造协会杂志, 1984, 79(10): 721-723.
    [84] S USHIJIMA, T NAKADAI, K UCHIDA. Agric Biol Chem, 1987, 51(10): 2781-2786.
    [85] 辛明秀, 蒋亚萍. 米曲霉原生质体融合及杂合二倍体的形成. 微生物学通报, 1994, 21(3): 143-148.
    [86] 刘冰,宗兆锋,王记侠.重寄生链霉菌F46与生防放线菌SC11融合菌株的筛选[J].西北农林科技大学学报:自然科学版,2006,34(3):93-97.
    [87] 王记侠,宗兆锋,刘冰.重寄生链霉菌F46与生防放线菌SC1融合子的筛选[J].西北农业学报,2005,14(6):125-127.
    [88] 梁亚萍,宗兆锋,马强. 6株野生植物内生放线菌防病促生作用的初步研究[J]. 西北农林科技大学学报:自然科学版,2007,35(7):131-136.
    [89] 皇甫张娟,顾彪,宗兆锋.生防放线菌原生质体融合条件研究[J].西北农林科技大学学报:自然科学版,2007,35(4):109-114.
    [90] 薛林贵,马永智,王维国. G28 菌株原生质体形成和再生条件的研究[J]. 甘肃科学学报,1999,11(4):53-56.
    [91] 李尔炀,史乐文. 黑曲霉与酿酒酵母原生质体的形成和再生的研究[J]. 江苏石油化工学院学报. 1997,9(3):51-55.
    [92] 李祥锴,安志东,朱非.林肯链霉菌双亲灭活原生质体融合的研究[J].氨基酸和生物资源,2001,23(4):24-27.
    [93] 程骥,洪文荣,苏建章,等.黑暗链霉菌与卡那链霉菌原生质体融合研究[J].福州大学学报,2003,31(2):111-115.
    [94] Maria G C, José L L F, Galba M C T. Protoplast formation and regeneration from Streptomyces clavuligerus NRRL 3585 and clavulanic acid production[J]. Brazilian Journal of Microbiology, 2002, 33:347-351.
    [95] Shang-shyng Yang, Chiou-mei Lei. Protoplast formation and regeneration from Streptomyces clavuligerus NRRL 3585 and clavulanic acid production[J]. Brazilian Journal of Microbiology, 2002, 33: 347-351.
    [96] 邱雁临,曾莹,胡赛阳,等.原生质体融合子代的筛选和鉴定[J].生物技术,2003,13(6):17-19.
    [97] 宗兆锋, 乔宏萍, 何杞真. 2 株重寄生菌的分离和对靶标菌的抑制作用[J]. 西北农业学报,2002,11(4):1-4.
    [98] 韩立荣, 赵科刚, 顾彪, 等. 5 株放线菌对 9 株靶标菌的持续抑菌作用[J]. 西北农林科技大学学报: 自然科学版, 2006, 34(2): 53-56.
    [99] 中国科学院微生物研究所放线菌分类组编著.
    [100] 链霉菌鉴定手册[M]. 科学出版社, 1975.
    [101] 周德庆主编. 微生物学实验手册[M]. 上海科学技术出版社, 1986.
    [102] 郭小芳,宗兆锋,杨洪俊. 6 种放线菌的抗药性标记和在植物体内定殖能力测定[J]. 西北农业学报,2005,14(2):69-73.
    [103] 杨宇容, 徐丽华, 李启任等. 放线菌分离方法的研究[J]. 微生物学报, 1995, 22(2): 88~91.
    [104] F. 奥斯伯等,颜子颖,海林译. 精编分子生物学实验指南[M]. 北京:科学出版社,1999:39.
    [105] 吴胜, 夏焕章, 程杉. 黑暗链霉菌原生质体制备, 再生及其 DNA 转化条件的研究[J]. 沈阳药科大学学报, 2001, 18(3): 213-216.
    [106] 陈五岭, 姚胜利. 氦氖激光在红霉素链霉菌和龟裂链霉菌灭活原生质体融合中的应用[J]. 光子学报, 1998,28(5): 419-422.
    [107] 施巧琴, 吴松刚. 工业微生物育种学[M]. 福州: 福建科学技术出版社, 1991. 233, 242.
    [108] 贺筱蓉, 黄小倩. 链霉菌原生质体的制备. 生物学通报, 1998,33(1): 40-41.
    [109] Ferenczy L. cell fusion-Gene reasfer and transformation, New York: Raveb Oressam, 1984.
    [110] Hopwood D A, et al. Bacterial Rev, 1977; 42: 595-635.
    [111] Witter L D, et al. Science, 1981; 64:174.
    [112] 刘志恒. 放线菌——微生物药物的重要资源. 微生物学通报, 2005, 32(6): 143-145.
    [113] 黄晓辉, 李珊, 谭周进等. 植物内生放线菌研究进展. 生物技术通报. 2008, 1: 42.
    [114] 李强, 刘军, 周东坡等. 植物内生菌的开发与研究进展. 生物技术通报. 2006, 3: 36.
    [115] Byong Kak Kim, Ju Hye Kang, Mirim Jin et al. Mycelial protoplast isolation and regeneration of Lentinus Lepideus. Life Science. 2000, 66(14): 1359-1367.
    [116] 王建华, 赵学慧. 鳌合剂对原生质体融合的影响. 生物工程学报, 1998, 14(1): 112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700