介孔氧化铝合成新方法及其在功能材料合成中的扩展应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝是一种重要的工业化学品,被广泛地应用于催化,吸附,陶瓷领域。但是传统的氧化铝材料由于孔结构不发达,大大限制了其在催化领域的应用。近年来,人们在制备具有优越孔结构的介孔氧化铝方面作了大量的工作,所采取的合成路线一般为模板导向法。本论文针对目前的一些合成方法所存在的合成路线复杂,价格昂贵等缺点,开发了介孔氧化铝合成新方法,并成功地将该方法扩展到新型功能材料的合成中。
     开创性地将阴阳离子双水解反应引入到介孔氧化铝的合成中,详细地阐述了该方法的理论基础,确定自调节和彻底性为该方法的两大主要特征。通过考察双水解反应中阴阳离子铝源对氧化铝结构的影响之后,确定了Al(NO_3)_3和NaAlO_2双水解体系为最佳合成体系,因为该体系合成的介孔氧化铝不仅具有较高的比表面和孔容,γ-Al_2O_3的晶型孔壁,很高的热稳定性,而且所得氧化铝中不会残留造成催化剂中毒的阴离子毒物。通过改变合成条件,如晶化温度,溶液pH值,P123含量等,详细考察了合成条件对氧化铝结构性质的影响。XRD和27Al MAS NMR结果表明双水解法合成的介孔γ-Al_2O_3不含无定形氧化铝微区,为纯的γ-Al_2O_3晶相。通过倒置铝源的加入顺序,可以合成具有双孔分布的介孔氧化铝,而且其比表面有所提高。将前人创造的“三步法”引入到双水解反应中,所得介孔氧化铝,其孔结构和晶型都大有改善。特别是在80oC下晶化的氧化铝,其比表面高达471m~2/g,这是目前报道的最高比表面的纯γ-Al_2O_3材料。本论文还将阴阳离子双水解法扩展到介孔复合金属氧化物的合成中,所合成的复合金属氧化物催化材料具有比表面高,活性组分担载量高,分散好等优点,证明双水解法是一种有效合成介孔复合金属氧化物的通用方法。
     为了控制介孔氧化铝的微观形貌,开发了共聚物控制的均匀沉淀法,在水热条件下合成了具有规则形貌的介孔氧化铝微纤维,并且通过改变合成条件,可以实现介孔氧化铝孔结构和微观形貌的双重控制。并根据实验结果,提出了“层层自组装”的微纤维生长机理。除此之外,本论文还将该方法扩展到ZnO的合成中,合成了具有复杂三维形貌的线团状ZnO超结构,证明该方法是一种有效控制材料形貌的新方法。
     催化评价表明,双水解法合成的介孔氧化铝在羟醛反应中具有很高的催化活性,远远高于工业活性氧化铝材料。其优良的催化活性与其高比表面和较强的表面碱性有关。
Alumina is an important industrial chemical, widely applied in catalysis, adsorption and ceramics. However the poor textural properties of the traditional alumina have strictly limited its application in catalysis. Recently, a considerable amount of efforts have been devoted to the preparation of mesoporous alumina with superior structural properties. And the adopted strategies are commonly template approaches. This dissertation is intended for the development of novel approaches to mesoporous alumina by avoiding the shortcomings haunting in the previous approaches, such as complicated synthesis route, high cost and so on.
     The cation-anion double hydrolysis reaction was innovatively introduced in the synthesis of mesoporous alumina. By elaborating the theoretical basis of double hydrolysis, self-adjusted and complete are the two unique characteristics of this novel approach. By investigating the effect of cationic and anionic aluminum sources on the structural properties of alumina, Al(NO3)3+NaAlO2 was established as the optimum system, for the prepared alumina in this system has high surface, high pore volume,γ-Al_2O_3 crystalline pore wall, high thermal stability and also no poisonous anion remnants. By changing the synthesis parameters, such as crystallization temperature, solution pH, P123 content, the effect of synthesis conditions on the alumina structure were thoroughly studied. XRD and 27Al MAS NMR results show the double hydrolysis derived mesoporous alumina has a pureγ-Al_2O_3 crystalline phase without amorphous domains. By inversely adding aluminum sources, mesoporous alumina with bimodal pore distribution and higher surface area was prepared. By introducing a“three-step procedure”reported by previous researchers into the double hydrolysis reaction, mesoporous alumina with greatly improved structural properties was synthesized. Especially, the sample crystallized at 80oC exhibited very high surface area of up to 471m~2/g, which is the highest one reported so far for the pureγ-Al_2O_3. The double hydrolysis approach was further extended into the preparation of mesoporous mixed metal oxides, and the obtained mixed oxide catalytic materials have high surface area, high loading and high dispersion of active components, which demonstrates the double hydrolysis approach is a versatile method to the synthesis of mesoporous mixed metal oxides.
     To control the morphology of mesoporous alumina, a copolymer controlled homogeneous precipitation approach was developed. A uniform mesoporous microfiber was synthesized under the hydrothermal condition. By varying the synthesis conditions, both the morphology and mesoporous structure of alumina can be controlled. And a“layer-by-layer self-assembly”mechanism was proposed to interpret the growth of alumina microfibers. Besides, this approach was extended into the synthesis of ZnO material, and a complex 3D clewlike ZnO superstructure was assembled, which proves that the copolymer controlled homogeneous precipitation approach is an effective morphology-controlling method.
     Catalytic evaluation results show the double hydrolysis derived mesoporous alumina exhibits very high activity in the aldol reaction, far higher than the commercial activated alumina. The excellent catalytic performance of mesoporous alumina is attributed to its high surface area and basic surface.
引文
[1]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002:265-385
    [2] Kresge C. T., Leonowicz M. E., Roth W. J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, V359: 710 -712
    [3] Beck J. S., Vartuli J. C., Roth W. J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, V114: 10834-10843
    [4] Monnier A., Schuth F., Huo Q. S. et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science, 1993, V261:1299-1303
    [5] Huo Q. S., Margolese D. I., Ciesla U., et al. Generalized synthesis of periodic surfactant inorganic composite materials [J]. Nature, 1994, V368: 317~321
    [6] Tanev P. T., Pinnavaia T. J. A Neutral Templating Route to Mesoporous Molecular Sieves [J]. Science, 1995, V267: 865-867
    [7] Antonelli D. M., Ying J. Y. Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves [J]. Chem. Mater., 1996, V8: 874-881.
    [8] Vaudry F., Khodabandeh S., Davis M. E. Synthesis of Pure Alumina Mesoporous Materials [J]. Chem. Mater., 1996, V8: 1451-1464
    [9] Huo Q. S., Margolese D. I., Ciesla U., et al. Generalized synthesis of periodic surfactant inorganic composite materials [J]. Nature, 1994, V368: 317-321
    [10] Huo Q. S., Margolese D. I., Ciesla U., et al. Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays [J]. Chem. Mater., 1994, V6: 1176-1191
    [11] Yada M., Machida M., Kijima T. Synthesis and deorganization of an aluminum-based dodecyl sulfate mesophase with a hexagonal structure [J]. Chem. Commun., 1996, 769-770
    [12] Yada M., Hiyoshi H., Kijima T., et al. Synthesis of Aluminum-Based Surfactant Mesophases Morphologically Controlled through a Layer to Hexagonal Transition [J]. Inorg. Chem., 1997, V36: 5565-5569
    [13] Yada M., Kitamura H., Kijima T. Biomimetic Surface Patterns of Layered Aluminum Oxide Mesophases Templated by Mixed Surfactant Assemblies [J]. Langmuir, 1997, V13: 5252-5257
    [14] Yada M., Ohya M., Kijima T., et al. Synthesis of porous yttrium aluminium oxide templated by dodecyl sulfate assemblies [J]. Chem. Commun., 1998, 1941-1942
    [15] Cabrera S., Haskouri J. E., Amorós P., et al. Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes [J]. Adv. Mater., 1999, V11(5): 379-381
    [16] Bagshaw S. A., Pinnavaia T. J. Mesoporous Alumina Molecular Sieves [J]. Angew. Chem. Int. Ed. Engl., 1996, V35(10): 1102-1105
    [17] Lee H. C., Kim H. J., Rhee C. H., et al. Synthesis of nanostructuredγ-alumina with a cationic surfactant and controlled amounts of water [J]. Microporous and Mesoporous Mater., 2005, V79: 61-68
    [18] Aguado J., Escola J. M., Castro M. C., et al. Sol–gel synthesis of mesostructuredγ-alumina templated by cationic surfactants. Microporous and Mesoporous Mater., 2005, V83: 181-192
    [19] Valange S., Guth J.-L., Gabelica Z., et al. Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media [J]. Microporous and Mesoporous Mater., 2000, V35-36: 597–607
    [20] Zhang Z. R., Pinnavaia T. J. Mesostructuredγ-Al2O3 with a Lathlike Framework Morphology [J]. J. Am. Chem. Soc., 2002, V124: 12294-12301
    [21] Cruise N., Jansson K., Holmberg K. Mesoporous Alumina Made From a Bicontinuous Liquid Crystalline Phase [J]. J. Colloid Interface Sci., 2001, V241: 527-529
    [22] Deng W., Toepke M. W., Shanks B. H. Surfactant-Assisted Synthesis of Alumina with Hierarchical Nanopores [J]. Adv. Funct. Mater., 2003, V1: 61-65
    [23] Deng W., Toepke M. W., Shanks B. H. Surfactant-Assisted Synthesis of Alumina with Hierarchical Nanopores [J]. Adv. Funct. Mater., 2003, V1: 61-65
    [24] Bagshaw S. A., Prouzet E., Pinnavaia T. J. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants [J]. Science, 1995, V269: 1242-1244
    [25] Zhang W., Pinnavaia T. J. Rare earth stabilization of mesoporous alumina molecular sieves assembled through an N0I0 pathway [J]. Chem. Commun., 1998, 1185-1186
    [26] Caragheorgheopol A., Caldararu H., ?ejka J., et al. Solvent-Induced Textural Changes of As-Synthesized Mesoporous Alumina, As Reported by Spin Probe Electron Spin Resonance Spectroscopy [J]. Langmuir, 2005, V21: 2591-2597
    [27] Jansen J.C., Shan Z., Maschmeyer Th. et al. A new templating method for three-dimensional mesopore networks [J]. Chem. Commun., 2001, 713-714.
    [28] Wei Y., Xu J., Dong H., et al. Preparation and Physisorption Characterization of D-Glucose-Templated Mesoporous Silica Sol-Gel Materials [J]. Chem. Mater., 1999, V11: 2023-2029.
    [29] Shan Z., Jansen J.C., Maschmeyer Th., et al. Al-TUD-1, stable mesoporous aluminas with high surface areas [J]. Appl. Catal., A 2003, V254: 339–343.
    [30] Zhang Z., Bai P., Xu B., et al. Synthesis of mesoporous alumina TUD-1 with high thermostability [J]. J. Porous Mater., 2006, V13: 245-250.
    [31] Liu X., Wei Y., Shih W., et al. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid [J]. Mater. Lett., 2000, V42: 143–149
    [32] Xu B., Xiao T., Yan Z., et al. Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system [J]. Microporous and Mesoporous Mater., 2006, V91: 293-295
    [33] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis [J]. Chem. Rev., 1999, V99: 2071-2083.
    [34] Dupont J., Souza R. F. de., Suarez P. A. Z. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis [J]. Chem. Rev., 2002, V102: 3667-3692.
    [35] Blanchard L. A., Hancu D., Beckman E. J., et al. Green processing using ionic liquids and CO2 [J]. Nature, 1999, V399: 28-29.
    [36] Cooper E. R., Andrews C. D., Wheatley P. S., et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues [J]. Nature, 2004, V430: 1012-1016.
    [37] ?ilkováN., Zukal A., ?ejka J. Synthesis of organized mesoporous alumina templated with ionic liquids [J]. Microporous and Mesoporous Mater., 2006, V95: 176-179.
    [38] Park H., Yang S. H., Jun Y. S., et al. Facile Route to Synthesize Large-Mesoporousγ-Alumina by Room Temperature Ionic Liquids [J]. Chem. Mater., 2007, V19: 535-542.
    [39] Niesz K., Yang P. D., Somrjai G. A. Sol-gel synthesis of ordered mesoporous alumina [J]. Chem. Comm., 2005, V15: 1986-1987
    [40] Liu Q., Wang A., Wang X. Ordered Crystalline Alumina Molecular Sieves Synthesized via a Nanocasting Route [J]. Chem. Mater., 2006, V18: 5153-5155.
    [41] Zhu H. Y., Riches J. D., Barry J. C.γ-Alumina Nanofibers Prepared from Aluminum Hydrate with Poly(ethylene oxide) Surfactant [J]. Chem. Mater. 2002, V14: 2086-2093
    [42] Zhang Z., Hicks R.W., Pauly T.R., et al. Mesostructured Forms ofγ-Al2O3 [J]. J. Am. Chem. Soc., 2002, V124: 1592-1593.
    [43] Hicks R. W., Pinnavaia T. J. Nanoparticle Assembly of Mesoporous AlOOH (Boehmite) [J]. Chem. Mater., 2003, V15: 78-82
    [44] ?ejka J., ?ilkováN., Rathousky J., Zukal A. Nitrogen adsorption study of organised mesoporous alumina [J]. Phys. Chem. Chem. Phys., 2001, V3: 5076-5081
    [45] ?ejka J., Kooyman P. J., Rathousky J., et al. High-temperature transformation of organized mesoporous alumina [J]. Phys. Chem. Chem. Phys., 2002, V4: 4823-4829.
    [46] González-Pe?a V., Díaz I., et al. Thermally stable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines [J]. Microporous and Mesoporous Mater., 2001, V44-45: 203-210
    [47] Deng W., Bodart P., Shanks B.H., et al. Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating [J]. Microporous and Mesoporous Mater., 2002, V52: 169–177
    [48] Kim J.M., Kwak J.H., Jun S., et al. Ion Exchange and Thermal Stability of MCM-41 [J]. J. Phys. Chem., 1995, V99: 16742-16747
    [49] Yang P., Zhao D., Stucky G. D., et al. Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework [J]. Chem. Mater., 1999, V11: 2813-2826
    [50] Valange S., Barrault J., Derouault A., et al. Binary Cu–Al mesophases precursors to uniformly sized copper particles highly dispersed on mesoporous alumina [J]. Microporous and Mesoporous Mater., 2001, V44-45: 211-220
    [51] Bronstein L. M., Chernyshov D. M., Karlinsey R., et al. Mesoporous Alumina and Aluminosilica with Pd and Pt Nanoparticles: Structure and Catalytic Properties [J]. Chem. Mater., 2003, V15: 2623-2631
    [52] Kalu a L., Zdra il M., ilkováN., et al. High activity of highly loaded MoS2 hydrodesulfurization catalysts supported on organised mesoporous alumina [J]. Catal. Comm., 2002, V3: 151–157
    [53] Kim P., Kim Y., Kim H., et al. Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas [J]. Appl. Catal., A 2004, 272: 157-166
    [54] Schmuhl R., Keizer K., van den Berg A., et al. Controlling the transport of cations through permselective mesoporous alumina layers by manipulation of electric field and ionic strength [J]. J. Colloid Interface Sci., 2004, V273: 331-338
    [55] Wieland W.S., Davis R.J., Garces J.M., Side-Chain Alkylation of Toluene with Methanol over Alkali-Exchanged Zeolites X, Y, L, andβ[J]. J. Catal., 1998, V173: 490-500
    [56] Kim P., Kim Y., Kim H., et al, Preparation, characterization, and catalytic activity of NiMg catalysts supported on mesoporous alumina for hydrodechlorination of o-dichlorobenzene [J]. J. Mol. Catal. A: Chem., 2005, 231: 247-254
    [57] Hicks R. W., Castagnola N. B., Zhang Z., et al. Lathlike mesostructuredγ-alumina, as a hydrodesulfurization catalyst support [J]. Appl. Catal., A 2003, V254: 311-317
    [58] Zimmerman A. R., Chorover J., Brantley S. L., et al. Protection of Mesopore-Adsorbed Organic Matter from Enzymatic Degradation [J]. Environ. Sci. Technol., 2004, 38(17): 4542-454
    [59] Hamtil R., ?ilkováN., Balcar H., et al. Rhenium oxide supported on organized mesoporous alumina-A highly active and versatile catalyst for alkene, diene, and cycloalkene metathesis [J]. Appl. Catal., A 2006, V302: 193-200
    [60] Seki T., Ikeda S., Onaka M., Synthesis of sodium-doped mesoporous alumina and its strong base catalysis for double bond migration of olefins [J]. Microporous and Mesoporous Mater., 2006, V96 (1-3):121-126
    [61] Yao N., Xiong G.X., Zhang Y.H., et al. Preparation of novel uniform mesoporous alumina catalysts by the sol–gel method [J]. Catal. Today, 2001, V68: 97-109
    [62] Sangwichien C., Aranovich G.L., Donohue M.D. Density functional theory predictions of adsorption isotherms with hysteresis loops [J]. Colloids Surf., A., 2002, V206: 313-320
    [63] Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity, second ed. [M]. London: Academic Press, 1982
    [64] Akitt J. W., Elders J. M. Multinuclear magnetic resonance studies of the hydrolysis of aluminium(III). Part 8. Base hydrolysis monitored at very high magnetic field [J]. J. Chem. Soc., Dalton Trans., 1988, 1347-1355
    [65] John C. S., Alma N. C. M., Hays G. R. Characterization of transitional alumina by solid-state magic angle spinning aluminium NMR [J]. Appl. Catal., 1983, V6: 341-346
    [66] Sohlberg K., Pantelides S. T., Pennycook S. J. Surface Reconstruction and the Difference in Surface Acidity betweenγ- andη-Alumina [J]. J. Am. Chem. Soc., 2001, V123: 26-29.
    [67] Karlik S.J., Tarien E., Elgavish G.A., et al. Aluminum-27 nuclear magnetic resonance study of aluminum(III) interactions with carboxylate ligands [J]. Inorg. Chem., 1983, V22: 525-529
    [68] Liu Q., Wang A., Wang X., et al. Mesoporousγ-alumina synthesized by hydro-carboxylic acid as structure-directing agent [J]. Microporous Mesoporous Mater., 2006, V92: 10-21
    [69] Park H., Yang S. H., Jun Y. S., et al. Facile Route to Synthesize Large-Mesoporousγ-Alumina by Room Temperature Ionic Liquids [J]. Chem. Mater., 2007, 19: 535-542
    [70] Boissière C., Nicole L., Gervais C., et al. Nanocrystalline Mesoporousγ-Alumina Powders“UPMC1 Material”Gathers Thermal and Chemical Stability with High Surface Area [J]. Chem. Mater., 2006, V18: 5238-5243
    [71] Baes C. F., Mesmer R. E. The Hydrolysis of Cations [M]. New York: Wiley, 1976.
    [72] Mesmer R. E., Baes C. E. Acidity measurements at elevated temperatures. V. Aluminum ion hydrolysis [J]. Inorg. Chem., 1971, V10: 2290-2296
    [73] Panias D., Asimidis P., Paspaliaris I. Solubility of boehmite in concentrated sodium hydroxide solutions: model development and assessment [J]. Hydrometallurgy, 2001, V59: 15-29
    [74] Skoufadis C., Panias D., Papsaliaris I. Kinetics of boehmite precipitation from supersaturated sodium aluminate solutions [J]. Hydrometallurgy, 2003, V68: 57-68
    [75] Panias D. Role of boehmite/solution interface in boehmite precipitation from supersaturated sodium aluminate solutions [J]. Hydrometallurgy, 2004, V74: 203-212
    [76] Panias D., Krestou A. Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions [J]. Powder Technol., 2007, V175: 163-173
    [77] Panias D., Krestou A., Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions [J], Powder Technol., 2007, V175: 163-173
    [78] Rao C. N. R., Raveau B. Transition Metal Oxides, 2nd ed. [M]. New York: Wiley-VCH, 1998.
    [79]Jolivet J.-P.Metal Oxide Chemistry and Synthesis: From Solution to Solid State [M]. New York: Wiley, 2003.
    [80] Otero Areán C., et al. Preparation and characterization of spinel-type high surface area Al2O3-ZnAl2O4 mixed metal oxides by an alkoxide route [J]. Microporous Mater., 1997, V8: 187-192
    [81] Pines H., Csicsery S. M. Alumina: Catalyst and Support. XIV. Dehydrogenation, Dehydrocyclization and Isomerization of C5- and C6-Hydrocarbons over Chromia-Alumina Catalysts [J]. J. Am. Chem. Soc., 1962, V84 (2): 292-297
    [82] Pines H., Goetschel C. T. Alumina: Catalyst and support: XXX. Dehydrogenation and skeletal isomerization of butylbenzenes over chromia-alumina catalysts [J]. J. Catal., 1966, V6: 371-379
    [83] Carra S., Forni L., Vintani C. Kinetics and mechanism in catalytic dehydrogenation of n-butane over chromia-alumina [M]. J. Catal., 1967, V9: 154-165
    [84] Griinert W., Saffert W., Feldhaus R., et al. Reduction and aromatization activity of chromia-alumina catalysts : I. Reduction and break-in behavior of a potassium-promoted chromia-alumina catalyst [J]. J. Catal., 1986, V99: 149-158
    [85] Miyakara K., Murata Y., Toyoshima I., et al. Varieties of MgO catalysts for 1,3-butadiene hydrogenation [J]. J. Catal. 1981, V68: 186-189
    [86] Bhattacharyya A. A., Woltermann G. M., Yoo J. S., et al. Catalytic SOx abatement: the role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas [J]. Ind. Eng. Chem. Res., 1988, V27: 1356-1360
    [87] Yoo J. S., Bhattacharyya A. A., Rdlouski C. A. De-SOx catalyst: an XRD study of magnesium aluminate spinel and its solid solutions [J]. Ind. Eng. Chem. Res., 1991, V30: 1444-1448
    [88] Rathousky J., Zukal A., Starek J. Stabilized magnesia as a support for nickel methanation catalysts [J]. Appl. Catal. A 1993, V94: 167-179
    [89] Waqif M., Saur O., Lavalley J. C., et al. Evaluation of magnesium aluminate spinel as a sulfur dioxide transfer catalyst [J]. Appl. Catal., 1991, V71:319-331
    [90] Krijgsman P., Becht G. M., Schoonman J. Hydrothermal processing of ceramic powders for alumina-magnesia spinels [J]. Solid State Ionics, 1989, V32-33: 436-439
    [91] Yoo J .S., Jaecker J. A. Catalyst and process for conversion of hydrocarbons [P]. US patent: 4469589, 1984.
    [92] Yoo J .S., Jaecker J. A. Catalyst and process for conversion of hydrocarbons [P]. US patent: 4472267, 1984.
    [93] Yoo J .S., Jaecker J. A. Process for conversion of hydrocarbons [P]. US patent: 4642178, 1987.
    [94] Yoo J. S., Radlowski C. A., karch J. A., et al. Metal-containing spinel composition and process of using same [P]. US patent: 4790982, 1988
    [95] Suyama K., Kato A. Characterization and sintering of Mg---Al spinel prepared by spray-pyrolysis technique [J]. Ceram. Int., 1982, V8: 17-21
    [96] Chen I ., Hwang S., Chen S. Chemical kinetics and reaction mechanism of thermal decomposition of aluminum hydroxide and magnesium hydroxide at high temperature (973-1123 K) [J]. Ind. Eng. Chem. Res., 1989, V28: 738-742
    [97] Rossi P. F., Busca G., Lorenzelli V., et al. Surface basicity of mixed oxides: magnesium and zinc aluminates [J]. Langmuir, 1991, V7: 2677-2681
    [98] Kim H., Zinkle S. J., Allen W. R. Preparation of Magnesium Aluminate Spinel Containing Controlled Amounts of 17O Isotope [J]. J. Am. Ceram. Soc., 1991, V74:1442-1444
    [99] Gomez M. F., Cadús L. E., Abello M. C. Preparation and characterization of MgO-γ-Al2O3 composite oxides [J]. Solid State Ionics, 1997, V98: 245-249
    [100] Li J., Chen C., Zhao J., et al. Photodegradation of dye pollutants on TiO2 nanoparticles dispersed in silicate under UV–VIS irradiation [J]. Appl. Catal., B 2002, V37: 331-338
    [101] Rachel A., Sarakha M., Subrahmanyam M., Boule P. Comparison of several titanium dioxides for the photocatalytic degradation of benzenesulfonic acids [J]. Appl.Catal., B 2002, V37: 293-300
    [102] Rachel A., Subrahmanyam M., Boule P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids [J]. Appl. Catal., B 2002, V37: 301-308
    [103] Amama P.B., Itoh K., Murabayashi M. Gas-phase photocatalytic degradation of trichloroethylene on pretreated TiO2 [J]. Appl. Catal., B, 2002, V37: 321-330
    [104] Zhou J., Zhang Y., Zhao X. S., et al. Photodegradation of Benzoic Acid over Metal-Doped TiO2 [J]. Ind. Eng. Chem. Res., 2006, V45: 3503-3511
    [105] Chauvin C., Lavalley J. C., Idriss H., et. al. Combined infrared spectroscopy, chemical trapping, and thermoprogrammed desorption studies of methanol adsorption and decomposition on ZnAl2O4 and Cu/ZnAl2O4 catalysts [J]. J. Catal., 1990, V121: 56-69
    [106] Kiennemann A., Idriss H., et al. Methanol synthesis on Cu/ZnAl2O4 and Cu/ZnO-Al2O3 Catalysts: Influence of carbon monoxide pretreatment on the formation and concentration of formate species [J]. Appl. Catal., 1990, V59: 165-184
    [107] Valenzuela M. Bosh A., P., et al. Catalytic performance of indium-supported TiO2-ZrO2 for the selective reduction of nitrogen monoxide in the presence of oxygen [J]. Catal. Lett., 1992, V48:121-127
    [108] Fernández Colinas J. M. Kinetics of Solid-State Spinel Formation: Effect of Cation Coordination Preference [J]. J. Solid State Chem., 1994, V109: 43-46
    [109] Yoo J. S., et al. De-SOx catalyst: an XRD study of magnesium aluminate spinel and its solid solutions [J]. Ind. Eng. Chem. Res., 1991, V30: 1444-1448.
    [110] Morterra C., Ghiotti G., et al. An infrared spectroscopic investigation of the surface properties of magnesium aluminate spinel [J]. J. Catal., 1978, V51: 299-313
    [111] El-Nabarawy Th., Attia A. A., et al. Effect of thermal treatment on the structural, textural and catalytic properties of the ZnO-Al2O3 system [J]. Mater. Lett., 1995, V24: 319-325
    [112] Morterra C., Ghiotti G., et al. An infrared spectroscopic investigation of the surface properties of magnesium aluminate spinel [J]. J. Catal., 1978, V51: 299-313
    [113] Misra C. Industrial Alumina Chemicals [M]. Washington: ACS Monograph, 1986: 184.
    [114] Topsoe H., Clausen B. S., Massoth F. E. Hydrotreating Catalysis [M]. Berlin: springer, 1996: 310
    [115] Zou J., Pu L., Bao X., et al. Branchy alumina nanotubes [J]. Appl. Phys. Lett., 2002, V80: 1079-1081
    [116] Fang X., Ye C., Zhang L., et al. Twinning-Mediated Growth of Al2O3 Nanobelts and Their Enhanced Dielectric Responses [J]. Adv. Mater., 2005, V17: 1661-1665
    [117] Valcarcel V., Souto A., Guitian F. Development of Single-Crystalα-Al2O3 Fibers by Vapor-Liquid-Solid Deposition (VLS) from Aluminum and Powdered Silica [J]. Adv. Mater., 1998, V10: 138-140
    [118] Proost J., Van Boxe l S. Large-scale synthesis of high-purity, one-dimensionalα-Al2O3 structures [J]. J. Mater. Chem., 2004, V14: 3058-3062
    [119] Xiao Z. L., Han C. Y., Welp U., et al. Fabrication of Alumina Nanotubes and Nanowires by Etching Porous Alumina Membranes [J]. Nano. Lett., 2002, V2: 1293-1297
    [120] Pu L., Bao X., Zou J., et al. Individual Alumina Nanotubes [J]. Angew. Chem., Int. Ed., 2001, V40: 1490-1493
    [121] Zhang L., Cheng B., Shi W., et al. In-situ electrochemical synthesis of 1-dimensional alumina nanostructures [J]. J. Mater. Chem., 2005, V15: 4889-4893
    [122] Pang Y., Meng G., Zhang L., et al. Electrochemical synthesis of ordered alumina nanowire arrays [J]. J. Solid State Electrochem., 2003, V7: 344-347
    [123] Llusar M., Pidol L., Roux C., et al. Templated Growth of Alumina-Based Fibers through the Use of Anthracenic Organogelators [J]. Chem. Mater., 2002, V14: 5124-5133
    [124] Zhu H. Y., Riches J. D., Barry J. C.γ-Alumina Nanofibers Prepared from Aluminum Hydrate with Poly(ethylene oxide) Surfactant. Chem. Mater., 2002, V14: 2086-2093
    [125] Lee H., Kim H., Chung S., et al. Synthesis of Unidirectional Alumina Nanostructures without Added Organic Solvents [J]. J. Am. Chem.Soc., 2003, V125: 2882-2883
    [126] Ogawa M., Kaiho H. Homogeneous Precipitation of Uniform Hydrotalcite Particles [J]. Langmuir, 2002, V18: 4240-4242
    [127] Ito T., Inumaru K., Misono M. Epitaxially Self-Assembled Aggregates of Polyoxotungstate Nanocrystallites, (NH4)3PW12O40: Synthesis by Homogeneous Precipitation Using Decomposition of Urea [J]. Chem. Mater., 2001, V13: 824-831
    [128] Soler-Illia G., Candal R. J., Regazzoni A. E., et al. Synthesis of Mixed Copper-Zinc Basic Carbonates and Zn-Doped Tenorite by Homogeneous Alkalinization [J]. Chem. Mater., 1997, V9: 184-191
    [129] Zhao D., Sun J., Li Q. Morphological Control of Highly Ordered Mesoporous Silica SBA-15 [J]. Chem. Mater., 2000, V12: 275-279
    [130] Ramanathan S., Roy S. K., Bhat R., et al. Alumina powders from aluminium nitrate-urea and aluminium sulphate-urea reactions—The role of the precursor anion and process conditions on characteristics [J]. Ceram. Int., 1997, V23: 45-53
    [131]Kato, S., Iga, T., Hatano, S., et al. Method for manufacture of sintered alumina from ammonium aluminm carbonate hydroxide [P], US Patent:4053579, 1977
    [132] Ma C., Zhou X., Xu X., et al. Synthesis and thermal decomposition of ammonium aluminum carbonate hydroxide (AACH) [J]. Mater. Chem. Phys., 2001, V72: 374-379
    [133] Sun X., Li J., Zhang F., et al. Synthesis of Nanocrystallineα-Al2O3 Powders from Nanometric Ammonium Aluminum Carbonate Hydroxide [J]. J. Am. Ceram. Soc., 2003, V86: 1321-1325
    [134] Li Z., Feng X., Yao H., et al. Ultrafine alumina powders derived from ammonium aluminum carbonate hydroxide [J]. J. Mater. Sci., 2004, V39: 2267-2269
    [135] Morinaga K., Torikai T., Nakagawa K., et al. Fabrication of fineα-alumina powders by thermal decomposition of ammonium aluminum carbonate hydroxide (AACH) [J]. Acta Mater., 2000, V48: 4735-4741
    [136] Akitt J. W., Elders J. M. Multinuclear magnetic resonance studies of the hydrolysis of aluminium(III). Part 8. Base hydrolysis monitored at very high magnetic field [J]. J. Chem. Soc., Dalton Trans., 1988, 1347-1355
    [137] Wanka G., Hoffmann H., Ulbricht W. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions [J]. Macromolecules, 1994, V27: 4145-4159
    [138] Booth C., Attwood D. Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution [J]. Macromol. Rapid Commun., 2000, V21: 501-527
    [139] J?rgensen E. B., Hvidt S., Brown B., et al. Effects of Salts on the Micellization and Gelation of a Triblock Copolymer Studied by Rheology and Light Scattering [J]. Macromolecules, 1997, V30: 2355-2364
    [140] Desai P. R., Jain N. J., Sharma R. K., et al. Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution [J]. Colloids Surf., A., 2001, V178: 57-69
    [141]Nagai. H., Oshima, Y., Hirano, K., et al. Br. Ceram. Trans., 1993, V92: 114.
    [142] Kabalnov A. Ostwald Ripening and Related Phenomena [J]. J. Dispersion Sci. Technol., 2001, V22 (1): 1-12
    [143] Yu S., C?lfen H., Tauer K., et al. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer [J]. Nature Mater., 2005, V4: 51-55
    [144] Liu D., Yates M. Z.. Formation of Rod-Shaped Calcite Crystals by Microemulsion-Based Synthesis. Langmuir, 2006; 22: 5566-5569.
    [145] Thachepan S., Li M., Davis S. A., et al. Additive-Mediated Crystallization of Complex Calcium Carbonate Superstructures in Reverse Microemulsions [J]. Chem. Mater., 2006, V18 (15): 3557-3561
    [146] Yu S., C?lfen H. Bio-inspired crystal morphogenesis by hydrophilic polymers [J]. J. Mater. Chem., 2004, V14: 2124-2147
    [147] Bai X. D., Gao P. X., Wang Z. L.,et al. Dual-mode mechanical resonance of individual ZnO nanobelts [J].Appl. Phys. Lett., 2003, V82: 4806-4808
    [148] Raghu N., Kutty T. R. N. Relationship between nonlinear resistivity and the varistor forming mechanism in ZnO ceramics [J]. Appl. Phys. Lett., 1992, V60: 100-102
    [149] Ramakrishna G., Ghosh H. N. Effect of Particle Size on the Reactivity of Quantum Size ZnO Nanoparticles and Charge-Transfer Dynamics with Adsorbed Catechols [J]. Langmuir, 2003, V19: 3006-3012
    [150] Bauer C., Boschloo G., Mukhtar E., et al. Electron Injection and Recombination in Ru(dcbpy)2(NCS)2 Sensitized Nanostructured ZnO [J], J. Phys. Chem. B, 2001, V105: 5585-5588
    [151] Lee J. Y., Choi Y. S., Kim J. H., et al. Optimizing n-ZnO/p-Si heterojunctions for photodiode applications [J]. Thin Solid Films, 2002, V403-404: 553-557
    [152] Emanetoglu N. W., Gorla C., Liu Y., et al. Epitaxial ZnO piezoelectric thin films for saw filters [J]. Mater. Sci. Semicond. Process., 1999, V2: 247-252
    [153] Greene L. E., Law M., Goldberger J., et al. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays [J], Angew. Chem. Int. Ed., 2003, V42: 3031-3034
    [154] Triboulet R., Perriere J. Epitaxial growth of ZnO films [J]. Prog, Cryst. Growth Charact. Mater., 2003, V47: 65-138
    [155] Hosono E., Fujihara S., Honma I., et al. The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells [J]. Adv. Mater., 2005, V17: 2091-2094
    [156] Batista P. D., Mulato M. ZnO extended-gate field-effect transistors as pH sensors [J]. Appl. Phys. Lett., 2005, V87: 143508-143510
    [157] Lucas E., Decker S., Khaleel A., et al. Nanocrystalline Metal Oxides as Unique Chemical Reagents/Sorbents [J]. Chem. Eur. J., 2001, V7: 2505-2510
    [158] Yan H., He R., Pham J., et al. Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals [J]. Adv. Mater., 2003, V15: 402-405
    [159] Pan Z. W., Dai Z. R., Wang Z. L. Nanobelts of Semiconducting Oxides [J]. Science, 2001, V291: 1947-1949
    [160] Yan H., Johnson J., Law M., et al. ZnO Nanoribbon Microcavity Lasers [J]. Adv. Mater., 2003, V15: 1907-1911
    [161] Huang M. H., Mao S., Feick H., et al. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001, V292: 1897-1899
    [162] Jeong J.S., Lee J. Y., Choi J. H., et al. Single-Crystalline ZnO Microtubes Formed by Coalescence of ZnO Nanowires Using a Simple Metal-Vapor Deposition Method [J]. Chem. Mater., 2005, V17: 2752-2756
    [163] Liu B., Zeng H. C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm [J]. J. Am. Chem. Soc., 2003, V125: 4430-4431
    [164] Yao B. D., Chan Y. F., Wang N. ZnO extended-gate field-effect transistors as pH sensors [J]. Appl. Phys. Lett., 2002, V81: 757-759
    [165] Xu C. X., Sun X. W. Field emission from zinc oxide nanopins [J], Appl. Phys. Lett., 2003, V83: 3806-3808
    [166] Park J. H., Choi H. J., Choi Y. J., et al. Ultrawide ZnO nanosheets [J]. J. Mater. Chem., 2004, V14: 35-36
    [167] Wang Z. L., Kong X. Y., Ding Y., et al. Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces [J]. Adv. Functi. Mater., 2004, V14: 943-956
    [168] Wu J. J., Liu S. C., Wu C. T., et al. Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes [J]. Appl. Phys. Lett., 2002, V81: 1312-1314
    [169] Kong X. Y., Wang Z. L.. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts [J]. Nano. Lett., 2003, V3: 1625-1631
    [170] Huang M. H., Wu Y., Feick H., et al. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport [J]. Adv. Mater., 2001, V13: 113-116
    [171] Wagner R. S., Ellis W. C. VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH. Appl. Phys. Lett., 1964, V4: 89-90
    [172] Duan X., Lieber C. M.. Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires [J]. J. Am. Chem. Soc., 2000, V122: 188-189
    [173] Liu C., Zapien J. A., Yao Y., et al. High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays [J]. Adv. Mater., 2003, V15: 838-841
    [174] Wang X. D., Gao P., Li J., et al. Rectangular Porous ZnO-ZnS Nanocables and ZnS Nanotubes [J]. Adv. Mater., 2002, V14: 1732-1735
    [175] Greene L. E., Law M., Tan D. H., Montano M., et al. General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds [J]. Nano. Lett., 2005, V5: 1231-1236
    [176] Gao S., Zhang H., Wang X., et al. ZnO-Based Hollow Microspheres: Biopolymer-Assisted Assemblies from ZnO Nanorods [J]. J. Phys. Chem. B, 2006, V110: 15847-15852
    [177] Mo M., Yu J. C., Zhang L., et al. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres [J], Adv. Mater., 2005, V17: 756-760
    [178] Liu B., Yu S., Zhang F., et al. Ring-Like Nanosheets Standing on Spindle-Like Rods: Unusual ZnO Superstructures Synthesized from a Flakelike Precursor Zn5(OH)8Cl2·H2O [J]. J. Phys. Chem. B, 2004, V108: 4338-4341
    [179] Wu L., Wu Y., Y Lv.. Self-assembly of small ZnO nanoparticles toward flake-like single crystals [J]. Mater. Res. Bull., 2006, V41: 128-133
    [180] Wang X., Ding Y., Summers C. J., et al. Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts [J]. J. Phys. Chem. B, 2004, V108: 8773-8777
    [181] Gao Y., Yu S., Cong H., et al. Block-Copolymer-Controlled Growth of CaCO3 Microrings [J]. J. Phys. Chem. B, 2006, V110: 6432-6436
    [182] Yang H. G., Zeng H. C.. Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites [J]. Angew. Chem. Int. Ed., 2004, V43: 5930-5933
    [183] Djuri?i? A. B., Leung Y. H. Optical Properties of ZnO Nanostructures [J]. Small, 2006, V2: 944-961.
    [184] Zhu L., Xiao H., Liu X.. et al. Template-free synthesis and characterization of novel 3D urchin-likeα-Fe2O3 superstructures [J]. J. Mater. Chem., 2006, V16: 1794-1797
    [185] Yu S., C?lfen H., Tauer K., et al. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer [J]. Nature Mater., 2005, V4: 51-55
    [186] Healthcock C. H. In Comprehensive Organic Synthesis. Trost B. M., I. Fleming, Eds [M]. Oxford: Pergamon, 1991: 181-238
    [187] Wang G., Zhang Z., Dong Y. Environmentally Friendly and Efficient Process for the Preparation ofβ-Hydroxyl Ketones [J]. Org. Process Res. Dev., 2004, V8: 18-21
    [188] Goto H., Shibamoto N., Tanaka S. Process for preparing o-phenylphenol [P]. US Patent: 4088702, 1978
    [189] Imamura J. Process for the production of o-phenylphenol [P]. US Patent: 4080390, 1978
    [190] King I. R., Hildon A. M. Process for the production of o-phenylphenol [P]. US Patent: 4002693, 1977
    [191] Elliott C. S. Production of ortho-phenylphenol from cyclohexanone [P]. US Patent: 3980716, 1976
    [192] Goto H., Shibamoto N., Tanaka S. Process for preparing O-phenylphenol [P]. US Patent: 4060559, 1977
    [193] Ramm K., Thielecke W., Zander M., et al. Process for the production of 1-[cyclohexene-(1-YL])-cyclohexanone-(2) by condensation of cyclohexanone [P]. US Patent: 3880930, 1975
    [194] Klein J. F. M., Stifis P. A. M. J., Thomas J. A. Process for preparing 2-(1-cyclohexenyl)-cyclohexanone [P]. US Patent: 4052458, 1977
    [195] Klein J. F. M., Stifis P. A. M. J., Thomas J. A. Process for preparing 2-(1-cyclohexenyl)-cyclohexanone [P]. US Patent: 4171326, 1979
    [196] Thomissen P. J. H. Process for the preparation of cyclohexyl cyclohexanone [P]. US Patent: 4484005, 1984
    [197] Aragón J. M., Vegas J. M. R., Jodra L. G. Catalytic Behavior of Macroporous Resins in Catalytic Processes with Water Production. Activation and Inhibition Effects in the Kinetics of the Self-Condensation of Cyclohexanone [J]. Ind. End. Chem. Res., 1993, V32: 2555-2562
    [198] Aragón J. M., Vegas J. M. R., Jodra L. G. Self -Condensation of Cyclohexanone Catalyzed by Amberlyst-15. Study of Diffusional Resistances and Deactivation of the Catalyst [J]. Ind. End. Chem. Res., 1994, V33: 592-599
    [199] Muzart J. Self-Condensation of Ketones Catalysed by Basic Aluminium Oxide [J]. Synthesis, 1982, 60-61
    [200] Muzart J. Is it really useful to employ ultrasonic irradiation in the self-condensation of ketones catalysed by basic alumina? [J]. Synth. Commun., 1985, V15 (4): 285-289
    [201] Vit Z., Nordek L., Malek J., et al. Coll. Czech. Chem. Commun., 1982, V47:2235-2239
    [202] Parks G. A., de Bruyn P. L. The zero point of charge of oxides [J]. J. Phys. Chem., 1962, V66 (6): 967-973
    [203] Yopps J. A., Fuerstenau D. W. The zero point of charge of alpha-alumina [J]. J. Colloid Sci., 1964, V19: 61-71
    [204] Yang X., Sun Z., Wang D., et al. Surface acid–base properties and hydration/dehydration mechanisms of aluminum (hydr)oxides [J], J. Colloid Interface Sci., 2007, V308: 395-404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700