金属氧化物介孔及纳米复合材料的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物因其在工业上广阔的应用前景而被广泛研究,其中关于氧化铝和氧化钛的研究备受瞩目。氧化铝具有良好的机械强度、较高的热稳定性和化学稳定性、适宜的等电点、可调变的表面酸碱性等优点,在陶瓷、耐火材料、医药、吸附、催化等领域有着重要应用。二氧化钛是一种低价、低毒性的半导体材料,在光催化、染料敏化太阳能电池等方面具有广泛的应用。
     介孔材料具有大的比表面积和孔体积,均一且在纳米尺寸上连续可调的孔径,介孔金属氧化物在大分子吸附、分离、化学传感器、光电磁、化工催化等领域展现出了无可以拟的优越性和广阔的应用前景。
     本论文研究了有序介孔氧化铝、介孔氧化铝-氧化钛复合物,以及金纳米粒子/二氧化钛复合物的合成,具体研究内容如下:
     论文第二章利用“酸碱对”方法,以廉价的无机铝盐为“酸源”,铝醇盐为“碱源”,通过溶剂挥发诱导自组装合成得到有序介孔Al2O3。通过调节前驱体酸碱对的比例,采用不同的铝前驱体,不同的表面活性剂,成功得到了一系列具有较大孔径,较高比表面积,具有二维六方结构的高度有序介孔Al2O3,且在800℃煅烧晶化后介观结构仍能保持。通过调节铝源前驱体酸碱对的比例,改变酸源、碱源、表面活性剂,考察这些参数对样品有序性和结构参数的影响。不同酸碱对比例中,Al(NO3)3:AlPO=5:5的条件下得到的A1203有序性最好,比表面积最高,达到311m2/g。AIC13为酸源时,AlC13:AlPO=5:5条件下得到的Al2O3孔径最大,达到11.5nm。与之前的报道相比,在使用P123为表面活性剂的情况下,我们得到了高度有序且具有最大孔径的介孔氧化铝材料。
     论文第三章在第二章工作的基础上,利用“酸碱对”方法,以廉价的硝酸铝和钛酸正丁酯分别作为“酸源”和“碱源”,通过溶剂挥发诱导自组装合成介孔氧化铝-氧化钛复合物。通过调节前驱体酸碱对的比例,调变溶剂挥发的温度,得到系列不同钛铝比,具有蠕虫状介孔孔道结构,孔径分布均一的介孔复合氧化物,不同材料孔径约在6~11nm之间。与介孔纯TiO2材料相比,比表面积提高,不同条件下得到的复合材料最高比表面积达到244m2/g。通过高温煅烧考察了Al2O3-TiO2复合物的晶化过程,发现Al2O3-TiO2复合物降低了A1203的结晶温度(700℃),升高了TiO2的锐钛矿结晶温度(>400℃和由锐铁矿向金红石晶型转变的温度(900℃),提高了TiO2的热稳定性。
     论文第四章通过一步溶胶-凝胶过程,以光诱导的方法在二氧化钛凝胶单片中,合成了金纳米粒子。这是首次报道光诱导还原AuCl4离了为金纳米粒子的过程在氧化钛溶胶阶段而非凝胶化之后进行,实验证明该方法可以在最终形成的氧化钛凝胶中得到高分散、直径约8nm、尺寸均一的金纳米粒子,且表面等离子共振(SPR)吸收带会蓝移至578nm。
Metal oxides are largely studied because of their almost limitless potential in a number of industrial applications. Among metal oxides alumina and titania are.very popular for their unique properties and diverse applications. Alumina has numerous applications ranging from catalysis, to optics, electronics and biomedicine. Titania is a chemically stable, non-toxic and environmentally friendly oxide and it has been intensely investigated in photocatalysis and dye-sensitized solar cell and so on.
     With the characteristics of mesoporous materials, such as highly uniform channels, large surface area, narrow pore-size distribution, tunable pore sizes over a wide range, and so on, metal oxides with a mesostructure should possess much more excellent properties for their applications.
     In this thesis, we studied the synthesis of ordered mesoporous alumina, mesoporous alumina-titania and gold nanoparticles/titania composites.
     In chapter 2, we use inorganic aluminum salt and aluminum alkoxides as precursor to synthesize highly ordered mesoporous alumina by "acid-base pair" method through the evaporation-induced self-assembly (EISA) process. By changing experiment parameter such as mol ratio of precursors, different precursors and surfactants, we successfully get mesoporous alumina with a highly ordered 2D hexagonal mesostructure, high surface area(31 1m2/g, Al(NO3)3:AlPO=5:5), large pore volume and pore size(11.5nm, AlC13:AlPO=5:5), which is resistant to high temperature up to 800℃.
     In chapter 3, mesoporous alumina-titania composite are synthesized by "acid-base pair" method through the evaporation-induced self-assembly (EISA) process. The effect of the mol ratio of the "acid-base pair" and EISA temperature are investigated on the mesostructures and crystalline. The series of composites have worm-like mesostructures, uniform pore size distribution(6~11nm) and higher surface area(244 m2/g) compared with pure mesoporous titania. It is found that the crystallization temperature of alumina decreases in the mesoporous alumina-titania composites(700℃). while the crystallization and crystalline transformation temperature of titania increase(>400℃and (900℃). which indicating that the thermal stability of titania is improved.
     In chapter 4, spherical gold nanoparticles with diameters less than 8 nm have been prepared by the photoinduced reduction via a one-step sol-gel process. The Au nanoparticles are highly dispersed in a TiO2 gel monolith with a surface plasmon resonance absorption band centered at 578 nm.. We demonstrated for the first time that the photoinduced reduction of AuCl4- ions in the sol stage instead of after the gel formation could guarantee the uniformity of the size(8nm), shape, and dispersion of Au nanoparticles in the ultimately formed TiO2 gel.
引文
[1]Terminology, Pure. App.Chem.1972,31.
    [2]J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, Journal of the American Chemical Society 1992,114,10834.
    [3]C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992,359,710.
    [4]徐如人,庞文琴,分子筛与多孔材料化学,科学出版社:北京,2004.
    [5]J. H. Clark, D. J. Macquarrie, Chemical Communications 1998,853.
    [6]A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science 1993,261,1299.
    [7]Q. S. Huo, D. I. Margolese, U. Ciesla, P. Y. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature 1994,368,317.
    [8]S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science 1995,269,1242.
    [9]P. T. Tanev, T. J. Pinnavaia, Science 1995,267,865.
    [10]D. M. Antonelli, J. Y. Ying, Chemistry of Materials 1996,8,874.
    [11]D. M. Antonelli, J. Y. Ying, Angewandte Chemie-International Edition in English 1996,35,426.
    [12]G. J. D. Soler-illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical Reviews 2002, 102,4093.
    [13]Y. Wan, D. Y. Zhao. Chemical Reviews 2007,107,2821.
    [14]A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. IIuo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, B. F. Chmelka, Science 1995.267,1138.
    [15]Q. S. Huo, D. I. Margolese, G. D. Stucky, Chemistry of Materials 1996,8, 1147.
    [16]D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998,279,548.
    [17]D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky, Journal of the American Chemical Society 1998,120,6024.
    [18]P. D. Yang, T. Deng, D. Y. Zhao, P. Y. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Science 1998,282,2244.
    [19]P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Nature 1998,396,152.
    [20]Y. F. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. L. Gong, Y. X. Guo, H. Soyez, B. Dunn, M. H. Huang, J. I. Zink, Nature 1997, 389,364.
    [21]C. J. Brinker, Y. F. Lu, A. Sellinger, H. Y. Fan, Advanced Materials 1999,11, 579.
    [22]H. Yang, N. Coombs, I. Sokolov, G. A. Ozin, Nature 1996,381,589.
    [23]H. Yang, A. Kuperman, N. Coombs, S. MamicheAfara, G. A. Ozin, Nature 1996,379,703.
    [24]A. Sellinger, P. M. Weiss, A. Nguyen, Y. F. Lu, R. A. Assink, W. L. Gong, C. J. Brinker, Nature 1998,394,256.
    [25]D. Grosso, F. Cagnol, G. J. D. A. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois, C. Sanchez, Advanced Functional Materials 2004,14,309.
    [26]X. Y. Liu, B. Z. Tian, C. Z. Yu, F. Gao, S. H. Xie, B. Tu, R. C. Che, L. M. Peng, D. Y. Zhao, Angewandte Chemie-International Edition 2002,41,3876.
    [27]F. Kleitz, S. H. Choi, R. Ryoo, Chemical Communications 2003,2136.
    [28]J. R. Matos, M. Kruk, L. P. Mercuri, M. Jaroniec, L. Zhao, T. Kamiyama, O. Terasaki, T. J. Pinnavaia, Y. Liu, Journal of the American Chemical Society 2003,125,821.
    [29]S. A. El-Safty, T. Hanaoka, Chemistry of Materials 2004,16,384.
    [30]S. A. Davis, S. L. Burkett, N. H. Mendelson, S. Mann, Nature 1997,385,420.
    [31]D. Y. Zhao, J. Y. Sun, Q. Z. Li, G. D. Stucky, Chemistry of Materials 2000, 12,275.
    [32]J. F. Wang, J. P. Zhang, B. Y. Asoo, G. D. Stucky, Journal of the American Chemical Society 2003,125,13966.
    [33]Y. F. Lu, H. Y. Fan, N. Doke, D. A. Loy, R. A. Assink, D. A. LaVan, C. J. Brinker, Journal of the American Chemical Society 2000,122,5258.
    [34]P. Y. Feng, X. H. Bu, G. D. Stucky, D. J. Pine, Journal of the American Chemical Society 2000,122,994.
    [35]H. F. Yang, Q. H. Shi, B. Z. Tian, S. H. Xie. F. Q. Zhang, Y. Yan, B. Tu, D. Y. Zhao, Chemistry of Materials 2003,15,536.
    [36]Y. F. Lu, H. Y. Fan. A. Stump, T. L. Ward, T. Rieker, C. J. Brinker, Nature 1999,398,223.
    [37]D. M. Antonelli, J. Y. Ying, Angewandte Chemie-International Edition in English 1995,34,2014.
    [38]B. Z. Tian, H. F. Yang, X. Y. Liu, S. H. Xie, C. Z. Yu, J. Fan, B. Tu, D. Y. Zhao, Chemical Communications 2002,1824.
    [39]B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y. Zhao, Nature Materials 2003,2,159.
    [40]C. Misra, Industrial alumina chemicals, American Chemical Society, Washington D C,1986.
    [41]S. K. Schuth F, Weitkamp J(Eds.), Handbook of porous materials, Weinheim: Wiley-VCH Verlag GmbH,2002.
    [42]朱洪法,催化剂载体制备及应用技术石油工业出版社,北京,2002.
    [43]T. Tsukada, H. Segawa, A. Yasumori, K. Okada, Journal of Materials Chemistry 1999,9,549.
    [44]J. T. Trawczynski, Industrial & Engineering Chemistry Research 1996,35, 241.
    [45]C. S. John, N. C. M. Alma, G. R. Hays, Applied Catalysis 1983,6,341.
    [46]R. S. Zhou, R. L. Snyder, Acta Crystallographica Section B-Structural Science 1991,47,617.
    [47]K. Wefers, C. Misra, Alcoa Technical Paper 1987.
    [48]X. Krokidis, P. Raybaud, A. E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, Journal of Physical Chemistry B 2001,105,5121.
    [49]S. J. J. Lippens B C, in Physical and chemical aspects of adsorbents and catalysts (Ed.:L. B. G), Academic Press, London,1970, p.171.
    [50]P. Nortier, P. Fourre, A. B. M. Saad, O. Saur, J. C. Lavalley, Applied Catalysis 1990,61,141.
    [51]U. K. Schulth F, in Preparation of solid catalysts (Ed.:K. H. Ertl G, Weitkamp J), Wiley-VCH, Weinheim,1999, pp.77.
    [52]Y. Huang, A. White, A. Walpole, D. L. Trimm, Applied Catalysis 1989,56, 177.
    [53]A. White, A. Walpole, Y. Huang, D. L. Trimm, Applied Catalysis 1989,56, 187.
    [54]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure and Applied Chemistry 1985,57,603.
    [55]J. Y. Ying, C. P. Mehnert, M. S. Wong, Angewandte Chemie-International Edition 1999,38,56.
    [56]A. Corma, Chemical Reviews 1997,97,2373.
    [57]F. Vaudry, S. Khodabandeh, M. E. Davis, Chemistry of Materials 1996,8. 1451.
    [58]J. Cejka, N. Zilkova, J. Rathousky, A. Zukal, Physical Chemistry Chemical Physics 2001,3,5076.
    [59]J. Cejka, P. J. Kooyman. L. Vesela, J. Rathousky, A. Zukal, Physical Chemistry Chemical Physics 2002,4.4823.
    [60]M. Yada. M. Machida, T. Kijima. Chemical Communications 1996,769.
    [61]M. Yada, H. Hiyoshi, K. Ohe, M. Machida, T. Kijima, Inorganic Chemistry 1997,36,5565.
    [62]S. Cabrera, J. El Haskouri, J. Alamo, A. Beltran, D. Beltran, S. Mendioroz, M. D. Marcos, P. Amoros, Advanced Materials 1999,77,379.
    [63]S. Cabrera, J. El Haskouri, C. Guillem, J. Latorre, A. Beltran-Porter, D. Beltran-Porter, M. D. Marcos, P. Amoros, Solid State Sciences 2000,2,405.
    [64]X. H. Liu, Y. Wei, D. L. Jin, W. H. Shih, Materials Letters 2000,42,143.
    [65]S. A. Bagshaw, T. J. Pinnavaia, Angewandte Chemie-International Edition in English 1996,55,1102.
    [66]Z. R. Zhang, R. W. Hicks, T. R. Pauly, T. J. Pinnavaia, Journal of the American Chemical Society 2002,124,1592.
    [67]Z. R. Zhang, T. J. Pinnavaia, Journal of the American Chemical Society 2002, 124,12294.
    [68]R. W. Hicks, T. J. Pinnavaia, Chemistry of Materials 2003,15,78.
    [69]K. Niesz, P. D. Yang, G. A. Somorjai, Chemical Communications 2005,1986.
    [70]Q. Yuan, A. X. Yin, C. Luo, L. D. Sun, Y. W. Zhang, W. T. Duan, H. C. Liu, C. H. Yan, Journal of the American Chemical Society 2008,130,3465.
    [71]L. L. Li, W. T. Duan, Q. Yuan, Z. X. Li, H. H. Duan, C. H. Yan, Chemical Communications 2009,6174.
    [72]J. P. Dacquin, J. Dhainaut, D. Duprez, S. Royer, A. F. Lee, K. Wilson, Journal of the American Chemical Society 2009,131,12896.
    [73]S. M. Morris, P. F. Fulvio, M. Jaroniec, Journal of the American Chemical Society 2008,730,15210.
    [74]M. Kuemmel, D. Grosso, U. Boissiere, B. Smarsly, T. Brezesinski, P. A. Albouy, H. Amenitsch, C. Sanchez, Angewandte Chemie-International Edition 2005,44,4589.
    [75]L. J. Wan, H. G. Fu, K. Y. Shi, X. Q. Tian, Microporous and Mesoporous Materials 2008,115,301.
    [76]L. J. Wan, H. G. Fu, K. Y. Shi, X. Q. Tian, Materials Letters 2008,62,1525.
    [77]N. Zilkova, A. Zukal, J. Cejka, Microporous and Mesoporous Materials 2006, 95,176.
    [78]C. Boissiere, L. Nicole, C. Gervais, F. Babonneau, M. Antonietti, H. Amenitsch, C. Sanchez, D. Grosso, Chemistry of Materials 2006,18,5238.
    [79]Q. Liu, A. Q. Wang, X. D. Wang, T. Zhang, Chemistry of Materials 2006,18, 5153.
    [80]X. He, D. Antonelli, Angewandte Chemie-International Edition 2001,41,214.
    [81]A. Hagfeldt, M. Gratzel, Chemical Reviews 1995,95,49.
    [82]M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chemical Reviews 1995,95,69.
    [83]A. SclafanL L. Palmisano. M. Schiavello, Journal of Physical Chemistry 1990. 94,829.
    [84]S. J. Tsai. S. Cheng, Catalysis Today 1997,33,227.
    [85]Ⅱ. Wang. Y. Wu, B. Q. Xu. Applied Catalysis B-Environmental 2005.59,139.
    [86]Y. Z. Li, N. H. Lee, E. G. Lee, J. S. Song, S. J. Kim, Chemical Physics Letters 2004,389,124.
    [87]H. Shibata, T. Ogura, T. Mukai, T. Ohkubo, H. Sakai, M. Abe, Journal of the American Chemical Society 2005,127,16396.
    [88]D. H. Wang, D. W. Choi, Z. G. Yang, V. V. Viswanathan, Z. M. Nie, C. M. Wang, Y. J. Song, J. G. Zhang, J. Liu, Chemistry of Materials 2008,20,3435.
    [89]D. Grosso, G. J. D. A. A. Soler-Illia, F. Babonneau, C. Sanchez, P. A. Albouy, A. Brunet-Bruneau, A. R. Balkenende, Advanced Materials 2001,13,1085.
    [90]P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, B. F. Chmelka, Chemistry of Materials 2002,14,3284.
    [91]S. Y. Choi, M. Mamak, N. Coombs, N. Chopra, G. A. Ozin, Advanced Functional Materials 2004,14,335.
    [92]K. S. Liu, H. G. Fu, K. Y. Shi, F. S. Xiao, L. Q. Jing, B. F. Xin, Journal of Physical Chemistry B 2005,109,18719.
    [93]S. Yuan, Q. R. Sheng, J. L. Zhang, F. Chen, M. Anpo, Materials Letters 2004, 58,2757.
    [94]A. Vargas, J. A. Montoya, C. Maldonado, I. Hernandez-Perez, D. R. Acosta, J. Morales, Microporous and Mesoporous Materials 2004,74,1.
    [95]J. Choi, J. Kim, K. S. Yoo, T. G. Lee, Powder Technology 2008,181,83.
    [96]E. Y. Kaneko, S. H. Pulcinelli, V. T. da Silva, C. V. Santilli, Applied Catalysis a-General2002,235,71.
    [97]H. Farag, M. Al Zoubi, F. Endres, Journal of Materials Science 2009,44,122.
    [98]A. Bottino, A. Comite, G. Capannelli, Asia-Pacific Journal of Chemical Engineering 2010,5,242.
    [99]H. K. Mishra, M. Stanciulescu, J. P. Charland, J. F. Kelly, Applied Surface Science 2008,254,7098.
    [100]S. M. Morris, J. A. Horton, M. Jaroniec, Microporous and Mesoporous Materials 2010,125,180.
    [1]A. Corma, Chemical Reviews 1997,97,2373.
    [2]J. Y. Ying, C. P. Mehnert, M. S. Wong, Angewandte Chemie-International Edition 1999,38,56.
    [3]M. Trueba, S. P. Trasatti, European Journal of Inorganic Chemistry 2005, 3393.
    [4]C. Marquez-Alvarez, N. Zilkova, J. Perez-Pariente, J. Cejka, Catalysis Reviews-Science and Engineering 2008,50,222.
    [5]N. Yao, G. X. Xiong, Y. H. Zhang, M. Y. He, W. S. Yang, Catalysis Today 2001,68,97.
    [6]K. Niesz. P. D. Yang, G. A. Somorjai, Chemical Communications 2005.1986.
    [7]Q. Yuan, A. X. Yin, C. Luo, L. D. Sun, Y. W. Zhang, W. T. Duan, H. C. Liu, C. H. Yan,.Journal of the American Chemical Society 2008,130.3465.
    [8]S. M. Morris, P. F. Fulvio, M. Jaroniec, Journal of the American Chemical Society 2008,130,15210.
    [9]J. P. Dacquin, J. Dhainaut, D. Duprez, S. Royer, A. F. Lee, K. Wilson, Journal of the American Chemical Society 2009,131,12896.
    [10]L. L. Li, W. T. Duan, Q. Yuan, Z. X. Li, H. H. Duan, C. H. Yan, Chemical Communications 2009,6174.
    [11]B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y. Zhao, Nature Materials 2003,2,159.
    [12]B. Z. Tian, H. F. Yang, X. Y. Liu, S. H. Xie, C. Z. Yu, J. Fan, B. Tu, D. Y. Zhao, Chemical Communications 2002,1824.
    [13]D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998,279,548.
    [1]J. A. Rodriguez, M. Fernandez-Garcia, Synthesis, Properties, and Applications of Oxide Nanomaterials, John Wiley and Sons, Hoboken, NJ,2007.
    [2]J. Cejka, Applied Catalysis a-General 2003,254,327.
    [3]J. Cejka, P. J. Kooyman, L. Vesela, J. Rathousky, A. Zukal, Physical Chemistry Chemical Physics 2002,4,4823.
    [4]C. Marquez-Alvarez, N. Zilkova, J. Perez-Pariente, J. Cejka, Catalysis Reviews-Science and Engineering 2008,50,222.
    [5]X. S. Fang, C. H. Ye, X. X. Xu, T. Xie, Y. C. Wu, L. D. Zhang, Journal of Physics-Condensed Matter 2004,16,4157.
    [6]S. Kurien, J. Mathew, S. Sebastian, S. N. Potty, K. C. George, Materials Chemistry and Physics 2006,98,470.
    [7]S. E. Kim, J. H. Lim, S. C. Lee, S. C. Nam, H. G. Kang, J. Choi, Electrochimica Acta 2008,53,4846.
    [8]A. S. Deshpande, D. G. Shchukin, E. Ustinovich, M. Antonietti, R. A. Caruso, Advanced Functional Materials 2005,15,239.
    [9]A. Vargas, J. A. Montoya, C. Maldonado, I. Hernandez-Perez, D. R. Acosta, J. Morales, Microporous and Mesoporous Materials 2004,74,1.
    [10]J. Choi, J. Kim, K. S. Yoo, T. G. Lee, Powder Technology 2008,181,83.
    [11]E. Y. Kaneko, S. H. Pulcinelli, V. T. da Silva, C. V. Santilli, Applied Catalysis a-General 2002,255,71.
    [12]S. M. Morris, P. F. Fulvio, M. Jaroniec, Journal of the American Chemical Society 2008,130,15210.
    [13]B. Z. Tian, H. F. Yang, X. Y. Liu, S. H. Xie, C. Z. Yu, J. Fan, B. Tu, D. Y. Zhao, Chemical Communications 2002,1824.
    [14]C. T. Adams, Vol. EP 0199399 (Ed.:E. P. Appl),1986.
    [15]J. Ramirez, L. Ruizramirez, L. Cedeno, V. Harle, M. Vrinat, M. Brevsse, Applied Catalysis a-General 1993,93,163.
    [16]R. Rigge, Vol. EP 0339640 (Ed.:E. P. Appl),1989.
    [17]M. Anpo, T. Kawamura, S. Kodama, K. Maruya, T. Onishi, Journal of Physical Chemistry 1988,92,438.
    [18]H. Farag, M. Al Zoubi, F. Endres, Journal of Materials Science 2009,44,122.
    [19]A. Bottino, A. Comite, G. Capannelli, Asia-Pacific Journal of Chemical Engineering 2010,5,242.
    [20]H. K. Mishra, M. Stanciulescu, J. P. Charland, J. F. Kelly, Applied Surf ace Science 2008,254,7098.
    [21]S. M. Morris, J. A. Horton, M. Jaroniec, Microporous and Mesoporous Materials 2010,128,180.
    [22]Q. Yuan. A. X. Yin. C. Luo. L. D. Sun, Y. W. Zhang. W. T. Duan, H. C. Liu, C. H. Yan, Journal of the American Chemical Society 2008, 130,3465.
    [23]D. Y. Zhao. J. L. Feng, Q. S. Huo. N. Melosh. G. H. Fredrickson, B. F. Chmelka. G. D. Stucky, Science 1998.279,548.
    [1]R. S. Sonawane, M. K. Dongare, Journal of Molecular Catalysis a-Chemical 2006,243,68.
    [2]H. X. Li, Z. F. Bian, J. Zhu, Y. N. Huo, H. Li, Y. F. Lu, Journal of the American Chemical Society 2007,129,4538.
    [3]J. L. Gu, J. L. Shi, G. J. You, L. M. Xiong, S. X. Qian, Z. L. Hua, H. R. Chen, Advanced Materials 2005,17,557.
    [4]Y. W. C. Cao, R. C. Jin, C. A. Mirkin, Science 2002,297,1536.
    [5]M. C. Daniel, D. Astruc, Chemical Reviews 2004,104,293.
    [6]U. Kreibig, Vollmer, M., Optical Properties of Metal Clusters, Springer, Berlin,1995.
    [7]Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, C. Flytzanis, Applied Physics Letters 1999,75,1712.
    [8]M. Lee, L. Chae, K. C. Lee, Nanostructured Materials 1999,11,195.
    [9]I. H. Cho, E. J. Oh, J. S. Suh, S. J. Park, K. W. Lee, Thin Solid Films 2000, 363,138.
    [10]T. Gacoin, F. Chaput, J. P. Boilot, G. Jaskierowicz, Chemistry of Materials 1993,5,1150.
    [11]H. Yanagi, S. Mashiko, L. A. Nagahara, H. Tokumoto, Chemistry of Materials 1998,70,1258.
    [12]H. Z. Shi, L. D. Zhang, W. P. Cai, Materials Research Bulletin 2000,35, 1689.
    [13]W. Chen, W. P. Cai, C. H. Liang, L. D. Zhang, Materials Research Bulletin 2001,36,335.
    [14]J. C. Yu, X. C. Wang, L. Wu, W. K. Ho. L. Z. Zhang, G. T. Zhou, Advanced Functional Materials 2004,14,1178.
    [15]S. K. Medda, S. De, G. De, Journal of Materials Chemistry 2005,15,3278.
    [16]D. Buso, J. Pacifico. A. Martucci. P. Mulvaney, Advanced Functional Materials 2007,17,347.
    [17]L. Kruczynski, H. D. Gesser, C. W. Turner, E. A. Speers. Nature 1981.297, 399.
    [18]R. F. Howe, M. Gratzel, Journal of Physical Chemistry 1985,89,4495.
    [19]U. Kreibig, L. Genzel, Surface Science 1985,156,678.
    [20]G. Mie, Annalen Der Physik 1908,25,377.
    [21]K. Yanagisawa, Y. Yamamoto, Q. Feng, N. Yamasaki, Journal of Materials Research 1998,13,825.
    [22]C. Y. Wang, C. P. Liu, J. Chen, T. Shen, Journal of Colloid and Interface Science 1997,191,464.
    [23]K. Kurihara, J. Kizling, P. Stenius, J. H. Fendler, Journal of the American Chemical Society 1983,105,2574.
    [24]T. M. Salama, T. Shido, R. Ohnishi, M. Ichikawa, Journal of Physical Chemistry 1996,100,3688.
    [25]H. Z. Shi, H. J. Bi, B. D. Yao, L. D. Zhang, Applied Surface Science 2000, 161,216.
    [26]T. Kawahara, T. Soejima, T. Mitsui, T. Kiyonaga, H. Tada, S. Ito, Journal of Colloid and Interface Science 2005,286,816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700