渣油反应—吸附脱金属研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题重点研究了反应-吸附作用下渣油加氢脱金属(HDM)反应机理,初步探索了辽河常渣、塔河减渣在该效应下HDM反应行为。利用X射线衍射光谱(XRD)、扫描电镜(SEM)、X射线能谱(EDX)、透射电镜(TEM)、吡啶-红外光谱(Py-IR)、波长色散X射线荧光光谱(XRF)、紫外-可见光谱(Uv-vis)等表征手段对所制备催化剂、HDM反应机理及辽河常渣、塔河减渣中金属分布及存在形态进行研究。
     高岭土由于价格低廉目前成为研究热点。Py-IR分析得出,酸碱洗改性后高岭土L酸较强,其次是L酸和B酸混合酸,最弱的是B酸;酸碱洗改性后高岭土吸附-脱附等温线呈标准Ⅳ型,带有B型滞后回环。实验发现,当高岭土煅烧温度在600℃时,酸洗有利于高岭土中铝的溶出;煅烧温度在900℃时,碱洗后有利于硅的溶出;酸碱洗改性后时间越长,得到的高岭土孔径越小,比表面积越大。
     酸改性、负载镍和负载钼的酸改性高岭土对卟啉镍和卟啉钒的吸附符合Langmuir吸附等温线,表明卟啉镍和卟啉钒单层吸附在改性高岭土上。实验发现吸附剂酸性大,吸附金属卟啉量多。同样吸附剂,对卟啉钒的吸附量大于对卟啉镍的吸附量。酸改性、负载镍和负载钼的酸改性高岭土对卟啉镍和卟啉钒的吸附表现为自发放热过程,属于化学吸附。酸改性、负载镍和负载钼的酸改性高岭土对卟啉镍和卟啉钒的吸附遵循拟一级吸附动力学方程所描述的规律。
     试验发现NiOEP和VOOEP加氢脱金属反应过程中有中间产物卟啉酚的出现,说明HDM反应过程中,金属卟啉先加氢生成卟啉酚,然后氢解脱除金属;硫化物和氮化物对HDM反应作用不同,硫化物起促进作用,而氮化物则有抑制作用;但是硫化物(噻吩)浓度只有达到3100?g/g后,才能够对HDM反应有明显促进;而氮化物(喹啉)则比较敏感,加入微量可使脱金属率大大降低,加入量在490?g/g时,抑制作用达到最大。
     金属卟啉的HDM反应是连串反应;使用未予化硫化催化剂时,金属卟啉在HDM反应过程中生成金属卟酚和金属卟酚脱金属都是一级反应,使用予硫化催化剂时,则都是二级反应;使用未予硫化催化剂时,镍卟啉生成镍卟酚是整个HDM反应的控制步骤,而对于钒卟啉的HDM反应,钒卟酚脱金属反应则是控制步骤;使用予硫化催化剂时,镍卟酚和钒卟酚脱金属反应是整个反应的控制步骤;用硫化催化剂能够大大降低反应活化能,提高反应速度。
     反应-吸附作用下对辽河常渣、塔河减渣HDM反应行为和金属分布及存在形态进行研究。辽河常渣中镍主要分布在胶质中,饱和分中没有发现金属镍的存在;塔河减渣中镍和钒主要分布在正庚烷沥青质中。辽河常渣和塔河减渣中的金属卟啉主要以初卟啉ETIO为主;不排除辽河常渣中镍卟啉以脱氧叶红初卟啉DPEP形式的存在,不可能以玫红卟啉RHODO形式存在。随着反应温度升高,辽河常渣HDM反应产物中镍在丙酮可溶物和丙酮不溶物中收率降低,而在正庚烷萃取物中的收率升高。塔河减渣HDM反应产物中金属主要存在于正庚烷和苯萃取物中,这说明越重组分中的金属越难脱除。
The study focused on the residue hydrodemetallation (HDM) reaction by reaction-adsorption and researched preliminarily reaction behavior of LiaoHe Atmospheric Residue (LHAR) and TaHe Vaccum Residue (THVR). The as-prepared catalyst, HDM mechanism, as well as the distribution and existing form of nickel (Ni) and vanadium (V) were investigated by X-ray diffraction spectroscopy (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray energy spectrum(EDX), pyridine adsorption fourier-transform infrared (Py-IR), wavelength dispersive X-Ray fluorescence analysis (XRF) and ultraviolet visible absorption spectroscopy (Uv-vis), respectively.
     Kaolinite has been a research focus due to its lower price. From Py-IR, the strongest acid is L acid, followed by the mixture of L and B acids, and the lowest acid is B acid when kaolinite was modified by acid and alkali. Adsorption and desorption isotherm of modified kaolinite showed theⅣtype, and the hysteresis loop indicated the B type. The research demonstrated that acid modification was benefitial for aluminum leaching at kaolinite calcination temperature of 600℃and alkali modification was benefitial for silicon extraction at kaolinite calcination temperature of 900℃. The pore diameter became smaller and the surface area became larger as acid and alkali modification time was prolonged.
     The adsorption process of modified kaolinite adsorbing VOOEP and NiOEP followed the law of Langmuir adsorption isotherm, which indicated that monolayer VOOEP or NiOEP was adsorbed on modified kaolinite; the adsorption quantity increased with enlarging acid strength. The quantity of VOOEP was bigger than the amount of NiOEP using the same adsorbents. The adsorption of metallporphyrin was exothermic in nature and chemical bonds existed between metallorphyrin and modified kaolinite. The adsorption kinetics followed the law of pseudo-first order kinetic mode when modification kaolinite adsorbed metallporphyrin.
     It was found that intermediate metal porphyrin phenol (MH2) existed during HDM reaction, which showed the reaction sequence, firstly being the hydrogenation of metalporphyrins to metal hydroporphyrins, secondly being the hydrogenolysis of metalhydroporphrins and then resulted in demetallation. Nitrogen and sulfur compounds had great effect on HDM reaction. Nitrogen compounds could inhibit HDM reaction, while sulfur compounds could accelerate HDM reaction, but nitrogen and sulfur compounds coud not change the HDM reaction sequential mechanism. Only when the concentration of sulfur compounds thiophene reached 3100?g/g, would they obviously promoted HDM reaction. The nitrogen compound quinoline had a sensitive effect on HDM reaction. Even small amount could generate large inhabit effect. When the amount of quinoline was 490?g/g, the inhabit effect reached the maximum.
     The hydrodemetallation(HDM) reaction of metalporphyrin followed a consecutive reaction. The reactions of metal porphyrin forming porphyrin phenol and porphyrin phenol demetallation were first-order reaction, while NiOEP generating NiPH2 and VOOEP generating VOPH2 were the controlling steps when presulfurazation catalyst was used. The reactions of metal porphyrin forming porphyrin phenol and porphyrin phenol demetallation showed as second-order reaction when non-presulfurazation catalyst was used. The experiment found that the activation-energy could be decreased and reaction rate could be increased when presulfurazation catalyst was used.
     HDM reaction behavior and the metals distribution and existing form of LHAR and THVR were researched by reaction-adsorption. Nickel in LHAR existed mainly in resin and almost no nickel was found in saturate. Nickel and vanadium distributed mainly in heptane asphaltene. Nickel porphyrin in LHAR, Nickel porphyrin and vanadium phorphyrin in THVR mainly were ETIO types, and Nickel porphyrin in LHAR probably existed in DPEP type, and there was probably no RHODO type. As the reaction temperature increased, nickel content decreased in acetone solution and acetone insolution of HDM reaction products of LHAR, but nickel content increased in heptane extract. The metallic compounds of HDM reaction product of THVR were mainly in heptane and benzene extract, which indicated the metallic compounds in heavy components were difficult to remove.
引文
[1] Meyer R F.世界重油资源[C].关华译.第十一届世界石油大会文集,北京:1997:263-280
    [2]李志强.重油转化-21世纪石油炼制技术的焦点[J].炼油设计,1999,29(12):8-14
    [3]陈俊武,卢捍卫.催化裂化在炼油厂中的地位和作用展望[J].石油学报(石油加工), 2003, 19(1): 1-11
    [4]梁文杰主编.石油化学[M].东营:石油大学出版社,1995,54-58
    [5] Ma?rquez N., Ysambertt F., Cruz C D. L. Three analytical methods to isolate and characterize vanadium and nickel porphyrins from heavy crude oil [J]. Analytica Chimica Acta, 1999, 395: 343-349
    [6] Duyck C., Norbert Miekeley N., Carmem L., Szatmari P. Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions [J]. Spectrochimica Acta Part B. 2002, 57: 1979–1990
    [7] Barwise A J G, Whithead E V, Characterization of vanadium porphyrins in petroleum residues [J]. Prints(Div. Petrol. Chem., ACS), 1980, 25(2): 268-279
    [8]徐海,于道永,王宗贤,等.金属卟啉的热稳定性及热分解动力学研究[J].应用化学,2001,18(6):447- 449
    [9] Ware R. A,Wei J. Catalytic hydrodemetallation of nickel porphyrins I. Porphyrin structure and reactivity [J]. J. Catal., 1985, 93(1): 100-121
    [10] Agrawal R., Wei J. Hydrodemetalation of nickel and vanadium porphyrins. 1. Intrinsic kinetics [J]. Ind. Eng. Chem. Process Des. Dev., 1984, 23(3), 505-514
    [11]徐海,于道永,王宗贤,等.金属卟啉催化加氢脱金属的初步研究[J].石油学报(石油加工),2001,17(4):18-23
    [12]刘长久,张广林.石油和石油产品中非烃化合物[M].北京:中国石化出版社,1991,347-348
    [13] Morales A , Galiasso R. Adsorption mechanism of boscan porphyrins on MoO3, Co3O4 and CoMo/Al2O3 [J]. Fuel, 1982, 61(1): 13-17
    [14] Topsφe H, Clausen B S, TopsφeN-Y, et al. Recent basic research in hydrodesulfurization catalysis [J]. Ind Eng Chem Fundam, 1986, 25 (1): 25-36
    [15]高永灿,叶天旭,李丽,等.镍对催化裂化催化剂的污染特性[J].石油大学学报(自然科学版),2000, 24(3):41-45
    [16]程之光.重油加工技术[M].北京:中国石化出版社, 1994. 99-133, 259-266
    [17] Wormsbecher R. F., Peters A. W., Masell J. M. Vanadium poisoning of cracking catalysts: Mechanism of poisoning and design of vanadium tolerant catalyst system [J], J Catal, 1986, 100(1):130-137
    [18] Su S., Wang G., Guo H., et al. Additive used in catalytic cracking of hydrocarbons and a process of catalytic cracking of hydrocarbons using the same [P], USA Patent: 6723228, 2004-04-20
    [19] Ali M F, Abbas S. J . A review of methods for the demetallization of residual fuel oils [J]. Fuel Processing Technology, 2006, 87: 573-584
    [20]徐海,阙国和,于道永.塔里木塔河原油中钒卟啉的分离和鉴定[J].应用化学,2004,21(7):354-356
    [21]祁鲁梁,郎纫赤,汪燮卿.我国一些原油中镍卟啉化合物初步研究[J].石油学报,1981,2(4):107-116
    [22]徐海,于道永,王宗贤,等.石油卟啉化学的研究进展[J].化学研究与应用,2001,13(4):347-350
    [23]徐海,于道永,隋秀华,等.辽河减压渣油中卟啉的分离和分析[J].应用化学,2001,18(5):419-421 [24王磊,宋丽,邹滢.胜利减渣中镍卟啉的分离和分析[J].应用化工,2007,36(2):194-196
    [25]陈培榕,邢志,王志杰,等.利用光谱、质谱和色谱研究中国辽河油田西斜坡原油卟啉生物标志物的特征[J].应用化学,1998,15(3):70-72
    [26] Baker E W. Mass Spectrometric Characterization of Petroporphyrins [J]. J. Am. Chem. Soc, 1966, 88(10): 2311-2315
    [27] Boylan D. B.,Clauin M. Volatile silicon complexes of etioporphyrin I [J]. J. Amer. Chem. Soc., 1967, 89: 5472-5473
    [28] Xu H., Yu D.Y., Que G.H. Characterization of petroporphyrins in Gudao residue by ultraviolet–visible spectrophotometry and laser desorption ionization-time of flight mass spectrometry [J]. Fuel, 2005, 84: 647-652
    [29] McKenna A. M., Purcell J. M., Rodgers R. P., Marshall A. G. Identification of Vanadyl Porphyrins in a Heavy Crude Oil and Raw Asphaltene by Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry [J].Energy & Fuels, 2009, 23, 2122-2128
    [30]季梅,郑振国,俞跃春.电感耦合等离子发射光谱法测定渣油中铁、镍、钙、镁、钠、钒金属元素[J].光谱实验室,2002,21(2):39-40
    [31]黄宗平,董清木. X射线荧光光谱法同时测定渣油中的硫、钒和镍[J].光谱实验室,2005,22(4):788-790
    [32]王继池.石墨炉原子吸收直接测定原油中痕量钒镍.理化检验[M],2000,36(1):34,6
    [33]陈迎霞.原油和残渣燃料油中镍、钒、铁含量测定[J].现代仪器,2001,5:25 -28
    [34]陈信悦,孙延伟,于孝展,等.石墨炉原子吸收法测定燃料油中金属钒[J].精细石油化工,2002,2:57-58
    [35] Miller J. T., Fisher R. B. Structural Determination by XAFS Spectroscopy of Non-Porphyrin Nickel and Vanadium in Maya Residuum, Hydrocracked Residuum, and Toluene-Insoluble Solid [J]. Energy & Fuels. 1999, 13, 719-727
    [36] Shiraishi Y., Hirai T., Komasawa I. A Novel Demetalation Process for Vanadyl-and Nickelporphyrins from Petroleum Residue by Photochemical Reaction and Liquid-Liquid Extraction [J]. Ind. Eng. Chem. Res. 2000, 39, 1345-1355
    [37]Xu Z., Tan L., Yu L. Demetalation–extraction of metals from petroleum and petroleum fractions by aqueous inorganic acids [P]. Chinese patent: 1431276, 2003-07-23
    [38] Xu Z., Li B., Wang X. Demetalation–extraction of crude petroleum and fractions using fatty acids obtained by oxidation of paraffin waxes [P]. Chinese patent: CN1431278, 2003- 07-23
    [39] Reynolds J.G. Removal of nickel and vanadium from heavy crude oils by exchange reactions [J]. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 2004, 49(1): 79-80
    [40] Yin C., Stryker J. M., Gray M. R. Separation of Petroporphyrins from Asphaltenes by Chemical Modification and Selective Affinity Chromatography [J]. Energy & Fuels, 2009, 23:2600–2605
    [41] Tremblay J., Ali H., Lier J. E. et al. Palladium catalyzed coupling reactions of cationic porphyrins with organoboranes (Suzuki) and alkenes (Heck) [J]. Tetrahedron Letters, 2006, 47: 3043-3046
    [42] Welter K., Salazar E., Balladores Y., et al. Electrochemical removal of metals from crude oil samples [J].Fuel processing technology, 2009, 90: 212-221
    [43] Shih P. T., Yen T.F. The feasibility studies for radical-induced decomposition and demetallation of metalloporphyrins by ultrasonication [J]. Energy and Fuels, 2000, 14: 1166– 1175
    [44] Morales A, Galiasso R. Adsorption mechanism of Boscan porphyrins on MoO3, Co3O4 and CoMo/Al2O3 [J]. Feul, 1982, 61(1): 13-17
    [45] Loos M., Ascone I., Frian P.t, et al. Vanadyl porphyrins: evidence for self-association and for specific interactions with hydroprocessing catalysts shown from X.A.F.S. and E.S.R. studies [J]. Catal. Today, 1990, 7(4): 497-513
    [46] Konzinger H., Cordischi D., Vielhaber B. Adsorption of oxovanadium(Ⅳ) porphyrins on oxides and molybdenum-containing catalysts [J]. Catal. Today, 1990,7(4): 447-466
    [47] Mitchell P. C. H., Scott C. E. The interaction of vanadium and nickel porphyrins with molybdenum-based hydroprocessing catalysts :relevance to catalyst deaction and catalytic demetallization [J]. 1986, 5(1/2): 237-241
    [48] Zaragozaa I. P., Santamariab R., Salcedoa R. The interaction of vanadyl porphyrin with the HY zeolite surface [J]. Journal of Molecular Catalysis A: Chemical, 2009, 307: 64-70
    [49]Fei X. L., Gevert B. S., Abrahamsson P. Mechanistic studies of initial decay of hydrodemetallization catalysts using model compounds-effects of adsorption of metal species on alumina support [J]. Journal of Catalysis, 2004, 222: 6–16
    [50]徐海,于道永,王宗贤,等.镍卟啉临氮和临氢反应行为的研究[J].燃料化学学报,2001,29(3):264-268
    [51]傅献彩,沈文霞,姚天扬.物理化学(下册)[M].第四版.北京:高等教育出版社,1990:700-703
    [52] BonnéR.L.C., Steenderen P.V., Moulijn J.A. Hydrogenation of nickel and vanadyl tetraphenylporphyrin in absence of a catalyst a kinetic study [J]. Applied Catalysis A. General,2001, 206: 171–181
    [53] Ware R. A., Weir R J. Catalytic Hydrodemetallation of Nickel Porphyrins II. Effects of Pyridine and of Sulfiding [J]. Journal of Catalysis, 1985, 93: 122-134
    [54] Fei X. L., Gevert1 B.S. Kinetics of Vanadyl Etioporphyrin Hydrodemetallization [J]. Journal of Catalysis, 2001, 200: 91-98
    [55] Chen H., Massoth F. E. Hydrodemetalation of Vanadium and Nickel Porphyrins over Sulfided CoMo/A1203 Catalyst [J]. Ind. Eng. Chem. Res. 1988, 27: 1629-1639
    [56] Chang J, Liu J., Li D. Kinetics of resid hydrotreating reactions [J]. Catalysis Today. 1998, 43: 233-239
    [57] Rana M. S, Ancheyta J., Rayo P. et al Heavy oil hydroprocessing over supported NiMo sulfided catalyst:An inhibition effect by added H2S [J]. Fuel, 2007, 86: 1263-1269
    [58] Herbert J., Santes V., Cortez M. T., et al. Catalytic hydrotreating of heavy gasoil FCC feed over a NiMo/g-Al2O3-TiO2 catalyst: Effect of hydrogen sulfide on the activity [J]. Catalysis Today, 2005, 107-108: 559-563
    [59]徐海.重油中金属化合物的存在形态及金属卟啉加氢脱金属反应行为的研究:[博士学位论文],石油大学,山东东营:2002:121-123
    [60] Absi-Halabi M, Stanislaus A, Al-Mughni T et al. Hydrocracking of Vacuum Residues:Relation between catalyst activity,deactivation and pore size distribution [J]. Fuel, 1995, 74(8): 1211-1215
    [61] Ying Z S, Gevert B, Otterstedt J E. Large-Pore catalysts for hydroprocessing of residual oils [J]. Ind. Eng. Chem. Res., 1995, 34: 1566-1571
    [62]程之光.重油加工技术[M].北京:中国石化出版社,1994: 270-271
    [63] Becker K et al. Develepment of a catalyst for hydrosulfrisaion and dematellisation of vacuum gas oils [J]. Chemische Technik, 1982, 8 :420-422
    [64]孙素华,方维平,王永林,等. FZC-20Q系列渣油加氢脱金属催化剂的研制及工业放大[J].炼油技术与工程,2003,33(2):40-42
    [65]孙素华,方微平,王家寰,等.一种渣油加氢脱金属催化剂[P].中国专利:1206037,1999-01-27
    [66]刘斌、杨清河、胡大伟,等.一种渣油加氢脱金属催化剂及其制备方法[P].中国专利:1782033,2006-06-07
    [67]吴铁轮.我国高岭土行业现状及发展前景[J].非金属矿,2003,3: 5-71
    [68] Murray H. H. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview [J]. Applied Clay Science, 2000, 17(5-6): 207-221
    [69]元春英,刘星,周跃飞.高岭土的综合利用与发展前景[J].昆明理工大学学报(理工版),2003(4): 35-371
    [70] Bhattacharyya K. G., Gupta S. S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review [J]. Advances in Colloid and Interface Science, 2008, 140: 114-131
    [71] Katrin H.H., Lim G. T., Altst?dt V. Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite [J]. Composites Science and Technology, 2009, 69(3-4): 330-334
    [72]刘从华,高燕青,刘育,等.酸碱改性高岭土性能的研究[J].石油炼制与化工,1999,30(5):30-33
    [73]唐风翔,张济宇,林诚.高硅铝比高岭土超声强化酸浸反应动力学研究[J].燃料化学学报,2001,29(4):323-328
    [74]郑英,牛玉清,牛学军,等.粘土矿物在微波辐射下的酸溶性试验[J].铀矿冶,2001,20(3):209-211
    [75]赵增立,高峰,张济宇,等.煤系高岭岩深加工利用的研究进展[J].煤炭转化,1998,21(2):38-45.
    [76] Youssef H., Ibrahim D., Komarneni S. Microwave-assisted versus conventional synthesis of zeolite A from metakaolinite Microporous and Mesoporous [J]. Materials, 2008 115: 527-534
    [77] Feng H., Li C., Shan H. In-situ synthesis and catalytic activity of ZSM-5 zeolite [J]. Applied Clay Science, 2009, 42: 439-445
    [78] Meenakshi S., Sundaram C. S., Sukumar R. Enhanced fluoride sorption by mechanochemically activated kaolinites [J]. Journal of Hazardous Materials. 2008, 153: 164-172
    [79] Bhattacharyya K. G., Gupta S. S. Adsorption of Fe(III), Co(II) and Ni(II) on rO-kaolinite and ZrO-montmorillonite surfaces in aqueous medium. Colloids and Surfaces A: hysicochem.Eng [J]. Aspects, 2008, 317: 71-79
    [80] Adebowale K. O., Unuabonah E. I., Olu-Owolabi B. I. Kinetic and thermodynamic aspects of the adsorption of Pb2+ and Cd2+ ions on tripolyphosphate-modified kaolinite clay [J]. Chemical Engineering Journal. 2008, 136: 99-107
    [81] Gu X., Evans L. J. Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite [J]. Geochimica et Cosmochimica Acta. 2008, 72: 267-276
    [82] Bhattacharyya K. G., Gupta S. S. Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: Kinetic and thermodynamic study [J]. Chemical Engineering Journal. 2008, 136: 1-13
    [83] Turan P., D?gan M., Alkan M. Uptake of trivalent chromium ions from aqueous solutions using kaolinite [J]. Journal of Hazardous Materials. 2007, 148: 56-63
    [84] Rong X., Huang Q., He X., et al. Interaction of Pseudomonas putida with kaolinite and montmorillonite:A combination study by equilibrium adsorption, ITC, SEM and FTIR [J].Colloids and Surfaces B: Biointerfaces. 2008, 64(1): 49-55
    [85] Hart M., Whitworth T.M., Atekwana E. Hyperfiltration of sodium chloride through kaolinite membranes under relatively low-heads-Implications for groundwater assessment [J]. Applied Geochemistry, 2008, 23(6): 1691-1702
    [86]冯启明,张宝述,彭同江,等.几种非金属矿粉体的硅烷偶联剂表面改性研究[J].非金属矿,1999,22:68-69.
    [87] Gilman J. W., Jackson C. L., Morgan A. B.,et al. Flammability Properties of Polymer- Layered-Silicate Nanocomposites [J]. Polypropylene and Polystyrene Nanocomposites Chem. Mater., 2000, 12 (7): 1866-1873
    [88] Yeh J.M., Liou S. J., et al. Lai C. Y., et al. Enhancement of Corrosion Protection Effect in Polyaniline via the Formation of Polyaniline-Clay Nanocomposite Materials [J]. Chem. Mater., 2001, 13 (3): 1131-1136
    [89] Yeh J.M.,Chen C.L.,Chen Y.C. Enhancement of corrosion protection effect of poly(o-ethoxyaniline) via the formation of poly(o-ethoxyaniline)-clay nanocomposite materials [J]. Polymer, 2002, 43: 2729-2736
    [90] Yeh J.M., Liou S.J., Lin C.Y., et al. Anticorrosively Enhanced PMMA-ClayNanocomposite Materials with Quaternary Alkylphosphonium Salt as an Intercalating Agent [J]. Chem. Mater., 2002, 14(1): 154-161
    [91] Vágv?lgyi V., Kovács J., Horváth E., et al. Investigation of mechanochemically modified kaolinite surfaces by thermoanalytical and pectroscopic methods [J]. Journal of Colloid and Interface Science, 2008, 317: 523-529
    [92]王林江,吴大清,袁鹏等.高岭石-甲酰胺插层的1H魔角旋转核磁共振谱[J].科学通报,2001,46(22):1910-1914
    [93] Ray L.F., Janos K., Erzsebet H. et al. Efect of water on the formamide intercalation of kaolinite [J]. Spectrochimica Acta Part. 2000, 56: 1711-1729
    [94] Jia X., Li Y., Zhang B.et al. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization [J]. Materials Research Bulletin. 2008, 43: 611-617
    [95] Ray L.F., Janos K., Jolene M. S., et al. Raman spectroscopy of potassium acetate- intercalated kaolinites at liquid nitrogen temperature [J]. Spectrochimica Acta Part A, 2001, 57: 603-609
    [96]薛茹君,朱克亮.煤系高岭岩制取氯化铝和水玻璃实验[J].矿物学报,2001,21(2):169-173
    [97]唐风翔,张济宇.高硅铝比高岭土制取自炭黑的工艺研究[J].福州大学学报(自然科学版),2001,29(2):109-111
    [98] Zlpkln H., Israel L., Güler S. et al. Dielectric properties of sodium fluoride added kaolinite at different firing temperatures. Ceramics International, 2007, 33: 663-667
    [99] Okada K., Yoshizaki H., Kameshima Y.,et al. Effect of the crystallinity of kaolinite precursors on the properties of mesoporous silicas [J]. Applied Clay Science, 2008, 41(1-2): 10-16
    [100] Belver C., Mu?oz M. A. B., Vicente M. A.Chemical Activation of a Kaolinite under Acid and Alkaline Conditions [J]. Chem. Mater. 2002, 14: 2033-2043
    [101] Alkan M.,Ci?dem H., Yilmaz Z., et al. The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite [J]. Microporous and Mesoporous Materials 2005, 86: 176-184
    [102] Flessner U., Jones D.J., Rozière J., et al. A study of the surface acidity of acid-treated montmorillonite clay catalysts [J]. Journal of Molecular Catalysis A: Chemical. 2001 168:247-256
    [103] Sabua K. R., Sukumar R., Rekh R., et al. A comparative study on H2SO4, HNO3 and HClO4 treated metakaolinite of a natural kaolinite as Friedel-Crafts alkylation catalyst [J]. Catalysis Today 1999, 49: 321-326
    [104] Lenarda M., Storaro L., Talon A. Et al. Solid acid catalysts from clays: Preparation of mesoporous catalysts by chemical activation of metakaolin under acid conditions [J]. Journal of Colloid and Interface Science. 2007, 311: 537-543
    [105]王宁生,闫伟建,孙书红.高岭土改性及其在FCC催化剂中的应用[J].工业催化, 2007,15(4):14-16
    [106]李志平,赵瑞红,郭奋,等.高比表面积有序介孔氧化铝的制备与表征[J].高等学校化学学报,2008,29(1):13-17
    [107] Kim P., Kim Y., Kim H., et al. Synthesis and characterization of mesoporous alumina for use as a catalyst support in the hydrodechlorination of 1,2-dichloropropane: effect of preparation condition of mesoporous alumina [J]. Journal of Molecular Catalysis A: Chemical, 2004, 219: 87-95
    [108]陆银平,刘钦甫,李凯琦,等.碱选择性浸取高岭土制备中孔材料的性能.矿物岩石,2006,26(1):17-19
    [109]刘欣梅,阎子峰,逯高清.层状和MSU结构的介孔纳米二氧化锆[J].化学学报,2005,63(18):1769-1774
    [110]徐海,于道永,王宗贤,等.镍和钒对石油加工过程的影响及对策[J].炼油设计,2000,30(11):1-5
    [111] Zaragoza I. P., Santamaria R., Salcedo R. The interaction of vanadyl porphyrin with the HY zeolite surface [J]. Journal of Molecular Catalysis A: Chemical, 2009, 37: 64-70
    [112] Kn?zinger H, Cordischi D, Vielhaber B. Adsorption of oxovanadium(IV) porphyrins on oxides and molybdenum-containing catalysts [J]. Catalysis Today, 1990, 7(4): 447-466
    [113]朱曾坤,丁彤,秦永宁,等.负载型氨分解催化剂的载体-高岭土的研究[J].化学工业与工程,2008,25(1):15-17
    [114]秦素亚,高伟,张瑛,等.研磨-焙烧-碱处理偏高岭土制备大孔催化剂基质[J].石油化工,2008,37(1):17-21
    [115]曹轩,沙清桂,郭金梁.金属卟啉在石油加氢脱硫催化剂表面吸附机理的ESR研究[J].波谱学杂志,1990,7(1):25-31
    [116] Ho Y. S., Mckay G. The sorption of lead (Ⅱ))ions on peat [J]. Water Reearch, 1998, 33(2): 578-584
    [117] Ho Y. S., Mckay G. The kinetics of sorption of divalent mental ions onto sphagnum moss peat [J]. Water Reearch, 2000, 34(3): 735-742
    [118] Mitchell P.C.H., Scott C.E. The interaction of Vanadium and Nickel Porphyrins with Molybdenum-Based Hydroprocessing Catalysts: Relevance to Catalyst Deactivation and Catalytic Demetallization [J]. Polyhedron, 1986, 5(1/2): 237-241
    [119] Lussier R J,City E. Acid-reacted metakaolin catalyst and catalyst support compositions [P]. US Patent: 4843052, 1989-06-27
    [120] Lussier R J. A novel clay-based catalytic material-preparation and properties [J]. Journal of catalysis, 1991, 129(1): 225-237
    [121]赵壁英,康志军,李超,等. MoO3/γ-Al2O3和Mo3/SiO2体系的表面酸性研究[J].催化学报,1985,6(3):219-223
    [122]张春丽,任广军,宋恩军,等. TiO2柱撑膨润土对染料茜素红的吸附行为[J].应用化学,2006,23(3):305-308
    [123]刘福强,陈金龙,费正皓,等.复合功能超高交联吸附树脂对氨基萘酚磺酸的静态吸附热力学及动力学特征[J].应用化学,2003,20(12):1123-1128
    [124]陈禹银,耿信笃.液-固吸附体系中计量置换吸附模型的热力学研究[J].高等学校化学学报,1993,14(10):1432-1436
    [125] Hung C.W.,Wei J. The Kinetics of Porphyrin Hydrodemetallation.1.Nickel compounds [J]. Ind.Eng. chem. Process Des.Dev., 1980, 19: 250-257
    [126] Hung C.W.,Wei J.The Kinetics of Porphyrin Hydrodemetallation.2.Vanadyl compounds [J]. Ind.Engchem.Process Des.Dev., 1980, 19: 257-263
    [127]徐海,于道永,王宗贤,等.镍卟啉临氮和临氢反应行为的研究[J].燃料化学学报,2001,29(3):264-268
    [128] Yang S.H.,Satterfield C.N.Some Effects of Sulfiding of a NiMo/Al2O3 catalyst on Its Activity for hydrodenitrogenation of Quinoline [J]. J.Catal., 1983, 81, 168-178
    [129] Maternova J. Groups on the Surface of Molybdenum Desulfurization Catalysts [J]. Appl.Catal., 1982, 391, 3-11
    [130] Baker E. W.Mass spectrometric characterization of petroporphrins [J]. J. Amer. Chem. Soc.,1966, 88(10): 2311-2315
    [131] Ali M. F., Perzanowski A., Bukhari A. Nickel and vanadium porphyrins in Saudi Arabin crude oil [J]. Energy and Fuels, 1993,7: 179-184
    [132] Baker E.W., Plamer S. E. Geochemistry of porphyrins [C]. New York: Academic Press, 1978: 485-551
    [133]刘东,马魁菊,阙国和.水溶性分散型加氢催化剂的分离和表征[J].石油炼制与化工,2006,37(2):38-41
    [134]邓文安,赵晴晴,李明,等.轮古常渣及其组分中金属钒卟啉的分离与鉴定[J].应用化学,2007,24(10):1187-1192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700