岩石破裂过程数值模拟的格构细胞自动机方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着深部采矿工程、地下结构工程的发展,我国将建造更多的深部采矿隧道、永久性地下结构硐室等;但是另一方面一些重大工程灾害如地下硐室的岩爆、采矿工程中的冲击地压等时有发生。岩石破坏机制的研究则是解决并进而控制以上重大工程灾害的基础,这就要求我们从微细观到宏观尺度上认知岩石破坏的规律。虽然众多学者利用不同的方法与理论对其进行过深入的研究,但是由于岩石破坏机制的复杂性,如何将岩石内部赋存的裂纹或缺陷的演化、相互作用与宏观变形和失效联系起来仍是亟待解决的课题。
     本文针对这一课题,基于弹塑性损伤理论,综合了细胞自动机以及格构模型的优点,提出了一种格构细胞自动机模型,用于模拟岩石的破坏过程,研究岩石破坏的机理。主要工作如下:
     1、在前人研究的基础上验证了细胞自动机模型用于固体力学分析的可行性,并基于力的平衡条件、变形协调条件以及本构方程,提出了可用于求解弹性平面桁架、塑性平面桁架、弹性平面刚架以及弹性平面问题的细胞自动机模型;
     2、提出了用于模拟岩石破坏过程的格构细胞自动机模型,给出了模拟岩石破坏过程的基本思路以及模拟岩石非均质性、破坏过程声发射的具体方法;
     3、利用格构细胞自动机模型模拟了单轴直接拉伸条件下岩石的破坏过程,研究了岩石的非均质性、几何形状(高比)以及尺寸等对岩石拉伸断裂过程的影响;并利用该模型模拟了岩石试样在间接拉伸情况下(劈裂试样、三点弯曲试样)的破坏过程,数值模拟结果、试验结果与理论结果吻合较好;
     4、利用细胞自动机模型模拟了单轴压缩条件下岩石的破坏过程,研究了岩石的非均质性、几何形状(高比)以及尺寸等对岩石破坏过程和特性的影响;
     5、利用该模型模拟了岩石试样中裂纹的扩展过程,研究了其扩展机理,首先模拟了单轴拉伸条件下I型裂纹扩展过程,研究了裂纹长度、非均质性等对裂纹扩展的影响,然后研究了单轴压缩条件下,含单个、两个预制裂纹的岩石试样的破坏过程以及扩展机理,分析两裂纹的不同几何位置、间距对裂纹相互作用的影响。
With the development of mining engineering in deep underground and underground structure engineering, more and more mining tunnels and permanent underground caves will be built. On the other hand, some engineering disasters such as rockburst, landslide and so on occur from time to time. The study on mechanisms of rock failure is the basis to solve, finally to control these disasters. It demands of us to understand the mechanisms of rock failure from macroscopic to microscopic scale. Though many scholars have adopted various theories and methods to deeply study the rock failure, because of the complexity of this problem how to connect the macroscopic deformation and failure of rock with the evolution of cracks and defects in rock is still an issue that needs to be solved.
     In order to solve this issue, based on the elastic-plastic failure theory lattice cellular automata are presented to simulate the rock failure and study the mechanisms of rock failure and crack propagation, coalescence. Lattice cellular automata have the advantages of both cellular automata and lattice model. My work can be concluded as below,
     1. Verify the feasibility to adopt cellular automata to solid mechanics analysis. And based on the equilibrium equations, geometrical equations and constitutive equations cellular automata that may be used to solve 2-D truss elastic problems, 2-D truss plastic problems, 2-D rigid framework elastic problems and 2-D continuum elastic problems are introduced or presented.
     2. Lattice cellular automata are presented to simulate rock failure. And the basic thoughts to simulate rock failure, the methods to express the heterogeneity of rock and AE during rock failure are introduced in detail.
     3. Lattice cellular automata are used to simulate the fracture process of rock samples in uniaxial direct tension. And the influences of heterogeneity, slenderness and size of rock samples on rock failure in direct tension are studied. The model is also used to simulate the fracture process under indirect tensile conditions such as splitting and three-point bend and so on. The simulated results are in good accordance with the experimental results.
     4. Lattice cellular automata are used to simulate the failure process under uniaxial compression conditions. The influences of heterogeneity of rock, slenderness and size of rock samples on failure process of rock samples are studied.
     5. The crack extension is also studied based on lattice cellular automata. Firstly the extension of I-type cracks is simulated. The influences of the length of cracks and heterogeneity are studied in uniaxial direct tension. Then in uniaxial compression the fracture processes of samples with one or two pre-existing cracks are simulated. And the influences of geometries and distance of two pre-existing cracks on interaction mechanisms of two pre-existing cracks are studied.
引文
1. 伍法权,中国 21 世纪若干重大工程地质与环境问题,工程地质学报,2001,9(2):115~120
    2. 张晓春、杨挺青、缪协兴,岩石裂纹演化及其力学特性的研究进展,力学进展,29(1):97~104,1999
    3. 夏蒙棼、韩闻生、柯孚久、白以龙,统计细观损伤力学和损伤演化诱致突变(I),力学进展,1995,25(1):1~40
    4. 夏蒙棼、韩闻生、柯孚久、白以龙,统计细观损伤力学和损伤演化诱致突变(II),力学进展,1995,25(2):145~173
    5. Tang C.A., Liu H., Lee P.K.K., Tsui Y. and Tham L. G., Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: effect of heterogeneity, Int. J. Rock Mech. Min. Sci., 2000; 37 (4): 555-569
    6. Tang C. A., Liu H., Lee P. K. K., Tsui Y. and Tham L. G., Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part II: constraint, slenderness, and size effect, Int. J. Rock Mech. Min. Sci., 2000;37(4):571-583
    7. Blair S. C. and Cook N. G. W., Analysis of Compressive fracture in rock using statistical techniques: Part I. A non-linear rule-based model, Int. J. Rock Mech. Min. Sci. ,1998,35(7):837-848
    8. Blair S. C. and Cook N. G. W., Analysis of Compressive fracture in rock using statistical techniques: Part II. Effect of microscale heterogeneity on macroscopic deformation, Int. J. Rock Mech. Min. Sci. ,1998,35(7):849-861
    9. 尹双增,断裂损伤理论及应用,北京:清华大学出版社,1992
    10. 李贺等, 岩石断裂力学,重庆:重庆大学出版社,1988
    11. 陶振宇,试论岩石力学的最新进展,力学进展,1992,22(2):161~172
    12. 于骁中,谯常忻,周群力,岩石和混凝土断裂力学,长沙:中南工业大学出版社
    13. 潘家铮,断裂力学在水工结构设计中的应用,水利学报,1980,1:45~59
    14. 郭少华,混凝土破坏理论研究进展,力学进展,1993,2(4):520~527
    15. 唐辉明,晏同珍,岩体断裂力学理论与工程应用,武汉:中国地质大学出版社
    16. Kesler C.E., Naus D.J. and Lott J.L., Fracture mechanics: its applicability to concrete, In Proc. Int. Conf. On the Mechanical behavior of Materials, Kyoto Soc. of Mat. Sci., Vol. IV,1972:113~124
    17. Ba?ant Z. P. and Er-Ping Chen, 结构破坏的尺度律,力学进展,1999,29(3):383~433
    18. 倪玉山、张琦,混凝土断裂尺寸效应的研究进展,力学进展,1997,27(1):97~127
    19. Walsh P.F., Fracture of plain concrete, Indian Concrete Journal, 1972,46(11)
    20. Walsh P.F., Crack initiation in plain concrete, Magazine Concrete Res. 1976,28:37~41
    21. Hilerborg A., Modeer M. and Peterson P. E. , Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, (6):773~782
    22. 吴智敏,徐世,王金来, 基于虚拟裂缝模型的混凝土双 K 断裂参数,水利学报,1999,7:12~16
    23. 徐道远,俞建荣,粘聚裂纹模型及其在混凝土开裂中的应用,水利学报,1989,9:18~24
    24. 杨庆生,杨卫,断裂过程的有限元模拟,计算力学学报,1997,14(4):407~412
    25. Ba?ant Z. P. and Oh B.H., Crack band model for concrete. Material and Structures, 1983, Vol.16:155~177
    26. Shen B. and Stephansson O., Numerical analysis of mined mode I and mode II fracure propagation, Int. J. Rock Mech. Min. Sci. &Geomech. Abstr. ,1993,30(7):861-867
    27. 王水林、葛修润,流形元方法在模拟裂纹扩展中的应用,岩石力学与工程学报,1997,
    16(5):405~410
    28. 王水林、葛修润、章光,受压状态下裂纹扩展的数值分析,岩石力学与工程学报,1999,
    18(6):671~675
    29. 周维垣,寇晓东,无单元法及其在岩土工程中的应用,岩土工程学报,1998,20(1)
    30. 卢春生,无序介质的破坏理论,力学与实践,1996,18(3):8~12
    31. Curran D.R., Seaman L. and Shockey D. A., Dynamic failure of solids, Phys. Rep., 1987, 147: 253~388
    32. 邢修三,非平衡统计断裂力学基础,力学进展,1991,21:153~168
    33. 沈为,损伤力学,武汉:华中理工大学出版社,1989
    34. 余天庆,损伤理论及其应用,北京:国防工业出版社,1993
    35. 谢和平,岩石、混凝土损伤力学,徐州:中国矿业大学出版社
    36. 谢和平,分形岩石力学,北京:科学出版社
    37. 谢和平、刘夕才、王金安,关于 21 世纪岩石力学发展战略的思考,岩土工程学报,1996,18(4):98~102
    38. 唐春安,岩石破裂过程中的灾变,北京:煤炭工业出版社,1993
    39. 唐春安、朱万成,混凝土损伤与断裂——数值试验,北京,科学出版社,2003
    40. 杨延毅,混凝土损伤断裂过程研究,浙江大学学报(自然科学版),1993,27(5):654~662
    41. 杨延毅,周维垣,岩石与混凝土类材料的断裂过程研究,水利学报,1992,11:69~74
    42. 凌建明,节理岩体损伤力学研究中的若干问题,力学进展,1994,25(2):257~263
    43. 孙钧,凌建明,三峡船闸高边坡岩体的细观损伤及长期稳定性研究,岩石力学与工程学报,1997,16(1):1~7
    44. 凌建明,岩石蠕变裂纹起裂与扩展的损伤力学分析方法,同济大学学报,1995,23:141~145
    45. 杨卫,细观力学和细观损伤力学,力学进展,1992,22(1):1~9
    46. Haritos G.K., Hager J.W. and Amos A.K. 等,细观力学:细观结构与力学的纽带,力学进展,1990,20(3):394~400
    47. 凌建明,压缩荷载条件下岩石细观损伤特征的研究,同济大学学报,1993,21(2):219~226
    48. 杨更社、谢定义、张长庆等,岩石损伤特征的 CT 识别,岩石力学与工程学报,1996,15(1):48~54
    49. 杨更社、谢定义、张长庆等,岩体损伤的 CT 数分布规律的定量分析,岩石力学与工程学报,1998,17(3):279~285
    50. 杨更社、谢定义、张长庆等,岩石损伤扩展力学特性的 CT 分析,岩石力学与工程学报,1999,18(3):250~254
    51. 葛修润、任建喜、蒲毅彬等,煤岩三轴细观损伤的演化规律的 CT 分析,岩石力学与工程学报,1999,18(5):497~502
    52. 葛修润、任建喜、蒲毅彬等,岩石细观损伤演化规律的 CT 实时试验研究,中国科学 E,2000, 30(2):104~111
    53. 任建喜、葛修润、蒲毅彬等,岩石卸荷损伤演化机理 CT 实时分析初探,岩石力学与工程学报,2000,19(6):104~111
    54. 任建喜、葛修润,岩石蠕变损伤扩展机理细观分析初探,岩石力学与工程学报,2001,20(增 1):871~874
    55. 冯夏庭,智能岩石力学导论,北京:科学出版社,2000
    56. Feng, X. T., Chen S.L. and Li, S.J, Effects of water chemistry on microcracking andcompressive strength of granite, Int. J. Rock Mech. Min. Sci., 2001,38(4):557~568
    57. Feng, X.T., Li T.J. and Seto M., Nonlinear evolution properties of rock microfracturing affected by environment. Key Engineering Material, 2000,713~718
    58. Feng X.T. and Seto M., Fractal structure of the time distribution of microfracturig in rocks. Geophysical Journal International,1999,136:275~285
    59. Feng X.T. and Seto, M., A new method of modeling the rock-microfracturing process in double torsion experiments using neural networks. International Journal of Analytic and Numerical Methods in Geomechanics,1999,23:905-923
    60. 冯夏庭,王川婴,陈四利,受环境腐蚀的岩石细观破裂过程试验与实时观测.岩石力学与工程学报,2002,21(7):935-939
    61. 陈四利,冯夏庭,李邵军,化学腐蚀对黄河小浪底砂岩力学特性的影响.岩土力学, 2002.23(3):284-287
    62. 陈四利,冯夏庭,李邵军,岩石单轴抗压强度与破裂特征的化学腐蚀效应.岩石力学与工程学报, 2003,22(4):547-551.
    63. 陈四利,冯夏庭,李邵军,化学腐蚀下三峡花岗岩的破裂特征.岩土力学 , 2003,24(5):817-821
    64. 陈四利,冯夏庭,周辉,化学腐蚀下砂岩三轴压缩力学效应的试验.东北大学学报, 2003,23(3):292-295.
    65. 冯夏庭 ,赖户政宏,化学环境侵蚀下的岩石破裂特性—第一部分:试验研究.岩石力学与工程学报,2000. 19(4):403-407
    66. 王泳嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性—第二部分:时间分形分析.岩石力学与工程学报,2000. 19(5):551-556
    67. 杜善义、王彪,复合材料细观力学,科学出版社,1998
    68. 曾庆敦,复合材料的细观破坏机制与强度,北京:科学出版社,2002
    69. 黄模佳、扶名福、H、布弗勒,弹塑性损伤问题自洽分析方法,应用数学和力学,1998,19(12):1119~1125
    70. 戴兰宏、黄祝平、王仁,广义自洽 Mori-Tanaka 模型及涂层夹杂体复合材料的有效模量,固体力学学报,1999,20(3):187~194
    71. 陈浩然、苏晓风、郑长良,广义自洽有限元迭代平均化方法,大连理工大学学报,1993,35(6):790~795
    72. 冯西桥、余寿文,计算微裂纹损伤材料有效模量的一种简单方法,力学学报,2001,3391):102~108
    73. 杨庆生、陈浩然,夹杂问题中的自洽有限元和复合材料的平均弹性性能,复合材料学报,1992,9(1):79~84
    74. 霍凯成,自洽法算复合材料有效性能重要公式的推导,武汉理工大学学报,2001,23(8):42~44
    75. 杨卫、张宿林、李腾,随机分布共线微裂纹的强相互作用,上海力学,997,18(3):189~195
    76. 陶振宇、李广平,裂纹相互作用的统计有效场方法,武汉水利电力大学学报,1994,27(2):174~176
    77. 李广平,类岩石材料微裂纹损伤模型分析,岩石力学与工程学报,1995,14(2):107~117
    78. Curtin W.A. and Scher H., Brittle fracture in disordered materials: a spring network model, J. Mater. Res., 1990,5:535~553
    79. Curtin W.A., Ahn B. K. and Taketa N., Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites, Acta. Mater. 1998,46:3409~3420
    80. Murat M., Anholt M., and Wagner H.D., Fracture Behavior of Short-fiber Reinforced Materials, J. Mater. Res. 1992,7(11): 3120-3131
    81. Van Mier J. G. M., Mode I fracture of concrete: discontinuous crack growth crack interface grain bridging, Cement and Concrete Research, 1991,21:1~15
    82. Van Mier J. G. M., Facture processes of concrete: assessment of material parameters for fracture models. 1997, CRC Press, Inc., Boca Raton, Florida, U. S.
    83. Van Mier J. G. M., Vervuurt A. and Van Vliet M. R. A., Materials engineering of cement-based composites using lattice models, Computational Fracture Mechanics in Concrete Technology: 1~32.
    84. Schlangen E. and Van Mier J. G. M., Simple lattice model for numerical simulation of concrete material and structures, Material and Structure, 1992,25:534~542
    85. Schlangen E. and Van Mier J. G. M., Micro-mechanical analysis of fracture of concrete, Int. J. Damage Mech., 1992,1:435~454
    86. Schlangen E. and Garboczi E. J., Fracture simulations of concretes using lattice model: computational aspects, Engng. Fracture Mech.,1997,57(2/3):319~332
    87. Raghuprasad B. K., Bhattacharya G. S. and Mihashi H., Size effect in notched concrete plane under plane stress-a lattice model, Int. J. of Fracture, 1994, 67:R3~R8
    88. Raghuprasad B. K. and Bhat D.N., Bhattacharya G. S., Simulation of Fracture in a Quasi-brittle Material in Direct Tension –a Lattice Model, Engineering Fracture Mechanics, 1998, 61, pp445~460,
    89. Cundall P.A., A computer model for simulating progressive large scale movement in blocky rock systems. Proc. Int. Symp. Rock Fracture, 1971,ISRM, Nancy, France:2~8,
    90. Cundall P.A. and Strack O.D.L., A discrete numerical model for granular assembles, Geotechnique, 1979,29:47~65
    91. Ba?ant Z P, et al, Random particle model for fracture of aggregate or fiber composites, J. Engng. Mech. 1990,116(8):1686-1705
    92. Peter Mora and David Place, Simulation of the frictional stick-slip instability, PAGEOPH, 1994,143:61~87
    93. David Place and Peter Mora, The lattice solid model to simulate the physics of rocks and earthquakes: incorporation of friction, Journal of Computational Physics, 1999,150:332~372
    94. Zhong X. X. and Chang C. S., Micromechanical modeling for behavior of cementitious granular materials, Journal of Engineering Mechanics, ASCE, 1999,.125(11):1280~1285
    95. Mohamed A.R. and Hansen W., Micromechanical modeling of concrete response under static loading—Part I: Model development and validation, ACI Materials Journal, 1999,96, 2:196~203
    96. Mohamed A.R. and Hansen W., Micromechanical modeling of concrete response under static loading—Part II: Model predictions for shear and compressive loading, ACI Materials Journal, 1999,96,3:354~358
    97. 邢纪波、俞良群、王泳嘉,砂岩类脆性无序介质连续破坏过程的细观模拟,地质力学学报,1998,4(3):28~35
    98. 邢纪波、俞良群、王泳嘉,三维梁-颗粒模型与岩石类材料细观力学行为模拟,岩石力学与工程学报,1999,18(6):627~630
    99. 刘光廷、王宗敏,用随机骨料模型数值模拟混凝土材料的断裂,清华大学学报(自然科学版),1996(36):84~89
    100. 王宝庭、宋玉普、赵国藩,混凝土随机颗粒模型的网格自动剖分方法,大连理工大学学报,1999,39(3)445~450
    101. Tadmor E.B., Ortia M. and Phillips R. et al., Quasi-continuum analysis of defects in solids, Philosophical Magazine A, 1996,73(6): 1529~1536
    102. Hardy J., Pomeau Y. and de Pazzis O., Time evolution of a two-dimensional model system, J. Math. Phys., 1974,14:1746~1759
    103. Hardy J. and Pomeau Y., Thermodynamics and hydrodynamics for a model fluid, J. Math. Phys.1972, 13:1042~1051
    104. Hardy J., de Pazzis O. and Pomeau Y., Molecular dynamics of a classical lattice gas transport properties and time correlation functions, Phys. Rev. A, 1976, 13:1949~1961
    105. Wolfram S., Statistical mechanics of cellular automata, Rev. Mod. Phys., 1983,601~644
    106. Wolfram S., Celluar automaton fluids: Basic theory, J. Stat. Phys., 1986,45:471~526
    107. Wolfram S., Theory and applications of Cellular automata, World Publishing CO. PTE. LTD., 1986
    108. Wolfram S., Cellular automata and complexity, Addison-Wesley, Reading MA, 1994
    109. Hardy J., Pomeau Y. and de Pazzis O., Time evolution of a two-dimensional model system, J. Math. Phys., 1973,14:1746~1759
    110. Frisch U., Hasslacher B. and Pomeau Y., Lattice-gas automata for the Navier-Strokes equation, Phys. Rev. Lett., 1986, 56:1505~1508
    111. 朱照宣,点格自动机,力学与实践,1987,9:1~6
    112. 李元香,康立山,陈毓屏,格子气自动机,清化大学出版社、广西科学技术出版社,1994
    113. 周成虎、孙战利、谢一春,地理元胞自动机研究,科学出版社,2001
    114. Montheillet F. and Gilormini P., Predicting the mechanical behavior of two-phase materials with cellular automata, International Journal of Plasticity, 1996,12(4):561~574
    115. Kuntz M., Lavallee P. and Mareschal J. C., Determination of elastic properties of very heterogeneous media with cellular automata, Journal of Geophysical Research, 1997,102(B4):7647~7658
    116. Gurdal Z. and Tatting T., Cellular automata for design of truss structures with linear and non-linear response, Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics and Materials Conference, Atlanta, GA, April 3~6,2000
    117. Tatting T. and Gurdal Z., Cellular automata for design of two-dimensional continuumstructure, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 6-8, 2000
    118. 沈成武,戴诗亮,杨吉新等,平面弹性力学中的细胞自动机方法,清华大学学报(自然科学版),2001,41(11):35-38
    119. 沈成武,唐小兵,杨吉新,平面桁架力学分析的细胞自动机方法初探,武汉交通科技大学学报,2000,24(2):105-108
    120. 周辉. 矿震孕育过程的混沌性及非线性预测理论研究[博士学位论文[D]. 沈阳:东北大学,2000:70~73
    121. 周辉、王泳嘉、谭云亮、冯夏庭. 岩石破坏过程的物理细胞自动机模型(I)—基本模型. 岩石力学与工程学报. 2002,21(4):475~478
    122. 周辉、谭云亮、冯夏庭、王泳嘉. 岩石破坏过程的物理细胞自动机模型(Ⅱ)—模拟例证. 岩石力学与工程学报. 2002,21(6):782~786
    123. 周辉、冯夏庭、谭云亮、王泳嘉. 物理细胞自动机与岩石弹-脆-塑性性质的细观机制研究. 岩土力学. 2002,23(6):678~682
    124. 谭云亮、周辉、王泳嘉、马志涛. 模拟细观非均质材料破坏演化的物理元胞自动机 PCA理论. 物理学报. 2001,50(4):704~710
    125. Hiizu Nakanishi. Cellular-automata of earthquakes with deterministic dynamics[J]. Physical Review A,1990,41(12):7 086~7 089
    126. Bak P and Chao T. Earthquakes as a self-organized critical phenomenon[J]. J. Geophys. Res.,1989,94(1 311):15 635~15 637
    127. Chen K and Bak P. Self-organized criticality in a crack-propagation model of earthquakes[J]. Phy. Rev. A,1991,43(2):625~630
    128. 郑 捷. 研究地震和岩石破裂现象的非线性科学方法[A]. 见:非线性科学在地震中的应用[C]. 北京:地震出版社,1992,45~538
    129. 陆远忠,吕悦军. 带断层的细胞自动机及其算法复杂性[J]. 地震学报,1994,16(2):183~189
    130. 刘长海,陈军,凌学书. 三维大型 CA 的“地震”能量—频度、时空分布[J]. 地震学报,1997,19(3):299~302
    131. 刘 杰,刘桂萍,李 丽等. 基于大陆地震活动特点建立的简化动力学模型—细胞自动机模型[J]. 地震,1999,19(3):230~238
    132. 滕山邦久,声发射(AE)技术的应用,冯夏庭译,北京:冶金工业出版社
    133. 李先炜,岩块力学性质,北京:煤炭工业出版社,1983
    134. Hudson J.A., Crouch S., Fairhurst C., Soft, stiff and servo-controlled testing machines. Eng. Geol., 1972,6(3):155~189
    135. 潘一山、魏建明,岩石材料应变软化效应的实验和理论研究,岩石力学与工程学报,2002,21(2):215~218
    136. 尤明庆、邹友峰,关于岩石非均质性与强度尺寸效应的讨论,岩石力学与工程学报,2000,19(3):391~395
    137. 尤明庆,岩石试样的强度及变形破坏过程,北京:地质出版社,2000
    138. 陈颙,地壳岩石的力学性能—理论基础与实验方法,北京:地震出版社
    139. 陈颙、黄庭芳,岩石物理学,北京:北京大学出版社,2001
    140. 周维垣(主编),高等岩石力学,北京:水利水电出版社
    141. 王仁、熊祝华、黄文彬,塑性力学基础,北京:科学出版社,1998
    142. 刘鸿文(主编),材料力学(上、下册),北京:高等教育出版社,1979
    143. Ba?ant, Z.P. and Pfeiffer, P.A., Determination of fracture energy from size effect and brittleness number, 1987,34:379~388
    144. 郑哲敏、周恒、张涵信等,21 世纪初的力学发展趋势,力学进展,1995,25(4):433~441
    145. 郭少华、孙宗,谢晓晴,压缩条件下岩石断裂模式与断裂判据的研究,岩土工程学报,24(3):304~308,2002
    146. 郭少华、孙宗颀,压应力下脆性椭圆型裂纹的断裂规律,中南工业大学学报,32(5):457~460,2001
    147. 李银平,岩石类材料损伤断裂机制研究,博士学位论文,华中科技大学,2003
    148. 李银平、王元汉、肖四喜,类岩石材料中压剪裂纹的相互作用分析,岩石力学与工程学报,2003(4)
    149. 朱维申、李术才、陈卫忠,节理岩体破坏机理和锚固效应与工程应用,北京:科学出版社,2002
    150. 朱维申、何满潮,复杂条件下围岩稳定性与岩体动态施工力学,北京:科学出版社
    151. 朱维申、陈卫忠、申晋,雁行裂纹扩展的模型试验及断裂机制研究,固体力学学报,1998,19(4):355~360
    152. 李新平,朱维申,多裂隙岩体的损伤断裂分析与工程应用,岩土工程学报,1992,14(4):1~8
    153. 王庚孙、袁建新、吴玉山,多裂纹材料的单轴压缩破坏机制与强度,岩土力学,1992,13(4):1~12
    154. 白世伟、任伟中、丰定祥等,平面应力条件下闭合断续节理岩体破坏机理及强度特征,岩石力学与工程学报,1999,18(6):635~640
    155. 张梅英、袁建新、李廷芥等,单轴压缩过程中岩石变形破坏机理,岩石力学与工程学报,1998,17(1):1~8
    156. Wong R.H.C. and Chau K.T., Crack coalescence in a rock-like material containing two cracks, Int. J. Rock Mech. Min. Sci., 1998, 35(2):147-164
    157. Wong R.H.C., Chau K.T., Tang C. A. and Lin P., Analysis of crack coalescence in rock-like material containing three flaws—Part I: experimental approach, Int. J. Rock Mech. Min. Sci., 2001,38(9): 909-924
    158. Tang C. A., Lin P., Wong R. H. C. and Chau K. T., Analysis of crack coalescence in rock-like material containing three flaws—Part II: Numerical approach, Int. J. Rock Mech. Min. Sci., 2001,38(7): 925-936
    159. Bobet A. and Einstein H. H., Fracture coalescence in rock-type materials under uniaxial and biaxial compression, Int. J. Rock Mech. Min. Sci., 1998,35(7): 863-888
    160. Scavia C., A method for the study of crack propagation in rock structure, Geotechnique, 1995,45(3): 447-463
    161. Carpinteri A., Scavia C. and Yang G. P., Microcrack propagation , coalescence and size effect in compression, Engineering Fracture Mechanics. 1996,54(3): 335-347
    162. Shen B. and Stephansson O., Numerical analysis of mined mode I and mode II fracure propagation, Int. J. Rock Mech. Min. Sci. &Geomech. Abstr., 1993,30(7): 861-867
    163. Shen, B., Stephansson, O. and Einstein, H. H. and Ghahreman, b., Coalescence of fracture under shear stresses in experiments, J. Geophys. Res., 1995,100(B4): 5975-5990
    164. Shen, B., The mechanism of fracture coalescence in compression experimental study and numerical simulation, Eng. Fract. Mech. 1995,51(1): 73-85
    165. Reyes O. Experimental study and analytical modeling of compressive fracture in brittle materials. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, 1991
    166. Reyes O. and Einstein H. H., Fracture mechanics of fractured rock—A fracture coalescencemodel, 7th Int. Congress on Rock Mech. , 1991,:333-340
    167. Nemat-Nasser S. and Horri H., Compression-induced nonplanar crack extension with appllication to splitting, exfoliation and rockbursts, J. Geophys. Res., 1982, 87(B8):6805-6821
    168. Horii, H. and Nemat-Nasser, S., Compression-induced microcrack growth in brittle solids: axial splitting and shear failure, J. Geophys. Res., 1985, 90(B4): 3105-3125
    169. Belytschko T., Krongauz Y. and Organ D., et al., Meshless method : an overview and resent development, Comput. Methods Appl. Mech. Engg. , 1996,139:3-47
    170. 黄明利,脆性材料三维裂纹扩展贯通机制试验研究,中国科学院武汉岩土力学研究所博士后研究工作报告,2003
    171. Dyskin A.V. and Germanovich L.N., Fracture mechanism and instability of openings in compression. International Journal of Rock Mechanics and Mining Sciences, 2000, 37:163~284
    172.Dyskin A.V., Germanovich L.N. and Ustinov K.B., Asymptotic analysis of crack interaction with free boundary, International Journal of Solids and Structures, 2000,37(6):857~886
    173. Hudson J.A. and Harrison J.P. , Engineering rock mechanics, Pergamon,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700