糖类模板下介孔氧化铝的合成、表征及其催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本文中,采用了诸如葡萄糖、蔗糖和淀粉等糖类分子为模板合成介孔氧化铝,并且考察了pH值、物料比、成胶温度等因素对产物结构性能的影响,还考察了表面活性剂的加入对最终产物的影响。采用诸如X射线衍射、热分析、透射电子显微镜、固体核磁共振和氮气吸脱附等手段对所得产物进行分析表征。
     不同糖类分子为模板合成结果表明,以葡萄糖、蔗糖、淀粉以及β-环糊精等糖类分子为模板剂均能合成出介孔氧化铝。但各种糖类分子的尺寸对合成产物的比表面积、孔体积、孔径尺寸及其分布等性能有一定影响。不同影响因素的考察表明,体系的pH值、物料中的水量和模板剂用量、成胶温度等对合成产物的物理化学性能有一定影响。
     不同种类表面活性剂的加入合成结果表明,各种表面活性剂(P123,CTAB,SDS)都会造成产物的性能发生变化,共同点是随着其加入量的增大,产物的孔径尺寸均增大,孔径分布变宽;不同点是P123的加入能得到双孔分布的产物,而CTAB和SDS的加入则不能得到双孔分布的产物。同时,根据离子型表面活性剂和非离子表面活性剂作用的不同,提出了两种不同的双模板作用机理,前者属于协同包覆作用机理,后者属于双模板作用机理。
     采用硝酸铝或酸碱配对的铝物种为铝源,以糖类分子为模板剂能合成出介孔氧化铝产物,并且其性能分别受体系pH值和物料比的影响较大。
     本文采用溶胶-凝胶法一步合成了镍负载介孔氧化铝催化剂和镍负载氧化锆-介孔氧化铝催化剂,XRD和TEM结果证明活性组分在载体上有较好的分散,紫外可见光吸收光谱表明,活性组分的配位状态与浸渍法所得催化剂有所不同,程序升温还原(TPR)结果表明活性组分组载体作用也与浸渍法所得催化剂有所不同。将它们应用于甲烷二氧化碳重整反应,发现这两种催化剂都具有较好的反应活性和稳定性,反应生成的积炭主要为碳纳米管,不会导致催化剂失活。
In this paper, mesoporous alumina was synthesized using saccharide compounds as templates. The influence of pH value, the amounts of H2O and template, temperature and stirring time was investigated, and the effect of the adding of surfactant was also examined. The products were characterized using X-ray diffraction (XRD), thermal analysis, transmission electron microscopy (TEM), MAS NMR and N2 sorption methods.
     Mesoporous alumina can be obtained using glucose, sucrose, starch andβ-cyclodextrin as structure-directing templates, and the molecular size of the templates has a great effect on the physical properties of products, and the templating formation mechanism was tentatively postulated.
     The properties of products were influenced by the initial pH value of the system, but no obvious trend was found; Surface areas, pore volumes and pore diameters increased with the increase of temperature and the amount of H2O or glucose, and then kept stable. But the properties of products were hardly affected by stirring time.
     The adding of different kinds of surfactants to the system has a significant influence on the properties of products, which indicated that surfactant and glucose interact with each other. The pore size and distribution of product were increased after the addition of surfactant. Mesoporous alumina with double-size pore distribution could be produced after the addition of nonionic surfactant (P123), at the same time, the pore volume of product could also be increased sharply. The bi-templating mechanismof glucose and P123 and synergetic enwrapping templating mechanism of glucose and ionic surfactants were proposed.
     Mesoporous alumina can be prepared using Al(NO3)3 and‘acid-base pair’aluminum species as aluminum source in the presence of saccharide compounds. For Al(NO3)3 as aluminum source, the molecular size of templates and pH value play an important part in the properties of products. For‘acid-base pair’aluminum species as aluminum source, the ratio of acid and base aluminum species plays a great role in the properties of product.
     Mesoporous Ni/Al2O3 and Ni/ZrO2/Al2O3 catalysts with high surface areas were prepared using glucose as template. XRD and TEM results showed that nickel phase was uniformly dispersed on the support. These catalysts were also characterized by nitrogen adsorption-desorption, UV-vis specrtra and TPR. These catalysts exhibited good activity and marked stability in methane dry reforming.
引文
1 C. T. Kresge, M. E. Leonowicz, J. C. Vartuli, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710-712
    2 J. S. Beck, J. C Vartuli, W. J. Roth, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834-10843
    3 S. A. Bagshaw, T. J. Pinnavaia. Mesoporous Alumina Molecular Sieves. Angewandte Chemie International Edition in English, 1996, 35 (10): 1102-1105
    4 F. Vaudry, S. Khodabandeh, M. E. Davis. Synthesis of Pure Alumina Mesoporous Materials. Chemistry of Materials, 1996, 8 (7): 1451-1464
    5 M. Yada, M. Machida, T. Kijima. Synthesis and deorganization of an aluminium–based dodecyl sulfate mesophase with a hexagonal structure. Chemical Communications, 1996, (6): 769-771
    6 M. Yada, H. Hiyoshi, K. Ohe, et al. Synthesis of Aluminum-Based Surfactant Mesophases Morphologically Controlled through a Layer to Hexagonal Transition. Inorganic Chemistry, 1997, 36 (24): 5565-5569
    7 S. Valange, J.-L. Guth, F. Kolenda, et al. Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Microporous and Mesoporous Materials, 2000, 35–36: 597–607
    8 S. Cabrera, J. El Haskouri, C. Guillem, et al. Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Size. Advanced Materials, 1999, 11 (5): 379-381
    9 F. Schüth. Endo- and Exotemplating to Create High-Surface-Area Inorganic Materials. Angewandte Chemie International Edition in English, 2003, 42(31): 3604-3622
    10 刘茜, 程瑞华, 王晶等. 非表面活性剂模板法合成中孔氧化铝. 石油化工, 2004, 33 (增刊): 101-102
    11 L. D. Mitchell, P. S. Whitfield, J. Margeson, et al. Sucrose synthesis of nanoparticulate alumina. Journal of Materials Science Letters, 2002, 21(22): 1773-1775
    12 Yen Wei, Danliang Jin, Tianzhong Ding, et al. A Non-surfactant Templating Route to Mesoporous Silica Materials. Advanced Materials, 1998, 10(4): 313-316
    13 K. S. W. Sing, D. H. Everett, R. A. W. Haul, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) Commission on Colloid and Surface Chemistry Including Catalysis. Pure Applied Chemistry, 1985, 57 (4): 603-617
    14 P. T. Tanev, M. Chibwe, T. J. Pinnavaia. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature, 1994, 368(6469): 321 -322
    15 P. T. Tanev, T. J. Pinnavaia. A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 1995, 267(5199): 865-867
    16 S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. Science, 1995, 269(5228): 1242-1244
    17 W. Zhang, T. R. Pauly, T. J. Pinnavaia. Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral (S0I0) Assembly Pathway. Chemistry of Materials, 1997, 9(11): 2491-2498
    18 E. Prouzet, T. J. Pinnavaia. Assembly of Mesoporous Molecular Sieves Containing Wormhole Motifs by a Nonionic Surfactant Pathway: Control of Pore Size by Synthesis Temperature. Angewandte Chemie International Edition in English, 1997, 36(5): 516 -518
    19 D. Zhao, J. Feng, Q. Huo, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 1998, 279(5350): 548-552
    20 D. Zhao, Q. Huo, J. Feng, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 1998,120(24): 6024-6036
    21 S. L. Suib. Zeolitic and layered materials. Chemical Review, 1993, 93(2): 803-826
    22 Ferdi Schüth. Non-siliceous Mesostructured and Mesoporous Materials. Chemistry of Materials, 2001, 13(10): 3184-3195
    23 Qisheng Huo, David I. Margolese, Ulrike Ciesla, et al. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 1994, 368(6469): 317-321
    24 David M. Antonelli, Jackie Y. Ying. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method. Angewandte Chemie International Edition in English, 1995, 34(18): 2014-2017
    25 Dipl.-Chem. Ulrike Ciesla , Dipl.-Chem. Stefan Schacht , Galen D. Stucky , et al. Formation of a Porous Zirconium Oxo Phosphate with a High Surface Area by a Surfactant-Assisted Synthesis. Angewandte Chemie International Edition in English, 1996, 35(5): 541-543
    26 R. Ryoo, S. H. Joo, M. Kruk, et al. Ordered Mesoporous Carbons. Advanced Materials, 2001, 13 (9): 677-681
    27 M. Choi, R. Ryoo. Ordered nanoporous polymer?carbon composites. Nature Materials, 2003, 2 (7): 473-476
    28 Tina M. Nenoff, Steven G. Thomas, Paula Provencio, et al. Novel Zinc Phosphate Phases Formed with Chiral d-Glucosamine Molecules. Chemistry of Materials, 1998, 10 (10): 3077-3080
    29 郑金玉, 丘坤元, 危岩. 有机小分子模板法合成氧化钛中孔材料.高等学校化学学报, 2000, 21 (4): 647-649
    30 Jin-Yu Zheng, Kun-Yuan Qiu, Yen Wei. Investigation of Zr-incorporated mesoporous titania materials via nonsurfactant templated sol-gel route: Synthesis, characterization and stability. Journal of Materials Science, 2003, 38 (3): 437-444
    31 C. Yu, B. Tian, D. Zhao. Recent advances in the synthesis of non-siliceous mesoporous materials. Current Opinion in Solid State and Materials Science, 2003, 7 (3): 191-197
    32 S. Kaskel, D. Farrusseng, K. Schlichte. Synthesis of mesoporous silicon imido nitride with high surface area and narrow pore size distribution. Chemical Communications, 2000, (10): 2481 – 2482
    33 Qisheng Huo, D. I. Margolese, U. Ciesla, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chemistry of Materials, 1994, 6(8): 1176-1191
    34 Bozhi Tian, Xiaoying Liu, Bo Tu, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Materials, 2003, 2(3): 159-163
    35 Galo J. de A. A. Soler-Illia, Clément Sanchez, Bénédicte Lebeau, et al. Chemical Strategies to Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Review, 2002, 102 (11): 4093-4138
    36 朱洪法. 催化剂载体制备及应用技术. 北京: 石油工业出版社, 2002: 323-326
    37 S. Acosta, A. Ayral, C. Guizard, et al. Synthesis of Alumina Gels in Amphiphilic Media. Journal of Sol-Gel Science and Technology, 1996, 8(1-3): 195-199
    38 S. Cabrera, J. El Haskouri, J. Alamo, et al. Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2000, 2(4): 405-420
    39 Weihua Deng, Michael W. Toepke, Brent H. Shanks. Surfactant-assisted Synthesis of Alumina with Hierarchical Nanopores. Advanced Functional Materials, 2003, 13 (1): 61-65
    40 J. Aguado, J. M. Escola, M. C. Castro, et al. Sol–gel synthesis of mesostructured γ-alumina templated by cationic surfactants. Microporous and Mesoporous Materials, 2005, 83 (1-3): 181–192
    41 J. A. Toledo, X. Bokhimi, C. Lopez, et al. Synthesis of highly porous aluminas mediated by cationic surfactant: Structural and textural properties. Journal of Materials Research. 2005, 20 (11): 2947-2954
    42 J. ?ejka, N. ?ilková, J. Rathousky, et al. Nitrogen adsorption study of organised mesoporous alumina. Physical Chemistry Chemical Physics, 2001, 3 (22): 5076-5081;
    43 J. ?ejka, L. Vesela, J. Rathousky, et al. Nanoporous Materials III, Studies inSurfaceScience and Catalysis, Elsevier, Amsterdam, 2002, 141: 243-429
    44 M. Yada, H. Kitamura, M. Machida, et al. Biomimetic Surface Patterns of Layered Aluminum Oxide Mesophases Templated by Mixed Surfactant Assemblies. Langmuir, 1997, 13 (20): 5252-5257
    45 M. Yada, M. Okya, M. Machida, et al. Synthesis of porous yttrium aluminium oxide templated by dodecyl sulfate assemblies. Chemical Communications, 1998, (18): 1941-1942
    46 M. Yada, M. Okya, K. Ohe, et al. Porous yttrium aluminium oxide templated by dodecyl sulfate assemblies. Langmuir, 2000, 16 (4): 1535-1541
    47 L. Sicard, P. L. Llewellyn, J. Patarin, et al. Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate. Microporous and Mesoporous Materials, 2001, 44–45: 195-201
    48 L. Sicard, B. Lebeau, J. Patarin, et al. Study of the Mechanism of Formation of a Mesostructured Hexagonal Alumina by Means of Fluorescence Probing Techniques. Langmuir, 2002, 18 (1): 74-82
    49 W. Zhang, T. J. Pinnavaia. Rare earth stabilization of mesoporous alumina molecular sieves assembled through an NoIo pathway. Chemical Communications, 1998, (11): 1185-1186
    50 Peidong Yang, Dongyuan Zhao, David I. Margolese, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396 (6707): 152-155
    51 Zhaorong Zhang, Thomas J. Pinnavaia. Mesostructured γ-Al2O3 with a Lathlike Framework Morphology. Journal of the American Society, 2002, 124 (41): 12294-12301
    52 Randall W. Hicks, Thomas J. Pinnavaia. Nanoparticle Assembly of Mesoporous AlOOH (Boehmite). Chemistry of Materials, 2003, 15 (1): 78-82
    53 Q. Luo, L. Li, Z. Xue, et al. in: A. Sayari, M. Jaroniec, T.J. Pinnavaia (Eds.), Nanoporous Materials II, Studies in Surface Science and Catalysis, vol. 129, Elsevier, Amsterdam, 2000: 37
    54 W. Deng, P. Bodart, M. Pruski, et al. Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating. Microporous and Mesoporous Materials, 2002, 52 (3): 169–177
    55 V. González-pe?a, I. Díaz, C. Márquez-Alvarez, E. Sastre, et al. Thermally stable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines. Microporous and Mesoporous Materials, 2001, 44-45: 203-210
    56 Krisztian Niesz, Peidong Yang, Gabor A. Somorjai. Sol-gel synthesis of ordered mesoporous alumina. Chemical Communications, 2005, (15): 1986 – 1987
    57 Tie-Zhen Ren, Zhong-Yong Yuan, Bao-Lian Su. Microwave-Assisted Preparation of Hierarchical Mesoporous-Macroporous Boehmite AlOOH and γ-Al2O3. Langmuir, 2004, 20(4): 1531-1534
    58 Zhao Ruihong, Guo Fen, Hu Yongqi, et al. Self-assembly synthesis of organized mesoporous alumina by precipitation method in aqueous solution. Micoporous and Mesoporous Materials, 2006, 93 (1-3): 212-216
    59 Xinghua Liu, Yen Wei, Danliang Jin, et al. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid. Materials Letters, 2000, 42: 143–149
    60 Neil Cruise, Kjell Jansson, Krister Holmberg. Mesoporous Alumina Made from a Bicontinuous Liquid Crystalline Phase. Journal of Colloid and Interface Science, 2001, 241 (2): 527–529
    61 Z. Shan, J. C. Jansen, W. Zhou, et al. Al-TUD-1, stable mesoporous aluminas with high surface areas. Applied Catalysis A: General, 2003 254 (2): 339–343
    62 Zhaoxia Zhang, Peng Bai, Benjing Xu, et al. Synthesis of mesoporous alumina TUD-1 with high thermostability. Journal of Porous Materials, 2006, 13(3): 245-250
    63 H. Wakayama, H. Itahara, N. Tatsuda, et al. Nanoporous Metal Oxides Synthesized by the Nanoscale Casting Process Using Supercritical Fluids. Chemistry of Materials, 2001, 13(7): 2392-2396
    64 Angang Dong, Nan Ren, Yi Tang, et al. General Synthesis of Mesoporous Spheres of Metal Oxides and Phosphates. Journal of the American ChemicalSociety, 2003, 125(17): 4976-4977
    65 Min Kang, Dongchan Kim, Seung Hwan Yi, et al. Preparation of stable mesoporous inorganic oxides via nano-replication technique. Catalysis Today, 2004, 93–95: 695–699
    66 W.-C. Li, A.-H. Lu, W. Schmidt, et al. High Surface Area, Mesoporous, Glassy Alumina with a Controllable Pore Size by Nanaocasting from Carbon Aerogels. Chemistry - A European Journal, 2005, 11(5): 1658-1664
    67 S. G. Deng, Y. S. Lin. Microwave synthesis of mesoporous and microporous alumina powders. Journal of Materials Science Letters, 1997, 16 (15): 1291-1294
    68 Z. M. Wang, Y. S. Lin. Sol-gel Synthesis of Pure and Copper Oxide Coated Mesoporous Alumina Granular Particles. Journal of Catalysis, 1998, 174(1): 43-51
    69 N. Yao, G. Xiong, Y. Zhang, M. He, et al. Preparation of novel uniform mesoporous alumina catalysts by the sol–gel method. Catalysis Today, 2001, 68 (1-3): 97-109
    70 Abbas Khaleel, Catalytic activity of mesoporous alumina for the hydrolysis and dechlorination of carbon tetrachloride. Microporous and Mesoporous Materials, 2006, 91(1-3): 53-58
    71 Xin Zhang, Feng Zhang, Kwong-Yu Chan. The synthesis of large mesopores alumina by microemulsion templating, their characterization and properties as catalyst support. Materials Letters, 2004, 58 (22-23): 2872– 2877
    72 Hyun Chul Lee, Hae Jin Kim, Chang Houn Rhee, et al. Synthesis of nanostructured γ-alumina with a cationic surfactant and controlled amounts of water. Microporous and Mesoporous Materials, 2005, 79(1-3): 61-68
    73 S. J. Gregg, K. S. W. Sing. Adsorption, Surface Area and Porosity. Academic Press, London, 1982: 90
    74 F. Rouquerol, J. Rouquerol, K. Sing. Adsorption by Powders and Porous Solids. Academic Press, London, 1999:174
    75 M. Jaroniec, M. Kruk, J. P. Olivier. Surface Heterogeneity Analysis of MCM-41 Metallosilicates by Using Nitrogen Adsorption Data. Langmuir, 1999, 15(18):5683-5688
    76 Ji?í ?ejka, Patricia J. Kooyman, Lenka Veselá, et al. High-temperature transformations of organised mesoporous alumina. Physical Chemistry Chemical Physics, 2002, 4(19): 4823-4829
    77 J. Y. Ying, C. P. Mehnert, M. S. Wong. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie International Edition, 1999, 38(1-2): 56-77
    78 邢雅莉, 何杰, 吴香发等. 介孔氧化铝的合成及应用. 精细与专用化学品. 2005, 13 (15): 11-14
    79 李奚, 杨春. 含 Ti 介孔氧化铝分子筛的合成与表征. 南京师范大学学报, 2002, 2 (4): 5-9
    80 Y. Kim, P. Kim, C. Kim, et al. A novel method for synthesis of a Ni/Al2O3 catalyst with a mesoporous structure using stearic acid salts. Journal of Materials Chemistry, 2003, 13: 2353-2358
    81 K. M. Kolonia, D. E. Petrakis, A. K. Ladavos. Influence of phosphorus and vanadium additives in the development of surface acid catalytic properties of mesoporous alumina. Physical Chemistry Chemical Physics, 2003, 5(1): 217-222
    82 T. Oikawa, T. Ookoshi, T. Tanaka, et al. A new heterogeneous olefin metathesis catalyst composed of rhenium oxide and mesoporous alumina. Microporous and Mesoporous Materials, 2004, 74: 93-103
    83 S. Valange, J. Barrault, A. Derouault, et al. Binary Cu-Al mesoporous precursors to uniformly sized copper particles highly dispersed on mesoporous alumina. Microporous and Mesoporous Materials, 2001, 44-45: 211-220
    84 P. Concepcion, M. T. Navarro, T. Blasco, et al. Vanadium oxide supported on mesoporous Al2O3 p reparation, characterization and reactivity. Catalysis Today, 2004, 96(4): 179-186
    85 L. M. Bronstein, D. M. Chernyshov, R. Karlinsey, et al. Mesoporous alumina and aluminosilica with Pd and Pt nanoparticles: structure and catalytic properties. Chemistry of Materials, 2003, 15(13): 2623-2631
    86 张晔, 吴东, 孙予罕等. 微孔-介孔复合 SiO2-Al2O3 分子筛的水热合成研究.燃料化学学报, 2001, 8 (29): 28-29
    87 W. S. Wieland, R. J. Davis, J. M. Garces. Side-Chain Alkylation of Toluene with Methanol over Alkali-Exchanged Zeolites X, Y, L, and β, Journal of Catalysis, 1998, 173 (2): 490-500
    88 L. Kaluza, M. Zdrazil, N. Zilkova, et al. High activity of highly loaded MoS2 hydrodesulfurization catalysts supported on organized mesoporous alumina. Catalysis Communications, 2002, 3 (4): 151-157
    89 M. Onaka, T. Oikawa. Olefin Metathesis over Mesoporous Alumina-supported Rhenium Oxide Catalyst. Chemistry Letters, 2002, 31 (8): 850-851
    90 J?ri Cějka. Organized mesoporous alumina: synthesis, structure and potential in catalysis. Applied Catalysis A: General 2003, 254 (2): 327–338
    91 赵瑞红, 郭奋, 杨会龙等. 有序介孔氧化铝的合成、结构表征及催化应用. 现代化工, 2005, 25(9): 65-67
    92 徐如人, 庞文琴. 无机合成与制备化学. 北京: 高等教育出版社. 2001. 6: 46-47
    93 Yen Wei, Jigeng Xu, Hua Dong, Jian Hua Dong, Kunyuan Qiu, Susan A. Jansen-Varnum. Preparation and Physisorption Characterization of D-Glucose-Templated Mesoporous Silica Sol-Gel Materials. Chemistry of Materials, 1999, 11 (8): 2023 -2029
    94 R. N. Das, A. Bandyopadhyay, S. Bose. Nanocrystalline α-Al2O3 Using Sucrose. Journal of the American Ceramic Society, 2001, 84(10): 2421-2423
    95 王春明, 赵璧英, 朱月香等. 蔗糖辅助制备大比表面积氧化铝. 催化学报. 2004, 25(5): 341-343
    96 S. Bose, A. Benerjee. Novel Synthesis Route to Make Nanocrystalline Lead Zirconate Titanate Powder. Journal of American Ceramic Society, 2004, 87(3): 487-489
    97 Y. Wu, A. Bandyopadhyay, S. Bose. Processing of alumina and zirconia nano-powders and compacts. Materials Science and Engineering A, 2004, 380(1-2): 349-355
    98 陈元春. 粉末表面涂层陶瓷的硬质合金刀具材料的研制和性能研究: [山东大学博士学位论文], 山东大学, 济南: 2000
    99 徐卫军, 俞建长, 胡胜伟. Al2O3 无机膜的制备和微观结构表征. 福州大学学报(自然科学版), 2004, 32(6): 711-714
    100 B. E. Yoldas. Ultrastructure Processing of Advanced Ceramica. Wiely N. Y., 1998, p333-345
    101 张宗涛. SiC 晶须表面涂覆的溶胶-凝胶工艺及机理. 硅酸盐学报, 1991, 19(6): 572
    102 陶洪亮. Sol-gel 工艺制备 γ-Al2O3 无支撑分离膜. 硅酸盐通报, 1994(1): 26
    103 包定华. Sol-Gel 法合成 K(Ta, Nb)O3 材料. 无机材料学报, 1995, 10(1): 32
    104 杨洪斌, 陈奇, 宋鹏等. 淀粉/PEG 制备双孔块状 SiO2 载体材料及酶活力. 无机材料学报, 2006, 21(5): 1154-1160
    105 张美江, 于士文, 王振兴等. 化学自组装合成 Sn 掺杂的纳米 TiO2介孔材料及其光催化性能. 中国科学(B 辑), 2005, 35(3): 206-211
    106 Jin-Yu Zheng, Jie-Bin Pang, Kun-Yuan Qiu, et al. Synthesis of mesoporous titanium dioxide materials by using a mixture of organic compounds as a non-surfactant template. Journal of Materials Chemistry. 2001, 11 (12): 2267-3372
    107 Bao-Hang Han, Markus Antonietti. One step synthesis of copper nanoparticles containing mesoporous silica by nanocasting of binuclear copper (П) complexes with cyclodextrins. Journal of Mterials Chemistry. 2003, 13 (7): 1793-1796
    108 王来军, 文明芬, 杨栋等. 以环糊精为模板剂制备不同粒径 CeO2 纳米粒子. 分子催化. 2006, 20 (2): 179-181
    109 徐如人, 庞文琴. 无机合成与制备化学. 北京: 高等教育出版社. 2001. 6: 45
    110 谢征芳, 肖加余, 陈朝辉等. 溶胶-凝胶法制备复合材料用氧化铝基体及涂层研究. 宇航材料工艺, 1999, 29(2): 30-37
    111 王积涛, 胡青眉, 张宝申等. 有机化学. 天津: 南开大学出版社. 1993. 9: 589-612
    112 肖进新, 赵振国. 表面活性剂应用原理. 北京: 化学工业出版社. 2003. 5: 149-152
    113 P. Kim, Y. Kim, I. K. Song, J. Yi. Synthesis and characterization of mesoporousalumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas. Applied Catalysis A: General. 2004, 272(1-2): 157-166
    114 P. Kim, J. B. Joo, H. Kim, W. Kim, Y. Kim, I. K. Song, J. Yi. Preparation of mesoporous Ni-alumina catalyst by one-step sol-gel method: control of textual prpoperties and catalytic application to the hydrodechlorination of ο-dichlorobenzene. Catalysis Letters. 2005, 104(3-4): 181-189
    115 Ronggang Ding, Zifeng Yan, Linhua Song, et al. Surface carbon depositions on nickel catalyst for carbon dioxide reforming with methane. Journal of Natural Gas Chemistry, 2001, 10 (4): 273-287;
    116 黄传敬, 郑小明, 费金华. 甲烷二氧化碳重整制合成气镍-钴双金属催化剂. 应用化学, 2001, 18(9): 741-745
    117 Z. L. Zhang, X. E. Verykios. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catalysis Today, 1994, 21(2-3): 589-595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700