疏水改性聚丙烯酰胺水溶液和水凝胶的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疏水改性聚丙烯酰胺(Hydrophobically Modified Polyacrylamide, HMPAM)是指在由丙烯酰胺结构单元构成的亲水长链上引入少量疏水基团而形成的一种聚合物。在水溶液中,因疏水基团与水的极度不相容性,疏水基团间发生聚集或缔合,使大分子线团在水溶液中形成可逆的物理网状结构,这使其水溶液对温度、盐及剪切力的影响显示出独特的流变性。几十年来,对HMPAM的研究主要集中在其化学结构和水溶液性能上,而对其通过疏水缔合作用构建的水凝胶则关注较少,尤其是高强度的水凝胶到目前为止仍未见于文献。
     在对合成的新型HMPAM化学结构和其溶液性质充分研究的基础上,疏水缔合水凝胶(Hydrophobic Association Hydrogels,HA-gels)被采过一种非常简单的方法成功地制备。HA-gels是丙烯酰胺(AM)和少量的疏水单体(辛基酚聚氧乙烯(4)醚丙烯酸酯,OP-4-AC)在十二烷基硫酸钠(SDS)水溶液中采用胶束共聚的方法而制备。HA-gels除具有良好的力学性能、不同寻常的溶胀行为、透明性、回弹性和明显的热弹行为以外,独特的可逆交联网络结构还赋予其重新塑形和自愈合的性能,而且通过改变反应单体结构和含量还可以对凝胶性能进行调控。
Hydrophobically associating polymers consist of a water-soluble polymer containing a small number of hydrophobic groups. In aqueous solution, intermolecular hydrophobic interactions lead to the formation of polymolecular association above critical associating concentration. As a result, the structure and properties of these copolymers are different from traditional water soluble polymers. Hydrophobically modified polyacrylamide (HMPAM) is an important species of hydrophobically associating polymers, and has been studied widely. These studies have focused primarily on the chemical structure and solution properties of HMPAM. However, much less attention has been paid to hydrogels containing HMPAM, which is limited primarily to hydrogels with poor mechanical properties.
     As is well known, weak mechanical strength of hydrogels is the main factor of restricting their applications. To overcome this shortcoming, up to now, various hydrogels with good mechanical strength have been developed. However, the lack of the capability of re-forming resulting from their permanent cross-linking structure, the complex synthesis process and a narrow range of reactor monomer selectivity restrict their industrial and biomedical applications. Therefore, the design of hydrogels with good mechanical strength, self-healing and remolding capability has been an important topic in the field of hydrogel.
     Hydrophobic interaction is a reversible physical role in HMPAM solutions. If structure of hydrophobic association is designed properly, water-soluble polymer backbone chain could construct three-dimensional cross-linked network and a novel physical hydrogels, hydrophobic association hydrogels (HA-gels), can be obtained. In HA-gels, a large number of hydrophobic association domains are formed by hydrophobic association of hydrophobic groups belonging to two or more polymer chains, and these hydrophobic association domains act as the physical cross-linking points in a network of hydrogels. As long as the hydrophobic interaction is sufficiently strong, HA-gels will exhibit good mechanical strength. Furthermore, the reversible property of hydrophobic interaction will endow the property of structural reorganization of HMPAM. Therefore, HA-gels will be possessed of the capability of self-healing and remolding. Based on this research idea, this paper explored the method achieved of structural design and performance for HA-gels with good mechanical strength, self-healing and remolding capability, which provides the theoretical and experimental basis for the basic and applied research of HA-gels.
     To begin with, surfactant macromonomer (surfomer), octylphenol polyoxyethylene acrylate (OP-10-AC), was synthesized using acryloyl chloride (AC) and octylphenol polyoxyethylene ether (OP-10), and then OP-10-AC was copolymerized with acrylamide (AM) to form novel HMPAM (P(AM/OP-10-AC)) through micellar copolymerization. Structural feature of P(AM/OP-10-AC) and rheology behavior of its aqueous solution were investigated in detail. The results of rheology study show that content of hydrophobic monomer in P(AM/OP-10-AC), polymer solution concentration and test methods powerfully influenced shear viscosity of aqueous solutions of P(AM/OP-10-AC). In addition, depending on the oscillatory experimental results, there is the critical hydrogel concentration for aqueous solutions of P(AM/OP-10-AC). Meanwhile, for P(AM/OP-10-AC), content of hydrophobic monomer and its solution concentration also strongly influenced complex viscosity of its aqueous solution.
     On the base of previous research results, octylphenol polyoxyethylene acrylate (OP-4-AC) was synthesized and a preparation method of HA-gels was explored on the condition of OP-4-AC as hydrophobic monomer. Finally a simple preparation method was established. HA-gels were prepared indirectly in mould by micellar copolymerization of AM and a small amount of OP-4-AC in an aqueous solution containing SDS at 50℃. HA-gel prepared was a novel physical hydrogel with excellent mechanical properties and transparency. A large number of associated micelles were formed by hydrophobic associations of SDS and hydrophobic groups belonging to two or more HMPAM chains. Such associated micelles acted as effective cross-linkers. Consequently, the three-dimensional network of HA-gels could be constructed. Especially, no external cross-linker was used for the formation of their network structure. This unique network endows various properties of HA-gels.
     The results show that mechanical properties of HA-gels strongly depended on the content of compositions in initial reaction solution. For HA-gels, with increasing OP-4-AC content in the range of OP-4-AC used, elastic modulus exhibited increases, the elongations at break showed monotonous decreased, and tensile strength and fracture energy first increased and then decreased; with increasing SDS content in the range of SDS used, tensile strength and elastic modulus decreased, elongations at break showed increases, and the general trend of fracture energy exhibited decreases; with increasing AM content in the range of AM used, tensile strength and elastic modulus increased, elongations at break decreased, and the general trend of fracture energy exhibited increases. On the base of the micellar copolymerization theory and uniaxial stretching data, the formation mechanism of HA-gels was also investigated. Similar to rubbery, HA-gels exhibited obvious thermoelastic behavior and also showed a good rubberlike elastic property.
     For HA-gels, the capability of self-healing and remolding results mainly from their unique network. Because the network of HA-gels is a reversible three-dimensional physical cross-linked network, the structure rearrangement of cross-linked network can be achieved through dissociation and reassociation of cross-linking points under the condition of external forces. The conclusion consisted with experimental result of stress relaxation for HA-gels.
     HA-gels possessed unusual swelling behavior. The swelling process of HA-gels can be divided into five stages: over-swelling (Ⅰ), self-deswelling (Ⅱ), dynamic equilibrium of disassociation and re-association (Ⅲ), disassociation enjoying the advantage (Ⅳ) and dissolution (Ⅴ). The stability of HA-gels in water strongly depended on their construction and external environment. In addition, the life of HA-gels in the immersing liquid, which starts on the beginning of swelling test and ends on the beginning of the fifth stage of swelling process, can be adjusted in accordance with application requirements by changing hydrogel chemical structure (the type and amount of hydrophobic monomer) and the immersion environment from a few days to 6 months or more.
     In this paper, the research results demonstrate the feasibility of research ideas, and HA-gels represented important study value. Therefore, as a sort of advanced and environmentally friendly soft materials, HA-gels would have broad application prospects.
引文
[1] Strauss U P, Jackson E G. Polysoaps. I. Viscosity and solubilization studies on an n-dodecyl bromide addition compound of poly-2-vinylpyridine [J]. J. Appl. Polym. Sci., 1951, 6: 649-659.
    [2] Kauzmann W. Some factors in the interpretation of protein denaturation [J]. Adv. Protein. Chem., 1959, 14: 1–63.
    [3]方道斌,郭睿威,哈润华.丙烯酰胺聚合物[M].北京:化学工业出版社,2006.
    [4] Taylor K C, Nasr-El-Din H A. Water-soluble hydrophobically associating polymers for improved oil recovery: A literature review [J]. J. Petrol. Sci. Eng., 1998, 19: 265-280.
    [5] Yang Q B, Song C L, Chen Q, Zhang P P, Wang P X. Synthesis and aqueous solution properties of hydrophobically modified anionic acrylamide copolymers [J]. J. Polym. Sci., Part B: Polym. Phys. 2008, 46: 2465-2474.
    [6] Hill A, Candau F, Selb J. Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis [J]. Macromolecules, 1993, 26: 4521-4532.
    [7] Landoll L M. Nonionic polymer surfactants [J]. J. Polym. Sci.,Polym. Chem.Ed. 1982, 20: 443-455.
    [8] Schaller E J. Rheology modifiers for water-borne paints [J]. Surf. Coat. Aust. 1985, 22: 6-10.
    [9] Wang K T, Iliopoulos I, Audebert R. Viscometric behavior of hydrophobically modified poly(sodium acrylate) [J]. Polym. Bull. 1988, 20: 577-582.
    [10] Bock J, Valint Jr P L, Pace S J, Siano D B, Schulz D N, Turner S R. in: Stahl G A, Schulz D N (Eds.), Water-Soluble Polymers for Petroleum Recovery, PlenumPress, 1988, p147.
    [11] Ezzell S A, McCormick C L. Water-soluble copolymers. 39. Synthesis and solution properties of associative acrylamido copolymers with pyrenesulfonamide fluorescence labels [J]. Macromolecules, 1992, 25: 1881-1886.
    [12] Ezzell S A, Hoyle C E, Creed D, McCormick C L. Water-soluble copolymers. 40. Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides [J]. Macromolecules, 1992, 25: 1887-1895.
    [13] Effing J J, Mclennan I J, Kwak J C T. Associative phase separation observed in a hydrophobically modified poly(acrylamide)/sodium dodecyl sulfate system [J]. J. Phys. Chem. 1994, 98: 2499-2502.
    [14] Effing J J, Mclennan I J, van Os N M, Kwak J C T. 1H NMR Investigations of the Interactions between Anionic Surfactants and Hydrophobically Modified Poly(acrylamide)s [J]. J. Phys. Chem. 1994, 98: 12397-12402.
    [15] Emmons W D, Stevens T E. Eur. Patent 63018, 1982.
    [16] Emmons W D, Stevens T E. U.S. Patent 4395 524, 1983.
    [17] Pabon M, Corpart J, Selb J, Candau F. Synthesis in inverse emulsion and associating behavior of hydrophobically modified polyacrylamides [J]. J. Appl. Polym. Sci., 2004, 91: 916-924.
    [18]赵勇,何炳林,哈润华.反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究[J].高分子学报, 2000, 5:550-553.
    [19] Regalado E J, Selb J, Candau F. Viscoelastic behavior of semidilute solutions of multisticker polymer chains [J]. Macromolecules, 1999, 32: 8580-8588.
    [20] Candau F, Selb J. Hydrophobically-modified polyacrylamides prepared by micellar polymerization [J]. Adv. Colloid. Interface. Sci., 1999, 79: 149?172.
    [21] Schulz D N, Kaladas J J, Maurer J J, Bock J, Pace S J, Schulz W W. Copolymersof acrylamide and surfactant macromonomers: synthesis and solution properties [J]. Polymer, 1987, 28: 2110-2115.
    [22] Gao B J, Guo H P, Wang J, Zhang Y. Preparation of hydrophobic association polyacrylamide in a new micellar copolymerization system and its hydrophobically associative property [J]. Macromolecules, 2008, 41: 2890-2897.
    [23] Evani S. Eur. Patent 57875 1982; U.S. Patent 4432881 1984.
    [24] Bock J, Siano D B, Kowalik R M, Turner S R. Eur. Patent 115213,1984.
    [25] Turner S R, Siano D B, Bock J. U.S. Patent 4520182(1985).
    [26] Turner S R, Siano D B, Bock J. U.S. Patent 4528348(1985).
    [27] Turner S R, Siano D B, Bock J. U.S. Patent 4521580(1985).
    [28]江立鼎,高宝娇,孔德轮.丙烯酰胺型阴离子表面活性单体与丙烯酰胺共聚物水溶液的流变特性[J].高分子学报,2007: 349-355.
    [29] Taylor K C, Nasr-EI-DIN H A. Water-soluble hydrophobically associating polymers for improved oil recovery:A literature review [J]. J. Petrol. Sci. Eng., 1998, 19: 265-280.
    [30] Ye L, Luo K, Huang R. A study on P(AM-DMDA) hydrophobically associating water-soluble copolymer [J]. Eur. Polym. J., 2002, 36: 1711-1715.
    [31] Pfeiffer D G. Hydrophobically associating polymers and their interactions with rod-like micelles [J]. Polymer, 1990, 31: 2353-2360.
    [32] Change Y, McCormick C L. Water-soluble copolymers. 49. Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl (2-acrylamidoethyl) ammonium bromide on the solution behavior of associating acrylamide copolymers [J]. Macromolecules, 1993, 26: 6121-6126.
    [33] Kramer M C, Steger J R, Hu Y, McCormick C L. Water-soluble copolymers. 65. Environmentally responsive associations probed by nonradiative energy transferstudies of naphthalene and pyrene-labeled poly (acrylamide-co-sodium 11-(acrylamido) undecanoate) [J]. Macromolecules, 1996, 29: 1992-1997.
    [34] Wang G J, Enberts J B F N. Synthesis of hydrophobically and electrostatically modified polyacrylamides and their catalytic effects on the unimolecular decarboxylation of 6-Nitrobenzisoxazole-3-carboxylate anion [J]. Langmuir, 1995, 11: 3856-3861.
    [35]戴玉华.新型疏水缔合聚合物P(AMPOEA)的研究[D].北京:中国科学院理化技术研究所,2004.
    [36] Valint P L, Bock Jr J, Schulz D N. Synthesis and characterization of hydrophobically associating polymers [J]. polym. Mater. Sci. Eng., 1987, 57: 482-486.
    [37] McCormick C L, Middleton J C, Cummins D F. Water-soluble copolymers. 37. Synthesis and characterization of responsive hydrophobically modified polyelectrolytes [J]. Macromolecules, 1992, 25: 1201-1206.
    [38] McCormick C L, Middleton J C, Grady C E. Water soluble copolymers: 38. Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate, sodium -2- acrylamido -2- methylpropanesulphonate or sodium -3- acrylamido -3- methylbutanoate [J]. Polymer, 1992, 33: 4184-4190.
    [39] Branham K D, Snowden H S, McCormick C L. Water-soluble copolymers. 64. Effects of pH and composition on associative properties of amphiphilic acrylamide/acrylic acid terpolymers [J]. Macromolecules, 1996, 29: 254-262.
    [40] Bock J, Valint Jr P L. U. S. Patent 4730028, 1988.
    [41] Valint Jr P L, Bock J. U. S. Patent 5089578, 1992.
    [42] Schulz D N, Duvdevani I, Bock J, Berluche E. U. S. Patent 4742135, 1988.
    [43] Hwang F S, Hogen-Esch T E. Effects of water-soluble spacers on the hydrophobic association of fluorocarbon-modified poly(acrylamide) [J]. Macromolecules, 1995, 28: 3328-3335.
    [44] Branham K D, Shafer G S, Hoyle C E, McCormick C L. Water-soluble copolymers. 61. Microstructural investigation of pyrenesulfonamide-labeled polyelectrolytes. Variation of label proximity utilizing micellar polymerization [J]. Macromolecules, 1995, 28: 6175-6182.
    [45] Dowling K C, Thomas J K. A novel micellar synthesis and photophysical characterization of water-soluble acrylamide-styrene block copolymers [J]. Macromolecules, 1990, 23: 1059-1064.
    [46] Bock J, Valint Jr P L, Pace S J. U. S. Patent 4702319, 1987.
    [47] Schulz D N, Berluche E, Maurer J J, Bock J. U. S. Patent 4663408, 1987.
    [48] Bock J, Pace S J, Schulz D N. U. S. Patent 4709759, 1987.
    [49] McCormick C L, Nonaka T, Johnson C B. Water-soluble copolymers: 27. Synthesis and aqueous solution behaviour of associative acrylamide / N-alkylacrylamide [J]. Polymer, 1988, 29: 731-739.
    [50] Biggs S, Hill A, Selb J, Candau F. Copolymerization of acrylamide and a hdydrophobic monomer in an aqueous micellar medium: effect of the surfactant on the copolymer microstructure [J]. J. Phys. Chem. 1992, 96: 1505-1511.
    [51] Volpert E, Selb J, Candau F. Influence of the hydrophobe structure on composition, microstructure, and rheology in associating polyacrylamides prepared by micellar copolymerization [J]. Macromolecules, 1996, 29: 1452-1463.
    [52] Seery T A P, Yassini M, Hogen-Esch T E, Amis Jr E J. Static and dynamic light scattering characterization of solutions of hydrophobically associating fluorocarbon-containing polymers [J]. Macromolecules, 1992, 25: 4784-4791.
    [53] Zhang Y B, Wu C, Feng Q, Zhang Y X. A light-scattering study of the aggregation behavior of fluorocarbon-modified polyacrylamides in water [J]. Macromolecules, 1996, 29: 2494-4791.
    [54] Chang Y, McCormick C L. Water-soluble copolymers. 49. Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl (2-acrylamidoethyl) ammonium bromide on the solution behavior of associating acrylamide copolymers [J]. Macromolecules, 1993, 26: 6121-6126.
    [55] Argillier J F, Audibert A, Lecourtier J, Moan M, Rousseau L. Solution and adsorption properties of hydrophobically associating water-soluble polyacrylamides [J].Colloid. Surf. A: Physicochem. Eng. Aspects, 1996, 113: 247-257.
    [56] Li Y, Kwak J C T. Rheology and binding studies in aqueous systems of hydrophobically modified acrylamide and acrylic acid copolymers and surfactants [J].Colloid. Surf. A: Physicochem. Eng. Aspects, 2003, 225: 169-180.
    [57] Feng Y J, Billon L, Grassl B, Khoukh A, Fran?ois J. Hydrophobically associating polyacrylamides and their partially hydrolyzed derivatives prepared by post-modification. 1. Synthesis and characterization [J]. Polymer, 2002, 43: 2055-2064.
    [58] Xue W, Hamley I W, Castelletto V, Olmsted P D. Synthesis and characterization of hydrophobically modified polyacrylamides and some observations on rheological properties [J]. Eur. Polym. J., 2004, 40: 47-56.
    [59] Hill A, Candau F, and Selb J. Aqueous solution properties of hydrophobically associating copolymers [J]. Progr. Colloid Polym. Sci., 1991, 84: 61-65.
    [60] Volpert E, Selb J, Candau F. Associating behaviour of polyacrylamides hydrophobically modified with dihexylacrylamide [J]. Polymer, 1998, 39: 1025-1033.
    [61] Candau F, Biggs S, Hill A, Selb J. Synthesis, structure and properties of hydrophobically associating polymers [J]. Prog. Org. Coat., 1994, 24: 11-19.
    [62] Klucker R, Candau F, Schosseler F. Transient behavior of associating copolymers in a shear flow [J]. Macromolecules, 1995, 28: 6416-6422.
    [63] Klucker R, Schosseler F. Stress relaxation and reconstruction of the associating network in semidilute aqueous solutions of hydrophobically modified random block copolymers [J]. Macromolecules, 1997, 30: 4927-4933.
    [64] Biggs S, Selb J, Candau F. Effect of surfactant on the solution properties of hydrophobically modified polyacrylamide [J]. Langmuir, 1992, 8: 838-847.
    [65]戴玉华,吴飞鹏,李妙贞,王尔鑑.新型缔合聚合物P(AM/POEA)溶液的流变性质[J].高分子材料科学和工程,2005, 21: 121-124.
    [66]周祖康,顾锡人,马季铭.胶体化学基础[M].北京:北京大学出版社,1987.
    [67] Wichterle O, Lím D. Hydropililic gels for biological use [J]. Nature, 1960, 185: 117-118.
    [68] Kwon I C, Bae Y H, Kim S W. Electrically credible polymer gel for controlled release of drugs [J]. Nature, 1991, 354: 291-293.
    [69] Ilmain F, Tanaka T, Kokufuta E. Volume transition in a gel driven by hydrogen bonding [J]. Nature, 1991, 349: 400-401.
    [70] Hennink W E, van Nostrum C F. Novel crosslinking methods to design hydrogels [J]. Adv. Drug Delivery Rev., 2002, 54: 13-36.
    [71] Dong L, Agarwal A, Beebe D, Jiang H R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels [J]. Nature, 2006, 442: 551-554.
    [72] Kazuki M, Masayoshi W, Yukikazu T. A thermally adjustable multicolor photochromic hydrogel [J]. Angew. Chem. Int. Ed., 2007, 46: 1688-1692.
    [73] Khutoryanskaya O V, Mayeva ZA, Mun G A, Khutoryanskiy V V. Designing temperature-responsive biocompatible copolymers and hydrogels based on2-hydroxyethyl methacrylates [J]. Biomacromolecules, 2008, 9: 3353–3361.
    [74] Moberts M C, Hanson M C, Massey A P, Karren E A, Kiser P F. Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks [J]. Adv. Mater., 2007, 19: 2503-2507.
    [75] Kozlovskaya V, Kharlampieva E, Mansfield M. L, Sukhishvili S A. Poly(methacrylic acid) hydrogel films and capsules: response to pH and ionic strength, and encapsulation of macromolecules [J]. Chem. Mater., 2006, 18: 328-336.
    [76] Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns [J]. Biomaterials, 2007, 28: 3478-3488.
    [77] Asher S A, Kimble K W, Walker J P. Enabling thermoreversible physically cross-linked polymerized colloidal array photonic crystals [J]. Chem. Mater., 2008, 20: 7501-7509.
    [78] Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K. Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting [J]. Colloid Polym. Sci., 1986, 264: 595–601.
    [79] Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links [J]. Adv. Mater., 2001, 13: 485-487.
    [80] Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Double-Network hydrogels with extremely high mechanical strength [J]. Adv. Mater., 2003, 15: 1155-1158.
    [81] Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties [J]. Adv. Mater., 2002, 14: 1120-1124.
    [82] Haraguchi K, Ebato M, Takehisa T. Polymer-clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversibleelongations and excellent transparency [J]. Adv. Mater., 2006, 18: 2250-2254.
    [83] Zhu M F, Liu Y, Sun B, Zhang W, Liu X L, Yu H, Zhang Y, Kuckling D, Adler H J. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation [J]. Macromol. Rapid Commun., 2006, 27: 1023-1028.
    [84] Huang T, Xu H, Jiao K, Zhu L, Brown H, Wang H L. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel [J]. Adv. Mater., 2007, 19: 1622-1626.
    [85] Wenz G, Keller B. Threading cyclodextrin rings on polymer chains [J]. Angew. Chem. Int. Ed. Engl. 1992, 31, 197-199.
    [86] Herrmann W, Schneider M, Wenz G. Photochemical synthesis of polyrotaxanes from stilbene polymers and cyclodextrins [J]. Angew. Chem. Int. Ed. Engl., 1997, 36, 2511-2514.
    [87] Nepogodiev S A, Stoddart J F. Cyclodextrin-based catenanes and rotaxanes [J]. Chem. Rev., 1998, 98: 1959-1976.
    [88] Gong J P, Higa M, Iwasaki Y, Katsuyama Y, Osada Y. Friction of gels [J]. J. Phys. Chem. B, 1997, 101: 5487-5489.
    [89] Gong J P, Osada Y. Gel friction: A model based on surface repulsion and adsorption [J]. J. Chem. Phys., 1998, 109: 8062-8068.
    [90] Gong J P, Iwasaki Y, Osada Y, Kurihara K, Hamai Y. Friction of Gels. 3. Friction on solid surfaces [J]. J. Phys. Chem. B, 1999, 103: 6001-6006.
    [91] Gong J P, Kagata G, Osada Y . Friction of Gels. 4. Friction on charged gels [J]. J. Phys. Chem. B, 1999, 103: 6007-6014.
    [92] Gong J P, Iwasaki Y, Osada Y. Friction of Gels. 5. Negative load dependence of polysaccharide gels [J]. J. Phys. Chem. B, 2000, 104: 3423-3428.
    [93] Gong J P, Kurokawa T, Narita T, Kagata G, Osada Y, Nishimura G, Kinjo M. Synthesis of hydrogels with extremely low surface friction [J]. J. Am. Chem. Soc.,2001, 123: 5582-5583.
    [94] Na Y H, Kurokawa T, Katsuyama, Tsukeshiba H, Gong J P, Osada Y, et al. Structural characteristics of gels with extremely high mechanical strength [J]. Macromolecules, 2004, 37: 5370–5374.
    [95] Kuckling D, Hoffmann J, Pl?tner M, Ferse D, Kretschmer K, Adler H-J P, Arndt K-F, Reichelt R. Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: micro-fabricated temperature responsive hydrogels [J]. Polymer, 2003, 44: 4455-4462.
    [96] Akashi R, Tsutsui H,. Komura A. Polymer gel light-modulation materials imitating pigment cells [J]. Adv. Mater., 2002, 14: 1808-1811.
    [97] Yoshinari E, Furukawa H, Horie K. Fluorescence study on the mechanism of rapid shrinking of grafted poly(N-isopropylacrylamide) gels and semi-IPN gels [J]. Polymer, 2005, 46: 7741-7748.
    [98] Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D. Reversible Switching between Superhydrophilicity and Superhydrophobicity [J]. Angew. Chem. Int. Ed. Engl., 1997, 36, 2511-2514.
    [99] Hu Z, Lu X, Gao J, Wang C. Polymer gel nanoparticle networks [J]. Adv. Mater., 2000, 12: 1173-1176.
    [100] Hu Z, Lu X, Gao J. Hydrogel Opals [J]. Adv. Mater., 2001, 13: 1708-1712.
    [101] Deng Y H, Yang W L, Wang C C, Fu SK. A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure [J]. Adv. Mater., 2003, 15: 1729-1732.
    [102] Haraguchi K, Takehisa T, Fan S. Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay [J]. Macromolecules, 2002, 35: 10162–10171.
    [103] Haraguchi K. Nanocomposite hydrogels [J]. Curr. Opin. Solid State Mater. Sci.,2007, 11: 47-54.
    [104] Haraguchi K, Li H J, Matsuda K, Takehisa T, Elliott E. Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels [J]. Macromolecules, 2005, 38: 3482-3490.
    [105] Shibayama M, Suda J, Karino T, Okabe S, Takehisa T, Haraguchi K. Structure and dynamics of poly (N-isopropylacrylamide) - clay nanocomposite gels [J]. Macromolecules, 2004, 37: 9606-9612.
    [106] Shibayama M, Karino T, Miyazaki S, Okabe S, Takehisa T, Haraguchi K. Smallangle neutron scattering study on uniaxially stretched poly (N-isopropylacrylamide) - clay nanocomposite gels [J]. Macromolecules, 2005, 38: 10772-10781.
    [107] Nie J, Du B, Oppermann W. Swelling, elasticity, and spatial inhomogeneity of poly (N-isopropylacrylamide)/clay nanocomposite hydrogels [J]. Macromolecules, 2005, 38: 5729-5736.
    [108] Nie J , Du B, Oppermann W. Dynamic fluctuations and spatial inhomogeneities in poly(N-isopropylacrylamide)/clay nanocomposite hydrogels studied by dynamic light scattering [J]. J. Phys. Chem. B, 2006, 110: 11167-11175.
    [109] Miyazaki S, Endo H, Karino T, Haraguchi K, Shibayama M. Gelation mechanism of poly(N-isopropylacrylamide)-clay nanocomposite gels [J]. Macromolecules, 2007, 40: 4287-4295.
    [110] Endo H, Miyazaki S, Haraguchi K, Shibayama M. Structure of nanocomposite hydrogel investigated by means of contrast variation small-angle neutron scattering [J]. Macromolecules, 2008, 41: 5406-5411.
    [111] Haraguchi K, Song L. Microstructures formed in co-cross-linked networks and their relationships to the optical and mechanical properties of PNIPA/clay nanocomposite gels [J]. Macromolecules, 2007, 40: 5526-5536.
    [112] Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay [J]. Macromolecules, 2003, 36: 5732-5741.
    [113] Haraguchi K. Nanocomposite gels: new advanced functional soft materials [J]. Macromol. Symp., 2007, 256: 120-130.
    [114] Haraguchi K, Li H J. Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content [J]. Macromolecules, 2006, 39: 1898-1905.
    [115] Okay O, Oppermann W. Polyacrylamide-clay nanocomposite hydrogels: rheological and light scattering characterization [J]. Macromolecules, 2007, 40: 3378–3387.
    [116] Haraguchi K, Li H J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels [J]. Angew. Chem. Int. Ed., 2005, 44: 6500-6504.
    [117] Haraguchi K, Li H J, Song L, Murata K. Tunable optical and swelling/deswelling properties associated with control of the coil-to-globule transition on poly(N-isopropylacrylamide) in polymer–clay nanocomposite gels [J]. Macromolecules, 2007, 40: 6973-6980.
    [118] Xu K, Wang J, Xiang S, Chen Q, Yue Y, Su X, et al. Polyampholytes superabsorbent nanocomposites with excellent gel strength [J]. Compos. Sci. Technol., 2007, 67: 3480-3486.
    [119] Kundakci S,üzüm ?B, Karada? E. Swelling and dye sorption studies of acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/bentonite highly swollen composite hydrogels [J]. React. Funct. Polym., 2008, 68: 458-473.
    [120] Xu K, Wang J, Xiang S, Chen Q, Zhang W, Wang P. Study on the synthesis and performance of hydrogels with ionic monomers and montmorillonite [J].Appl. Clay. Sci., 2007, 38: 139-145.
    [121] Can V, Abdurrahmanoglu S, Okay O. Unusual swelling behavior of polymer–clay nanocomposite hydrogels [J]. Polymer, 2007, 48: 5016-5023.
    [122] Zhang W, Liu Y, Zhu M, Zhang Y, Liu X, Yu H, et al. Surprising conversion of nanocomposite hydrogels with high mechanical strength by posttreatment: from a low swelling ratio to an ultrahigh swelling ratio. J. Polym. Sci. Part A Polym. Chem., 2006, 44: 6640-6645.
    [123] Kope?ek J, Yang J. Hydrogels as smart biomaterials [J]. Polym. Int., 2007, 56: 1078-1098.
    [124] Haraguchi K, Li H J, Song L. The unique optical and physical properties of soft, transparent, stimulus-sensitive nanocomposite gels [J]. Proc. SPIE., 2007, 6654: 6654001-6654011.
    [125] Song L, Zhu M, Chen Y, Haraguchi K. Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks [J]. Macromol. Chem. Phys., 2008, 209: 1564-1575.
    [126] Ma J, Xu Y, Zhang Q, Zha L, Liang B. Preparation and characterization of pH-and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly(N-isopropyl acrylamide) crosslinked by clay [J]. Colloid. Polym. Sci., 2007, 285: 479-484.
    [127] Haraguchi K, Taniguchi S, Takehisa T. Reversible force generation in a temperature-responsive nano-composite hydrogel consisting of poly(N-isopropylacrylamide) and clay [J]. Chem. Phys. Chem. 2005, 6: 238-241.
    [128] Haraguchi K, Takada T. Characteristic sliding frictional behavior on the surface of nanocomposite hydrogels consisting of organic– inorganic network structure [J]. Macromol. Chem. Phys., 2005, 206: 1530-1540.
    [129] Haraguchi K, Li H J, Okumura N. Hydrogels with hydrophobicsurfaces:abnormally high contact angles for water on PNIPA nanocomposite hydrogels [J]. Macromolecules, 2007, 40: 2299-2302.
    [130] Haraguchi K, Takehisa T, Ebato M. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels [J]. Biomacromolecules, 2006, 7: 3267-3275.
    [131] Haraguchi K, Matsuda K. Spontaneous formation of characteristic layered morphologies in porous nanocomposites prepared from nanocomposite hydrogels [J]. Chem. Mater., 2005, 17: 931-934.
    [132] Murata K, Haraguchi K. Optical anisotropy in polymer-clay nanocomposite hydrogel and its change on uniaxial deformation [J]. J. Mater. Chem ., 2007, 17: 3385-3388.
    [133] Xiao X C, Chu L Y, Chen W M, Zhu J H. Monodispersed thermoresponsive hydrogel microspheres with a volume phase transition driven by hydrogen bonding [J]. Polymer, 2005, 46: 3199-3209.
    [134] Yin X, St?ver H D H. Temperature-sensitive hydrogel microspheres formed by liquid-liquid phase transitions of aqueous solutions of poly(N,N-dimethylacrylamide-co-allyl methacrylate [J]. J. Polym. Sci., Part A: Polym. Chem., 2005, 43: 1641-1648.
    [135] Kara S, Pekcan ?. Photon transmission technique for monitoring free radical crosslinking copolymerization in various crosslinker contents [J]. Polymer, 2000, 41: 3093-3097.
    [136] Shinde V S, Badiger M V, Lele A K. Core?Shell Morphology in Poly(N-isopropyl acrylamide) Copolymer Gels Induced by Restricted Diffusion of Surfactant [J]. Langmuir, 2001, 17: 2585-2588.
    [137] Wasserman A M, Yasina L L, Motyakin M V, Aliev I I, Churochkina N A, Rogovina L Z, Lysenko E A, Baranovsky V Y. EPR spin probe study of polymer associative systems [J]. Spectrochim Acta Part A, 2008, 69:1344-1353.
    [138] Miquelard-Garnier G, Creton C, Hourdet D. Synthesis and Viscoelastic Properties of Hydrophobically Modified Hydrogels [J]. Macromol .symp., 2007, 256: 189-194.
    [139] Miquelard-Garnier G, Demoures S, Creton C, Hourdet D. Synthesis and rheological behavior of new hydrophobically modified hydrogels with tunable properties [J]. Macromolecules, 2006, 39: 8128-8139.
    [140] Caykara T, ?zol D, Birlik G, Akao?lu B. Adsorption of surfactant by hydrophobically modified poly[2- (diethylamino) ethylmethacrylate -co- N -vinyl-2-pyrrolidone/octadecyl acrylate)] hydrogels and effect of surfactant adsorption on the volume phase transition [J]. J. Appl. Polym. Sci., 2007,103: 3771-3775.
    [141] Philippova O E, Hourdet D, Audebert R, Khokhlov A R. pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid) [J]. Macromolecules, 1997, 30: 8278-8285.
    [142] Liu Y Y, Liu Q W, Chen W X, Sun L, Zhang G B. Investigation of swelling and controlled-release behaviors of hydrophobically modified poly(methacrylic acid) hydrogels [J]. Polymer, 2007, 48: 2665-2671.
    [143] Yin Y H, Yang Y J, Xu H B. Hydrophobically modified hydrogels containing azoaromatic cross-links: swelling properties, degradation in vivo and application in drug delivery [J]. Eur. Polym. J., 2002, 38: 2305-2311.
    [144] Xue W, Hamley I W. Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer [J]. Polymer, 2002, 43: 3069-3077.
    [145] Xue W, Hamley I W, Huglin M B. Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerisation [J]. Polymer, 2002, 43:5181-5186.
    [146] Tian Q, Zhao X, Tang X Z, Zhang Y X. Hydrophobic association and temperature and pH sensitivity of hydrophobically modified poly(N-isopropylacrylamide/acrylic acid) gels [J]. J. Appl. Polym. Sci., 2003,87: 2406-2413.
    [147] Miquelard-Garnier G, Hourdet D, Creton C. Large strain behaviour of nanostructured polyelectrolyte hydrogels [J]. Polymer, 2009, 50, 481-490.
    [148] Abdurrahmanoglu S, Can V, Okay O. Design of high-toughness polyacrylamide hydrogels by hydrophobic modification [J]. Polymer, 2009, 50: 5449-5455.
    [149] Nakashima K, Bahadur P. Aggregation of water-soluble block copolymers in aqueous solutions: Recent trends [J]. Adv. Colloid Interface Sci., 2006, 123: 75-96.
    [150] Yang L, Alexandridis P. Polyoxyalkylene block copolymers in formamide?water mixed solvents: micelle formation and structure studied by small-angle neutron scattering [J]. Langmuir, 2000, 16: 4819-4829.
    [151] Booth C, Attwood D, Price C. Self-association of block copoly(oxyalkylene)s in aqueous solution. Effects of composition, block length and block architecture [J]. Phys. Chem. Chem. Phys., 2006, 8: 3612-3622.
    [152] Anderson J A, Travesset A. Coarse-grained simulations of gels of nonionic multiblock copolymers with hydrophobic groups [J]. Macromolecules, 2006, 39: 5143-5151.
    [153] Li Y Q, Shi T F, Sun Z Y, An L J, Huang Q R. investigation of sol-gel transition in pluronic F127/D2O solutions using a combination of small-angle neutron scattering and monte carlo simulation [J]. J. Phys. Chem. B, 2006, 110: 26424-26429.
    [154]赵英,谢宇,吕中元,孙家锺. P123( PEO20-PPO70-PEO20 )嵌段共聚物水溶液物理凝胶化行为的耗散粒子动力学模拟[J].高等学校化学学报, 2009, 30:2455-2459.
    [155]张晓宏,范愉,吴世康. SDS对PEO-PPO-PEO嵌段共聚物溶液行为的影响[J].物理化学学报, 1999, 15: 390-397.
    [156] Bromberg L E, Ron E S. Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery [J]. Adv. Drug Deliv. Rev., 1998, 31: 197-221.
    [157]李志平,赵瑞红,郭奋,陈建峰,王刚.高比表面积有序介孔氧化铝的制备与表征[J].高等学校化学学报, 2008, 29: 13-17.
    [158] Yu L, Chang G T, Zhang H, Ding J D. Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water [J]. J. Polym. Sci., Part B: Polym. Phys., 2007, 45: 1122-1133.
    [159] Yu L, Ding J D. Injectable hydrogels as unique biomedical materials [J]. Chem. Soc. Rev., 2008, 37: 1473―1481.
    [160]苗博龙,马桂蕾,宋存先.温敏性PCL-PEG-PCL水凝胶的合成、表征及蛋白药物释放[J].高等学校化学学报,30: 2508-2513.
    [161] Sanabria-DeLong N, Agrawal S K, Bhatia S R, Tew G N. Controlling hydrogel properties by crystallization of hydrophobic domains [J]. Macromolecules, 2006, 39: 1308-1310.
    [162] Sanabria-DeLong N, Agrawal S K, Bhatia S R, Tew G N. Impact of synthetic technique on PLA?PEO?PLA physical hydrogel properties [J]. Macromolecules, 2007, 40: 7864-7873.
    [163] Hillmyer M A, Lodge T P. Synthesis and elf-Assembly of Fluorinated Block Copolymers [J]. J. Polym. Sci., Polym. Chem., 2002, 40, 1-8.
    [164] Taribagil R R, Hillmyer M A, Lodge T P. A compartmentalized hydrogel from a linear ABC terpolymer [J]. Macromolecules, 2009, 42: 1796-1800.
    [165] Kurian P, Zschoche S, Kennedy J P. Synthesis and characterization of novel amphiphilic block copolymers di-, tri-, multi-, and star blocks of PEG and PIB [J]. J. Polym. Sci., Part A Polym. Chem. 2000, 38: 3200–3209.
    [166] Cho C S, Jeong Y I, Kim S H, Nah J W, Kubota M, Komoto T. Thermoplastic hydrogel based on hexablock co polymer composed of poly(γ-benzyl L-glutamate) and poly- (ethylene oxide) [J]. Polymer, 2000, 41: 5185–5193.
    [167] Lee S C, Kim C, Kwon I C, Kim Y H. Thermosensitive hydrogels based on poly(2-ethyl-2-oxazoline) / poly(ε-caprolactone) multiblock copolymers [J]. Proc. Int. Symp. ConTrolled Release Bioact. Mater., 1998, 25: 717–718.
    [168] Lin H H, Cheng Y L. In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures [J]. Macromolecules 2001, 34: 3710–3715.
    [169] Jeong B, Kibbey M R, Birnbaum J C, Won Y Y, Gutowska A. Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA [J]. Macromolecules, 2000, 33: 8317-8322.
    [170] Hennink W E, van Nostrum C F. Novel crosslinking methods to design hydrogels [J]. Adv. Drug. Deliv. Rev., 2002, 54: 13–36.
    [171] Matyjaszewski K, Beers K L, Kern A, Gaynor S G. Hydrogels by atom transfer radical polymerization. I. Poly (N-vinylpyrrolidinone-g-styrene) via the macromonomer method [J]. J. Polym. Sci., Part A Polym. Chem., 1998, 36: 823–830.
    [172] Mullarney M P, Seery T A P, Weiss R A. Drug diffusion in hydrophobically modified N,N-dimethylacrylamide hydrogels [J]. Polymer, 2006, 47: 3845-3855.
    [173]尚振平,方天如.水溶性聚合物和两亲聚合物: 14.丙烯酰胺/2-丙烯酰胺基十六烷磺酸铵无规共聚物[J].功能高分子学报, 1993, 6: 70-75.
    [174] McCormick C L, Chen G S, Hutchinson B H. Water-soluble copolymers. V. Compositional determination of random copolymers of acrylamide with sulfonated comonomers by infrared spectroscopy and C13 nuclear magnetic resonance [J]. J. Appl. Polym. Sci., 1982, 27: 3103-3120.
    [175] McCarthy K J, Burkhadt C W, Parazak D P. Mark-Houwink-Sakurada constants and dilute solution behavior of heterodisperse poly(acrylamide-co-sodium acrylate) in 0.5M and 1M NaCl [J]. J. Appl. Polym. Sci., 1987, 33, 1699-1714.
    [176] Onda N, Furusawa K, Yamaguchi N, Tokiwa M, Hirai Y. Gel permeation chromatography using controlled-porosity glass. II. Polyacrylamide aqueous solutions [J]. J. Appl. Polym. Sci., 1980, 25, 2363-2372.
    [177] Bahary W S, Jilani M. Universal calibration assessment in aqueous gel permeation chromatography [J]. J. Appl. Polym. Sci., 1993, 48, 1531-1538.
    [178] Xiong L J, Hu X B, Liu X X, Tong Z. Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility [J]. Polymer, 2008, 49: 5064-5071.
    [179] Vallés E, Durando D, Katime I, Mendizábal E, Puig J E. Equilibrium swelling and mechanical properties of hydrogels of acrylamide and itaconic acid or its esters [J]. Polym. Bull., 2000, 44: 109-114.
    [180] Nitta K H, Odaka k. Influence of structural organization on tensile properties in mesomorphic isotactic polypropylene [J]. Polymer, 2009, 50: 4080-4088.
    [181] Chen Z K, Yang G, Yang J P, Fu S Y, Ye L, Huang Y G. Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether [J]. Polymer, 2009, 50: 1316-1323.
    [182] Yoon K, Hsiao B S, Chu B. Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidationprocesses [J]. Polymer, 2009, 50: 2893-2899.
    [183] Toki S, Hsiao B S, Amnuaypornsri S, Sakdapipanich J. New insights into the relationship between network structure and strain-induced crystallization in un-vulcanized and vulcanized natural rubber by synchrotron X-ray diffraction [J]. Polymer, 2009, 50: 2142-2148.
    [184] Urushihara Y, Nishino T. Surface properties of O2-plasma-treated thermoplastic fluoroelastomers under mechanical stretching [J]. Polymer, 2009, 50: 3245-3249.
    [185] Dualeh A J, Steiner C A. Hydrophobic microphase formation in surfactant solutions containing an amphiphilic graft copolymer [J]. Macromolecules, 1990, 23: 251-255.
    [186] Flockhart B D. The effect of temperature on the critical micelle concentration of some paraffin-chain salts [J]. J. Colloid. Sci., 1961, 16: 484-492.
    [187] Haraguchi K, Takehisa T, Fan S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay [J]. Macromolecules, 2002, 35: 10162-10171.
    [188] Tobolsky A V, Carlson D W, Indictor N. Rubber elasticity and chain configuration [J]. J. Polym. Sci., 1961, 54: 175-192.
    [189] Miyazaki S, Karino T, Endo H, Haraguchi K, Shibayama M. Clay concentration dependence of microstructure in deformed poly(N-isopropylacrylamide)?clay nanocomposite gels [J]. Macromolecules, 2006, 39: 8112-8120.
    [190] Hu X B, Xiong L J, Wang T, Lin Z M, Liu X X, Tong Z. Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparence [J]. Polymer, 2009, 50: 1933-1938.
    [191] Ravi N, Wan K T, Swindle K, Hamilton P D, Duan G. Development of techniques to compare mechanical properties of reversible hydrogels with spherical, square columnar and ocular lens geometry [J]. Polymer, 2006, 47:4203-4209.
    [192] El-din H M N, Alla S G A, El-naggar A W M. Swelling, thermal and mechanical properties of poly(vinyl alcohol)/sodium alginate hydrogels synthesized by electron beam irradiation [J]. J. Macromol. Sci., Part A: Pure and Appl. Chem., 2007: 44, 291-297.
    [193] Zhong C R, Huang R H, Xu J Y. Characterization, solution behavior, and microstructure of a hydrophobically associating nonionic copolymer [J]. J. Solution Chem., 2008: 37, 1227–1243.
    [194] Biggs S, Selb J, Candau F. Copolymers of acrylamide/N-alkylacrylamide in aqueous solution: the effects of hydrolysis on hydrophobic interactions [J]. Polymer, 1993, 34, 580-591.
    [195] Muller G, Fenyo J C, Selegny E. High molecular weight hydrolyzed polyacrylamides. 111. effect of temperature on chemical stability [J]. J. Appl. Polym. Sci., 1980, 25: 627-633.
    [196] Ilavsky M, Hrouz J, Stejskal J, Bouchal, K. Phase transition in swollen gels. 6. effect of aging on the extent of hydrolysis of aqueous polyacrylamide solutions and on the collapse of gels [J]. Macromolecules, 1984, 17: 2868-2874.
    [197] Effing J J, McLennan I J, Kwak J C T. Associative phase separation observed in a hydrophobically modified poly (acrylamide)/sodium dodecyl sulfate system [J]. J. Phys. Chem., 1994, 98: 2499-2502.
    [198] Feng Y J, Grassl B, Billon L, Khoukh A, Fran?ois J. Effects of NaCl on steady rheological behaviour in aqueous solutions of hydrophobically modified polyacrylamide and its partially hydrolyzed analogues prepared by post-modification [J]. Polym. Int., 2002, 51: 939-947.
    [199] Pourjavadi A, Ghasemzadeh H, Mojahedi F. Swelling properties of CMC-g-poly (AAm-co-AMPS) superabsorbent hydrogel [J]. J. Appl. Polym. Sci., 2009, 113: 3442-3449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700