钙基高温二氧化碳吸附材料的制备及其吸附性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C02等温室气体的过量排放,是造成全球气候变化的主要原因之一。C02是主要的温室气体,控制和减少工业生产过程中的CO2排放对防止气候系统受到灾难性破坏具有重要意义。高温吸附捕集燃煤电厂烟道气中的CO2以及C02高温吸附强化甲烷水蒸汽重整等制氢过程,是CO2减排的有效途径,而且具有可观的经济效益。CaO吸附材料制备原料来源广泛且廉价、吸附容量高,是近期高温C02吸附剂的研究热点。但在高温C02吸附/解吸循环过程中,CaO吸附剂烧结失活,CO2吸附容量随着循环次数的增加而不断降低,对循环稳定性造成影响。本文的研究重点在于提高CaO吸附剂的循环稳定性和吸附容量,制备具有高吸附性能和抗烧结的新型钙基C02复合吸附材料,以满足高温C02吸附技术的应用需求。
     本文首先采用天然钙源(扇贝壳、牡蛎壳、石灰石和白云石)、合成无机钙源(沉淀碳酸钙)、有机钙源(一水乙酸钙、四水柠檬酸钙和一水D葡萄糖酸钙)为原料,直接煅烧制备氧化钙吸附材料。考察了各氧化钙材料的CO2吸附性能与抗烧结性能。对失活氧化钙进行了水合活化再生研究,考察了水合活化再生对氧化钙材料形貌结构、C02吸附性能的影响。综合比较了不同钙源制备氧化钙的CO2吸附性能与成本,对制备钙回路捕集CO2吸附材料的可行性进行了分析讨论。
     以沉淀碳酸钙、硝酸铝、硝酸镁、柠檬酸为原料,通过液相混合与阶段升温煅烧法分别制备了二元CaO-Al2O3和Ca-MgO钙基材料,以及三元CaO-Al2O3-MgO钙基复合材料。考察了添加A1203和添加MgO对二元及三元钙基材料的循环C02吸附性能的影响,探讨了二元及三元钙基材料的循环吸附稳定性机理。研究表明,添加A1203,形成Ca3Al2O6隋性支撑骨架负载氧化钙晶粒,高温循环过程中,氧化钙晶粒附着在骨架之上生长聚集,避免氧化钙晶粒大面积熔融烧结的发生,提高材料的循环吸附/解吸稳定性;而添加MgO,可促进CaO碳酸化反应,但对提高循环稳定性没有明显作用。三元钙基材料,物相组成为CaO、Ca3Al206和Mg0,可通过改变Ca3Al206和MgO的配比来调节材料的C02吸附容量和稳定性,对氧化钙含量低、循环稳定性高的材料,增加MgO的添加比例,不仅不会降低循环稳定性,还可以有效提高材料的CaO利用率,达到更高的C02吸附容量。
     对C02吸附容量较高的二元及三元复合钙基材料进行长周期循环实验与钙回路C02捕获效率估算,结果显示,采用CaO-Al2O3和CaO-Al2O3-MgO钙基材料高温吸附捕集CO2,可大幅降低钙回路新鲜钙基吸附材料补充流量,具有较好的高温吸附捕集CO2应用前景。
Excessive emissions of greenhouse gases from the industrial processes are widely considered one of the main causes of global climate change. Carbon dioxide isan important greenhouse gas, andcarbon emission reduction is significant to prevent devastating damage with the climate system. High-temperature CO2adsorption technology is a cost-effective way to reduce CO2emissions directly from flue gases in power plants and from hydrogen preparation process by methane-steam reforming et al. Calcium based sorbent is a promising high-temperature CO2adsorbent material, since it has the advantages of lower preparation cost and higher CO2adsorption capacity. However, the rapid deactivation of calcium based sorbent due to sintering will reduce the CO2capture ability and lose the stability of sorbent during the multicyclic adsorption-desorption processes. This thesis will focus on the preparation of novel calcium based sorbents to improve the multicyclic adsorption/desorption stability and CO2capture ability at high temperature.
     Calcium oxide sorbents are prepared by directly calcining some raw materials, including oyster shell, scallop shell, limestone. precipitated calcium carbonate, calcium acetate monohydrate, calcium citrate tetrahydrate. and calcium d-gluconate monohydrate. The CO2capture performance and anti-sintering behavior of the prepared CaO materials are investigated. The deactivated lime sorbents are reactivated through hydration, and the effects of hydration reactivation on CO2capture performance, morphologies and microstructure of lime sorbents are studied. The practicability of the prepared CaO materials in calcium looping CO2capture is evaluated through comparing the CO2capture performance and the preparation cost of sorbents.
     Binary CaO-Al2O3and CaO-MgO sorbents. ternary CaO-Al2O3-MgO sorbent, are prepared through the liquid mixing reaction and following a four-step calcination method, where the precipitated calcium carbonate. aluminum nitrate, magnesium nitrate, and citric acid are used as raw materials. Effects of dopants (Al2O3and MgO) on the cyclic CO2capture performance of the prepared calcium-based sorbents are studied, and the anti-sintering mechanisms of three kinds of calcium based materials are analyzed and discussed. The results show that Al2O3doping can improve the cyclic CO2adsorption/desorption stability due to the formation of the inert supporting Ca3Al2O6framework, MgO doping can promote CaO carbonation reaction rate. By analysis of the microstructure of binary CaO-Al2O3material after many cycles, it is found that CaO grains are loaded on the inert supporting Ca3Al2O6framework. and grow and move on the Ca3Al2O6framework. thereby avoiding the sintering of material in a large range. Ternary CaO-Al2O3-MgO sorbent is composed of CaO. Ca3Al2O6and MgO. CO2capture ability and stability can be regulated by changing the mass ratio of Ca3Al2O6to MgO. For the ternary sorbent with high stability but low CO2capture ability due to low CaO content, the CO2capture ability can he improved by increasing the content of MgO without deteration of stability.
     Long-term CO2adsorption/desorption cyclic tests are performed using CaO-Al2O3CaO-MgO, CaO-Al2O3-MgO and CaO sorbents, and the CO2capture abilities and CO2capture efficiencies in calcium looping process are estimated. The results show that, both CaO-Al2O3and CaO-Al2O3-MgO sorbents can effectively reduce the make-up flow of fresh sorbent, when compared with calcium oxide sorbent prepared by precipitated calcium carbonate. The prepared CaO-Al2O3and CaO-Al2O3-MgO materials in this thesis should have good industrial application prospect in the high-temperature CO2adsorption field.
引文
[1]苏明,傅志华,许文等.碳税的国际经验与借鉴[J].经济研究参考,2009(72):17-23.
    [2]张坤民.低碳世界中的中国,地位,挑战与战略[J].中国人口.资源与环境,2008,18(3):1-7.
    [3]曲建升,曾静静,张志强.国际主要温室气体排放数据集比较分析研究[J].地球科学进展,2008,23(1):47-54.
    [4]秦大河,罗勇,陈振林等.气候变化科学的最新进展:IPCC第四次评估综合报告解析[J].气候变化研究进展,2008,3(6):311-314.
    [5]庄贵阳.低碳经济中国之选[J].中国石油石化,2007,13:32-34.
    [6]高洁,郭斌.温室气体二氧化碳的回收与资源化[J].污染防治技术.2007,20(1):56-59.
    [7]应对气候变化发展低碳经济-搜狐财经[EB/OL]. (2010-3-1). http://business.sohu.com/20100301/n270493494.shtml
    [8]陈俊武,陈香生.中国中长期碳减排战略目标初探(Ⅶ)——中国能源需求暨碳排放情景分析讨论[J].中外能源,2011,11:000.
    [9]白冰,李小春,刘延锋等.中国CO2集中排放源调查及其分布特征[J].岩石力学与工程学报,2006,25(1).
    [10]周伟,米红.中国能源消费排放的C02测算[J].中国环境科学,2010,30(8):1142-1148.
    [11]丁仲礼,段晓男,葛全胜等.国际温室气体减排方案评估及中国长期排放权讨论[J].中国科学:D辑,2009,39(12):1659-1671.
    [12]邹乐乐,张九天,魏一鸣.二氧化碳封存技术相关国际法规与政策的回顾与分析[J].中国能源,2010,32(4):15-18.
    [13]谢和平,谢凌志,王昱飞等.全球二氧化碳减排不应是CCS,应是CCU[J].四川大学学报(工程科学版),2012,44:1-5.
    [14]Gibbins J, Chalmers H. Carbon capture and storage[J]. Energy Policy,2008,36(12): 4317-4322.
    [15]Rackley S. Carbon capture and storage[M]. Gulf Professional Publishing,2009.
    [16]张雷雷,周培,王楼楼.我国CCS技术潜在环境问题及解决办法初探[J].能源研究与管理,2012(3):13-16.
    [17]Bai H, Yeh A C. Removal of CO2 greenhouse gas by ammonia scrubbing[J]. Industrial & engineering chemistry research,1997,36(6):2490-2493.
    [18]Zhuang Q, Pomalis R, Zheng L, et al. Ammonia-based carbon dioxide capture technology:issues and solutions[J]. Energy Procedia,2011,4:1459-1470.
    [19]Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angewandte Chemie International Edition,2011,50(49): 11586-11596.
    [20]Liu Z, Grande C A, Li P, et al. Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas[J]. Separation and Purification Technology,2011,81(3): 307-317.
    [21]杨波,张国亮,赖春芳等.新型膜吸收技术及其在电厂烟气CO2脱除中的应用[J].热力发电,2012(8).
    [22]沈春枝.碳材料捕获燃烧后二氧化碳过程研究[D].上海:华东理工大学,2011.
    [23]黄孟.微生物捕集烟道气中二氧化碳的试验研究[D].安徽:安徽理工大学,2011.
    [24]祁阳.用于吸附强化甲烷水蒸气重整制氢的催化剂与吸附剂的研究[D].上海:华东理工大学,2012.
    [25]陈玉民,赵永椿,张军营等.C02固定-甲烷蒸汽重整一体化制氢:不同吸附剂的比较[J].中国科学:技术科学,2011,41(11):1541-1550.
    [26]韩达英.吸附强化甲烷水蒸汽重整制氢系统[D].上海:华东理工大学,2012.
    [27]张明龙,张琼妮.国外氢能开发新进展概述[J].生态经济,2012(12):101-104.
    [28]Hoffmann P. Tomorrow's energy:hydrogen, fuel cells, and the prospects for a cleaner planet[M]. MIT press,2012.
    [29]赵会玲,胡军,汪建军等.介孔材料氨基表面修饰及其对C02的吸附性能[J].物理化学学报,2007,23(6):801-806.
    [30]王亚坤,赵瑞红,冯晓霞等.氨基化有序介孔氧化铝合成及吸附C02性能研究[J].材料导报,2012,26(16):71-74.
    [31]王春蓉.改性硅胶吸附分离N2/C02的研究[J].化学与黏合,2009,31(6):76-78.
    [32]王璐.沸石13XAPG吸附分离C02-N2混合气过程研究及其应用[D].华东理工大学,2013.
    [33]Blamey J, Anthony E J, Wang J, et al. The calcium looping cycle for large-scale CO2 capture[J]. Progress in Energy and Combustion Science,2010,36(2):260-279.
    [34]Martinez I, Murillo R, Grasa G, et al. Integration of a Ca-looping system for CO2 capture in an existing power plant[J]. Energy Procedia,2011,4:1699-1706.
    [35]Connell D P, Lewandowski D A, Ramkumar S, et al. Process simulation and economic analysis of the Calcium Looping Process (CLP) for hydrogen and electricity production from coal and natural gas[J]. Fuel,2013,105:383-396.
    [36]张宁.高温抗烧结CaO基C02吸附剂的制备与性能研究[D].南京:南京理工大学,2013.
    [37]Yu J J, Jiang Z, Zhu L, et al. Adsorption/desorption studies of NOx on well-mixed oxides derived from Co-Mg/Al hydrotalcite-like compounds[J]. The Journal of Physical Chemistry B,2006,110(9):4291-4300.
    [38]Van Selow E R. Cobden P D, Verbraeken P A, et al. Carbon capture by sorption enhanced water-gas shift reaction process using hydrotalcite-based material[J]. Industrial & Engineering Chemistry Research,2009, 48(9):4184-4193.
    [39]Ram Reddy M K, Xu Z P, Lu G Q, et al. Layered double hydroxides for C02 capture: Structure evolution and regeneration[J]. Industrial & engineering chemistry research, 2006,45(22):7504-7509.
    [40]Wang Q, Tay H H, Zhong Z, et al. Synthesis of high-temperature CO2 adsorbents from organo-layered double hydroxides with markedly improved CO2 capture capacity[J]. Energy & Environmental Science,2012,5(6):7526-7530.
    [41]Li S, Shi Y, Yang Y, et al. High performance CO2 adsorbent from interlayer potassium promoted stearate-pillared hydrotalcite precursors[J]. Energy & Fuels,2013.
    [42]Garcia-Gallastegui A, Iruretagoyena D, Gouvea V, et al. Graphene Oxide as Support for Layered Double Hydroxides:Enhancing the CO2 Adsorption Capacity[J]. Chemistry of Materials,2012,24(23):4531-4539.
    [43]Yavuz C T, Shinall B D, Iretskii A V, et al. Markedly improved CO2 capture efficiency and stability of gallium substituted hydrotalcites at elevated temperatures[J]. Chemistry of Materials,2009,21(15):3473-3475.
    [44]Nakagawa K, Ohashi T. A novel method of CO2 capture from high temperature gases[J]. Journal of the Electrochemical Society,1998,145(4):1344-1346.
    [45]Kato M, Yoshikawa S, Nakagawa K. Carbon dioxide absorption by lithium ortho-silicate in a wide range of temperature and carbon dioxide concentrations[J]. Journal of Materials Science Letters,2002,21(6):485-487.
    [46]Ida J, Lin Y S. Mechanism of high-temperature CO2 sorption on lithium zirconate[J]. Environmental science & technology,2003,37(9):1999-2004.
    [47]Radfarnia H R, Iliuta M C. Surfactant-template/ultrasound-assisted method for the preparation of porous nanoparticle lithium zirconate[J]. Industrial & Engineering Chemistry Research,2011,50(15):9295-9305.
    [48]Xiao Q, Liu Y, Zhong Y, et al. A citrate sol-gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties[J]. Journal of Materials Chemistry, 2011,21(11):3838-3842.
    [49]Olivares-Marin M, Drage T C, Maroto-Valer M M. Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures[J]. International Journal of Greenhouse Gas Control,2010,4(4):623-629.
    [50]Iwan A, Stephenson H, Ketchie W C, et al. High temperature sequestration of CO2 using lithium zirconates[J]. Chemical Engineering Journal,2009,146(2):249-258.
    [51]Yin X S, Zhang Q H, Yu J G. Three-Step Calcination Synthesis of High-Purity Li8Zr06 with CO2 Absorption Properties[J].Inorganic Chemistry,2011,50(7):2844-2850.
    [52]尹先升.锆酸锂材料的设计、合成及高温C02吸附性能[D].上海:华东理工大学,2010.
    [53]王珂,郭欣,赵鹏飞等.飞灰-硅酸锂吸收剂捕获C02的实验研究[J].工程热物理学报,2011,32(7):1257-1259.
    [54]Nair B N, Burwood R P. Goh V J, et al. Lithium based ceramic materials and membranes for high temperature CO2 separation[J]. Progress in Materials Science,2009,54(5): 511-541.
    [55]程维高.Li4SiO4的合成及高温吸收CO2性能研究[D].郑州:郑州大学,2012.
    [56]吴嵘.改性纳米氧化钙高温二氧化碳吸附剂的制备及评价[D].杭州:浙江大学,2006.
    [57]Feng B, An H, Tan E. Screening of CO2 adsorbing materials for zero emission power generation systems[J]. Energy & fuels,2007,21(2):426-434.
    [58]Abanades J C, Rubin E S, Anthony E J. Sorbent cost and performance in CO2 capture systems[J]. Industrial & Engineering Chemistry Research,2004,43(13):3462-3466.
    [59]Grasa G S, Abanades J C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles[J]. Industrial & engineering chemistry research,2006, 45(26):8846-8851.
    [60]Gupta H, Fan L S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas[J]. Industrial & Engineering Chemistry Research, 2002,41(16):4035-4042.
    [61]Yang Z, Zhao M, Florin N H, et al. Synthesis and characterization of CaO nanopods for high temperature CO2 capture[J]. Industrial & Engineering Chemistry Research,2009, 48(24):10765-10770.
    [62]Manovic V, Anthony E J. Lime-based sorbents for high-temperature CO2 capture-a review of sorbent modification methods[J]. International journal of environmental research and public health,2010,7(8):3129-3140.
    [63]Florin N H, Blamey J, Fennell P S. Synthetic CaO-based sorbent for CO2 capture from large-point sources[J]. Energy & Fuels,2010,24(8):4598-4604.
    [64]Lu H, Reddy E P, Smirniotis P G. Calcium oxide based sorbents for capture of carbon dioxide at high temperatures[J]. Industrial & engineering chemistry research,2006, 45(11):3944-3949.
    [65]Dasgupta D, Mondal K, Wiltowski T. Robust, high reactivity and enhanced capacity carbon dioxide removal agents for hydrogen production applications[J]. International Journal of Hydrogen Energy,2008,33(1):303-311.
    [66]Santos E T, Alfonsin C, Chambel A J S, et al. Investigation of a stable synthetic sol-gel CaO sorbent for CO2 capture[J]. Fuel,2012,94:624-628.
    [67]Lu H, Khan A, Pratsinis S E, et al. Flame-made durable doped-CaO nanosorbents for CO2 capture[J]. Energy & Fuels,2008,23(2):1093-1100.
    [68]Koirala R, Gunugunuri K R, Pratsinis S E, et al. Effect of Zirconia Doping on the Structure and Stability of CaO-Based Sorbents for CO2 Capture during Extended Operating Cycles[J]. The Journal of Physical Chemistry C,2011,115(50):24804-24812.
    [69]Li Z, Cai N, Huang Y, et al. Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent[J]. Energy & Fuels,2005,19(4):1447-1452.
    [70]Martavaltzi C S, Lemonidou A A. Parametric study of the CaO-Ca12Al14O33 synthesis with respect to high CO2 sorption capacity and stability on multicycle operation[J]. Industrial & Engineering Chemistry Research,2008,47(23):9537-9543.
    [71]Broda M, Kierzkowska A M, Muller C R. Application of the sol-gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristic s[J]. ChemSusChem,2012,5(2):411-418.
    [72]苏言杰,张德,徐建梅等.柠檬酸盐凝胶自燃烧法合成超细粉体[J].材料导报,2006,20(F05):142-144.
    [73]Luo C, Zheng Y, Ding N, et al. SGCS-made ultrafine CaO/Al2O3 sorbent for cyclic CO2 capture[J]. Chinese Chemical Letters,2011,22(5):615-618.
    [74]Broda M, Muller C R. Synthesis of highly efficient, Ca-based, Al2O3-stabilized, carbon gel-templated CO2 sorbents[J]. Advanced Materials,2012,24(22):3059-3064.
    [75]Yang X, Zhao L, Yang S, et al. Investigation of natural CaO-MgO sorbent for CO2 capture[J]. Asia-pacific Journal of Chemical Engineering,2013,8:906-915.
    [76]Liu W, Yin J, Qin C, et al. Synthesis of CaO-based sorbents for CO2 capture by a spray-drying technique[J]. Environmental Science & Technology,2012,46: 11267-11272.
    [77]Derevschikov V S, Lysikov A I, Okunev A G. High temperature CaO/Y2O3 carbon dioxide absorbent with enhanced stability for sorption-enhanced reforming applications[J]. Industrial & Engineering Chemistry Research,2011,50(22): 12741-12749.
    [78]Zhao M, Yang X, Church T L, et al. Novel CaO-SiO2 sorbent and bifunctional Ni/Co-CaO/SiO2 complex for selective H2 synthesis from cellulose[J]. Environmental science & technology,2012,46(5):2976-2983.
    [79]Li C C, Wu U T, Lin H P. Cyclic performance of CaCO3 @ mSiO2 for CO2 capture in calcium looping cycle[J]. Journal of Materials Chemistry A,2014.
    [80]Zhao M, Bilton M, Brown A P, et al. Durability of CaO-CaZrO3 sorbents for high-temperature CO2 capture prepared by a wet chemical method[J]. Energy & Fuels, 2014.
    [81]Wu S F, Zhu Y Q. Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent[J]. Industrial & Engineering Chemistry Research,2010,49(6):2701-2706.
    [82]Amos N J, Widyawati M, Kureti S, et al. Design and synthesis of stable supported-CaO sorbents for CO2 capture[J]. Journal of Materials Chemistry A,2014,2(12):4332-4339.
    [83]Charitos A, Hawthorne C, Bidwe A R, et al. Parametric investigation of the calcium looping process for CO2 capture in a lOkWth dual fluidized bed[J]. International Journal of Greenhouse Gas Control,2010,4(5):776-784.
    [84]Dean C C, Blarney J, Florin N H, et al. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production[J]. Chemical Engineering Research and Design,2011,89(6):836-855.
    [85]Dean C C, Dugwell D, Fennell P S. Investigation into potential synergy between power generation, cement manufacture and CO2 abatement using the calcium looping cycle[J]. Energy & Environmental Science,2011,4(6):2050-2053.
    [86]Shimizu T, Hirama T. Hosoda H, et al. A Twin fluid-bed reactor for removal of CO2 from combustion processes[J]. Chemical Engineering Research and Designl999,77(1):62-68.
    [87]徐恒文.碳捕捉先导厂竣工[J].能源报道,2012,7,22-26.
    [88]程易,丁石,翟绪丽等.一种甲烷水蒸气重整制氢工艺及其装置[D].中国专利:101559924,2009-05-26.
    [89]程易,王琦,丁石等.循环流化床甲烷水蒸汽重整制氢反应工艺及反应装置[P].中国专利:101054161,2007-05-25.
    [90]吴素芳,汪燮卿,王樟茂.采用循环流化床的吸附强化甲烷水蒸汽重整制氢工艺及装置[P].中国专利:1935634,2006-09-21.
    [91]吴素芳,贺隽,汪燮卿.用于甲烷水蒸气重整制氢的复合催化剂及制备方法和应用[P].中国专利:1903431,2006-08-01.
    [92]吴素芳,薛孝宪,王樟茂等.一种流化-固定复合床反应吸附强化甲烷水蒸气重整制氢的装置方法[P].中国专利:103288049A,2013-06-18.
    [93]刘文,李天华,张滕军等.牡蛎壳中钙的改性及吸附特性的研究[J].材料导报,2012,26(18):88-92.
    [94]桑亚新,王昌禄,王苏等.利用扇贝壳制备胶原螯合钙的研究[J].中国食品学报,2012,12(5):49-55.
    [95]李振山,蔡宁生,黄煜煜等.CaO循环吸收CO2的实验研究[J].燃烧科学与技术,2005,11(4):379-383.
    [96]Li Z, Fang F, Tang X, et al. Effect of Temperature on the Carbonation Reaction of CaO with CO2[J]. Energy & Fuels,2012,26(4):2473-2482.
    [97]Lysikov A I, Salanov A N, Okunev A G. Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles[J]. Industrial & engineering chemistry research,2007,46(13):4633-4638.
    [98]Grasa G S, Abanades J C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles[J]. Industrial & engineering chemistry research,2006, 45(26):8846-8851.
    [99]Blarney J, Anthony E J, Wang J, et al. The calcium looping cycle for large-scale CO2 capture[J]. Progress in Energy and Combustion Science,2010,36(2):260-279.
    [100]Alonso M, Rodriguez N, Gonzalez B, et al. Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development [J]. International Journal of Greenhouse Gas Control,2010,4(2):167-173.
    [101]Chen Z, Song H S, Portillo M, et al. Long-term calcination/carbonation cycling and thermal pretreatment for CO2 capture by limestone and dolomite[J]. Energy & Fuels, 2009,23(3):1437-1444.
    [102]陈惠超,赵长遂.白云石煅烧/加压碳酸化循环捕获CO2实验研究[J].东南大学学报(自然科学版),2013,43(3):553-558.
    [103]Grasa G S, Abanades J C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles[J]. Industrial & engineering chemistry research,2006, 45(26):8846-8851.
    [104]李英杰,赵长遂.钙基吸收剂循环锻烧/碳酸化反应过程特性研究[J].中国电机工程学报,2008,28(2):55-60.
    [105]Alvarez D, Abanades J C. Pore-size and shape effects on the recarbonation performance of calcium oxide submitted to repeated calcination/recarbonation cycles[J]. Energy & fuels,2005,19(1):270-278.
    [106]Sun P, Lim C J, Grace J R. Cyclic CO2 capture by limestone-derived sorbent during prolonged calcination/carbonation cycling[J]. AlChE Journal,2008,54(6):1668-1677.
    [107]Mansour S A A. Thermal decomposition of calcium citrate tetrahydrate[J]. Thermochimica acta,1994,233(2):243-256.
    [108]Labuschagne F, Focke W W. Metal catalysed intumescence:characterisation of the thermal decomposition of calcium gluconate monohydrate[J]. Journal of materials science,2003,38(6):1249-1254.
    [109]Manovic V, Anthony E J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles[J]. Environmental science & technology, 2008,42(11):4170-4174.
    [110]郭名女.抗烧结钙基吸收剂同时捕集CO2/SO2的循环反应特性及动力学研究[D].重庆:重庆大学,2011.
    [111]Calcium aluminate cement[EB/OL]. [2014-2-11]. http://en.wikipedia.org/wik i/Calcium_aluminate_cements
    [112]Wu S F, Lan P Q. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst[J]. AIChE Journal,2012,58(5):1570-1577.
    [113]Alvarez D, Abanades J C. Determination of the critical product layer thickness in the reaction of CaO with CO2[J]. Industrial & engineering chemistry research.2005,44(15): 5608-5615.
    [114]Li Y, Zhao C, Chen H, et al. Cyclic CO2 capture behavior of KMnO4-doped CaO-based sorbent[J]. Fuel,2010.89(3):642-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700