人工电磁特异材料的物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们知道光是一种电磁波,由谐振的电场和磁场组成。当一束可见光通过一个透镜时,由于光波的波长几百倍于组成透镜的原子尺寸大小,原子本身的细节信息在描述光与透镜相互作用时已经不那么重要,从宏观的角度而言,原本非均匀离散体系可以认为是均匀连续的系统,因而对于光波的响应就可以用两个宏观的电磁参量来描述:介电常数ε和磁导率μ。电磁特异材料(Metamaterial)正是基于这种理念提出来的。电磁特异材料是由对电磁场具有特殊响应的人造谐振结构组成,只是原来原子和电子被人造的共振结构单元所代替,但在长波极限条件下,基于有效媒质理论同样可以用两个宏观等效的参量来描述:有效介电常数和有效磁导率。这种材料可以被设计成具有一些自然界中很难或不可能存在的奇异性质,而这些性质起源于特异材料的亚波长结构细节,而非材料本身的化学成分。电磁特异介质、光子晶体等“结构”材料的发展大大地拓宽人造波功能介质研究领域的范围。这些介质使常规材料所没法满足的Maxwell方程的解得以实现,推动了人们对新颖物理的探索和新材料器件的研究。
     特异材料的设计已取得了重大的进展。在第二章中,首先将简要介绍人们如何获得具有等效的负介电常数的电谐振介质,接着重点讨论人们如何在不同波段设计和实现拥有等效的负磁导率的磁谐振介质和双负电磁特异介质,最后将介绍怎么样通过S参数(透射系数和反射系数)来反解体系等效的介电常数和磁导率。接下来,将分四个章节具体阐述我们在电磁特异材料领域所做的系列工作。
     第三章,我们将建立关于一种电磁特异材料高阻抗表面结构的等效介质模型。不管顶层频率选择表面如何复杂,此类三层结构材料都可以用电磁特异介质层加金属衬垫层的双层等效介质模型来描述。等效介质模型关于反射相位性质和表面波性质的讨论与基于真实结构的数值模拟的完美吻合证明了此模型的有效性。此模型非常有用,为我们后面章节的工作提供了强有力的理论支持。
     第四章,基于电磁特异材料奇特的反射相位性质,我们介绍了一种构建亚波长谐振腔的新方法。此方法可以突破传统谐振腔对腔体厚度的限制。文中以一维和三维谐振腔为例做具体说明。对于一维亚波长谐振腔,其腔体的厚度可以做到只为工作波长的1/12,并且此亚波长谐振腔还可以用来作为天线辐射基板,有很好电磁波辐射定向性。对于三维亚波长谐振腔其中的一个样品,我们同样也可以做到其尺寸大小只有工作波长的1/4。微波实验和数值模拟结果与理论预言吻合的非常好。
     第五章,我们将发展一套研究各向异性电磁特异介质层散射问题的4×4转移矩阵法。首先通过对各个均匀各向异性介质层中电磁波的本征行为的讨论,得出其中的场分布形式。然后,根据边界条件电磁场切向分量守恒,建立不同层之间电磁场相互联系的转移矩阵。最后通过此转移矩阵方法,给出求解此类体系的透射谱和反射谱表达式。
     基于4×4转移矩阵方法,在第六章中,我们将由简入深依次讨论各向异性电磁特异介质界面、单层各向异性电磁特异介质板和双层电磁特异介质板,三类电磁特异介质体系的散射问题。着重讨论电磁波的极化转变现象。我们发现双层特异介质板可以用来有效的调节电磁波的极化。当一束线极化的电磁波入射到具有特定结构的双层各向异性电磁特异介质表面时,其反射波的极化可以是线极化,圆极化或者椭圆极化中任何一种情况。特别是在某些特定的条件下,可以得到与原入射波极化方向相比被旋转了任意角度的线极化反射波,甚至极化方向完全反转。微波实验和时域有限差分数值模拟很好的证明了我们的设想。
We know that light is an electromagnetic wave,consisting of oscillating electric and magnetic fields.Consider light passing through a plate of glass.Because visible light has a wavelength that is hundreds of times larger than the atoms of which the glass is composed,the atomic details lose importance in describing how the glass interacts with light.In practice,we can average over the atomic scale,conceptually replacing the otherwise inhomogeneous medium by a homogeneous material characterized by just two macroscopic electromagnetic parameters:the electric permittivity,ε,and the magnetic permeability,μ.From the electromagnetic point of view,we have created an artificial material,or metamaterial.Metamaterials are artificial electromagnetic materials composed by subwavelength local resonance structures of electric and/or magnetic type.In the long wavelength limit,the effective permittivity and effective permeability can be used to describe the scattering properties of the structured objects based on the effective medium theory,metamaterials,owing their properties to subwavelength details of structure rather than to their chemical composition,can be designed to have properties difficult or impossible to find in nature.The range of available wave-functional materials has been broadened by recent developments in structured media,notably photonic band gap materials and metamaterials.These media have allowed the realization of solutions to Maxwell's equations not available in naturally occurring materials,fueling the discovery of new physical phenomena and the development of devices.
     Progress in the design of metamaterials has been impressive.In chapter 2 first we briefly present how to design the electric response materials with negative values of the permittivity,then we focus on discussion of the fabrications of magnetic response materials and negative refractive index materials,finally we introduce the method to determine the effective permittivity and permeability from reflection and transmission coefficients.
     In Chapter 3,we show that all these high-impedance surfaces,no matter how complex they appear,can be modeled by a double-layer system consisting of a homogeneous anisotropic meta-material layer(with a dispersive permeabilityμ) put on top of a metal sheet,and demonstrate its validity to describe both the reflective and surface wave properties of the realistic structures.
     In chapter 4,we propose a method to break the size restrictions imposed strictly on conventional cavities based on the reflection phase properties of metamaterial reflectors. For instance,we design a one-dimensional subwavelength cavity and two all-dimensional subwavelength cavities.The side of the one-dimensional cavity is only 1/12 of the working wavelength,especially,which can be used to achieve the directive emission.For the smallest all-dimensional cavity the we fabricated,each dimension is only a quarter of the resonance wavelength,we also perform experiments and simulations to demonstrate their subwavelength functionalities.
     In chapter 5 We establish a generalized 4×4 transfer-matrix method to study the scatterings of electromagnetic waves by anisotropic metamaterials.We will first study the wave propagations inside a single layer,and then set up a transfer matrix to connect the fields belonging to different layers,and finally derive the formulas to calculate the transmission and/or reflection coefficients.
     we employ the generalized 4×4 transfer-matrix method to study the electromagnetic wave scatterings by several types of anisotropic metamaterials In chapter 6,with attention mainly focused on the polarization manipulation effect.We will illustrate the ideas with three examples,namely,an anisotropic interface,a single anisotropic meta-material slab,and a double-plate metamaterial reflector.We show that the polarization states of electromagnetic waves can be manipulated availably through reflections by double-plate anisotropic metamaterial reflector,and all kinds of polarizations(circular, elliptic,and linear) realizable via adjusting material parameters.In particular,we show it is possible to rotate the polarization direction of a linearly polarized EM wave by an arbitrary angle using a planar reflector of thickness much less than wavelength.Microwave experiments and finite-difference-time-domain simulations on realistic structures are performed to successfully verify all theoretical predictions.
引文
[1] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
    [2] J. B. Pendry, et al, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [3] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
    [4] R. A. Shelby, D. R. Smith, S. Schultz, Science 292, 77 (2001).
    [5] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, Science 305, 788 (2004).
    [6] J. B. Pendry, Contemp. Phys. 45, 191 (2004).
    [7] UlfLeonhardt, Science 312, 1777(2006).
    [8] J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780 (2006).
    [9] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Science 314, 977 (2006).
    [10] Xinhua Hu, Yifeng Shen, Xiaohan Liu, Rongtang Fu, and Jian Zi, Phys. Rev. E 69, 030201(R) (2004).
    [11] Jensen Li and C. T. Chan, Phys. Rev. E 70, 055602(R) (2004).
    [12] J. D. Jackson, Classical Electrodynamics, 3rd ed. (New York, Wiley, 1999).
    [13] Jin Au Kong, Electrormagnetic Wave Theory (EMW, Cambridge, MA, 2000).
    [14] T. Koschny and M. Kafesaki, E. N. Economou, C. M. Soukoulis, Phys. Rev. Lett. 93, 107402 (2004).
    [15] S Anantha Ramarkrishna, Rep. Prog. Phys. 68, 449 (2005).
    [16] H. Lamb, Proc. London Math. Soc. 1, 473 (1904).
    [17] H. C. Pocklington, Nature 71, 607 (1905).
    [18] A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, London, 1904).
    [19] D. V. Sivukhin, Opt. Spektrosk. 3, 308 (1957).
    [20] V. E. Pafomov, Sov. Phys. JETP 9, 1321 (1959).
    [21] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [22] Max Born, Emil Wolf, Principles of Optics (Cambridge university press, Cambridge, England, 1999).
    [23] Eugene Hecht, Optics (Addison Wesley, New York, US, 2002).
    [24] Willie J. Padilla, Dimitri N. Basov, D. R. Smith, Materialstoday 9, 28 (2006).
    [25] Costas M. Soukoulis, Maria Kafesaki, Eleftherios N. Economou, Adv. Mater. 18, 1941 (2006).
    [26] P. M. Valanju, R. M. Walser, A. P. Valanju, Phys. Rev. Lett. 88, 187401 (2002).
    [27] N. Garcia and M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 207403 (2002).
    [28] N. Garcia and M. Nieto-Vesperinas, Opt. Lett. 27, 885 (2002).
    [29] C. G. Parazzoli, R. B. Greegor, K. Li, B. E.C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
    [30] Andrew A. Houck, Jeffrey B. Brock, and Isaac L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
    [31] D. R. Smith and N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).
    [32] J. Pacheco, Jr., T.M. Grzegorczyk, B.-I.Wu, Y. Zhang, and J. A. Kong, Phys. Rev. Lett. 89, 257401 (2002).
    [33] J. B. Pendry, D. R. Smith, Phys. Rev. Lett. 90, 029703 (2003).
    [34] S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 90, 107402 (2003).
    [35] John Pendry, Nature 423, 22 (2003).
    [36] J. B. Pendary, Phys. Rev. Lett. 85, 3966 (2000).
    [37] M. Notomi, Phys. Rev. B 62, 10696 (2000).
    [38] Lei Zhou, C. T. Chan, and P. Sheng, Phys. Rev. B 68, 115424 (2003).
    [39] Tomasz M. Grzegorczyk, Zachary M. Thomas, and Jin Au Kong, Appl. Phys. Lett. 86,251909(2005).
    [40] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Butterworth-Heinemann Ltd., London, England, 1984).
    [41] R. W. Ziolkowski, Phys. Rev. E 63, 046604 (2001).
    [42] R. W. Ziolkowski and E. Heyman, Phys. Rev. E 64, 056625 (2001).
    [43] R. Ruppin, Phys. Lett. A 299, 309 (2002).
    [44] Tie Jun Cui and Jin Au Kong, Phys. Rev. B 70, 205106 (2004).
    [45] J. Zenneck, Ann. der Physik, 23, 846 (1907).
    [46] A. Sommerfeld, Ann. der Physik, 28, 665 (1909).
    [47] Electromagnetic Surface Modes, edited by A. D. Boardman (Wiley, Belfast, Northern Ireland, 1982).
    [48] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988); Surface Polaritons, edited by V. M. Agranovich and D. L. Mills (North-Holland, Amsterdam, 1982).
    [49] S. Savel'ev et al., Phys. Rev. Lett. 95, 187002 (2005).
    [50] A. V. Kats, Sergey Savel'ev, V. A. Yampol'ski, and Franco Nori, Phys. Rev. Lett. 98, 073901 (2007).
    [51] R. Ruppin, Phys. Lett. A 277, 61 (2000).
    [52] R. Ruppin, J. Phys.: Condens. Matter 13, 1811 (2001).
    [53] R. Ruppin, J. Phys.: Condens. Matter 16, 5991 (2004).
    [54] Lei Zhou and C. T. Chan, Appl. Phys. Lett., 84, 1444 (2004).
    [55] Weihua Wang, Xueqin Huang, Lei Zhou, and C.T.Chan, Opt. Lett. 33, 369 (2008).
    [56] J. B. Pendry, Phys. Rev. Lett. 91, 099701 (2003).
    [57] D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506 (2003).
    [58] X. S. Rao and C. K. Ong, Phys. Rev. B 68, 113103 (2003).
    [59] X. S. Rao and C. K. Ong, Phys. Rev. E 68, 067601 (2003).
    [60] S. A. Cummer, Appl. Phys. Lett. 82, 1503 (2003).
    [61] P. F. Loschialpo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, Phys. Rev. E 67, 025602(R) (2003).
    [62] L. Chen, S. He and L. F. Shen, Phys. Rev. Lett. 92, 107404 (2004).
    [63] R. Merlin, Appl. Phys. Lett. 84, 1290 (2004).
    [64] Y. Zhang, T. M. Grzegorczyk, and J. A. Kong, Electromagn. Waves 35, 271 (2002).
    [65] G. Gomez-Santos, Phys. Rev. Lett. 90, 077401 (2003).
    [66] L. Zhou and C. T. Chan, Appl. Phys. Lett. 86, 101104 (2005).
    [67] L. Zhou and C. T. Chan, Opt. Lett. 30, 1812 (2005).
    [68] Lei Zhou, Xueqin Huang, and C. T. Chan, Photonics and Nanostructures: Fundamentals and Applications, 3, 100 (2005).
    [69] Xueqin Huang, Lei Zhou, and C. T. Chan, Phys. Rev. B 74, 045123 (2006).
    [70] Hongqiang Li, Jiaming Hao, L. Zhou, Z. Y. Wei, L. K. Gong, H. Chen, and C. T. Chan, Appl. Phys. Lett. 89, 104101 (2006).
    [71] D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, IEEE Trans. Microwave Theory Tech. 47, 2059 (1999).
    [72] R. Coccioli, F.R. Yang, K.P. Ma, T. Itoh, IEEE Trans. Microw. Theory Technol. 47, 2123 (1999).
    [73] F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, IEEE Trans. Microwave Theory Tech. 47, 2092 (1999).
    [74] F. Yang, Y. Rahmat-Samii, IEEE Trans. Antennas Propag. 51, 2691 (2003).
    [75] L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, Appl. Phys. Lett. 83,3257 (2003).
    [76] C.R. Simovski, P. de Maagt, S.A. Tretyakov, M. Paquary, A.A. Sochava, Electron. Lett. 40, 92 (2004).
    [77] J.McVay, N. Engheta, A. Hoorfar, IEEE Microw. Wirel. Comp. Lett. 14, 130 (2004).
    [78] C.R. Simovski, P. de Maagt, I. Melchakova, IEEE Trans. Antennas Propag. 53, 908 (2005).
    [79] D.J. Kern, D.H.Werner, A.Monorchio, L. Lanuzza, M.J.Wilhelm, IEEE Trans. Antennas Propag. 53, 8 (2005).
    [80] L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, Appl. Phys. Lett. 86, 101101 (2005).
    [81] A. P. Fresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, IEEE Trans. Antennas Propag. 53, 209 (2005).
    [82] A. Ourir, A. de Lustrac, and Jean-Michel Lourtioz, Appl. Phys. Lett. 88,084103 (2006).
    [83] G. Goussetis, A.P. Feresidis, J.C. Vardaxoglou, IEEE Trans. Antennas Propag. 54, 82 (2006).
    [84] U. Leonhardt, New J. Phys. 8, 118 (2006).
    [85] D. Schurig, J. B. Pendry, and D. R. Smith, Opt. Express 14, 9794 (2006).
    [86] A. J. Ward, J. B. Pendry, J. Mod. Opt. 43, 773 (1996).
    [87] U. Leonhardt, IEEE J. Selected Topics Quantum Electronics 9, 102 (2003).
    [88] Zhichao Ruan, Min Yan, Curtis W. Neff, and Min Qiu, Phys. Rev. Lett. 99, 113903(2007).
    [89] Min Yan, Zhichao Ruan, and Min Qiu, Phys. Rev. Lett. 99, 233901 (2007).
    [90] A. Alu and N. Engheta, Phys. Rev. E 72, 016623 (2005).
    [91] D. A. B. Miller, Opt. Express 14, 12457 (2006).
    [92] S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, Phys. Rev. E 74, 036621 (2006).
    [93] U. Leonhardt and T. G. Philbin, New J. Phys. 8, 247 (2006).
    [94] G.W. Milton, M. Briane, and J. R. Willis, New J. Phys. 8, 248 (2006).
    [95] F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, Opt. Lett. 32, 1069 (2007).
    [96] W. Cai, U. K. Chettiar, A.V. Kildishev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007).
    [97] H. Chen and C. T. Chan, Appl. Phys. Lett. 90, 241105 (2007).
    [98] W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, Appl. Phys. Lett. 91, 111105(2007).
    [99] H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, Phys. Rev. Lett. 99,063903 (2007).
    [100] Peijun Yao, Zixian Liang, and Xunya Jiang, Appl. Phys. Lett. 92,031111 (2008).
    [101] Eli Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [102] Sajeev John, Phys. Rev. Lett. 58, 2486 (1987).
    [103] K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
    [104] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).
    \
    [105] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
    [106] J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
    [107] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
    [108] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals, (Princeton University Press, Princeton, 1995).
    [109] C. M. Soukoulis, Photonic Band Gap Materials, (Kluwer Academic Publishers, Dordrecht 1996).
    [110] S. John, Physics Today 44, 32 (1991).
    [111] E. Yablonovitch, J. Phys. Condens. Matter 5, 2443 (1993).
    [112] E. Yablonovitch, J. Mod. Optics 41, 173 (1994).
    [113] S. John, V. I. Rupasov, Phys. Rev. Lett. 79, 1821 (1997).
    [114] N. Akozbek, S. John, Phys. Rev. E 57, 2287 (1998).
    [115] Jensen Li, Lei Zhou, C. T. Chan, Ping Sheng, Phys. Rev. Lett. 90,083901 (2003).
    [116] I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Phys. Rev. Lett. 95,193903 (2005); Proc. SPIE 6038, 60380Z (2005).
    [117] I. S. Nefedov and S. A. Tretyakov, Phys. Rev. E 66, 036611 (2002).
    [118] L. Wu, S. He and L. Chen, Phys. Rev. B 67, 235103 (2003).
    [119] H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang and S. Y. Zhou, Appl. Phys. Lett. 83, 5386 (2003).
    [120] A. Alu and N. Engheta, IEEE Trans. Antennas Propag. 51, 2558 (2003).
    [121] D. R. Fredkin and A. Ron, Appl. Phys. Lett. 81, 1753 (2002).
    [122] H. J. Jiang, H. Chen, H. Q. Li, Y W. Zhang, J. Zi and S. Y Zhu, Phys. Rev. E 69, 066607 (2004).
    [123] S. L. Sun, X. Q. Huang, and L. Zhou, Phys. Rev. E 75,066602 (2007).
    [124] William L.Barnes, Alain Dereux and Thomas W. Ebbesen, Nature 424, 824 (2003).
    [125] Anatoly V. Zayats, Igor I. Smolyaninov, Alexei A. Maradudin, Physics Reports 408, 131 (2005).
    [126] R. H. Ritchie, Phys. Rev. 106, 874 (1957).
    [127] T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, Nature 391,667 (1998).
    [128] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
    [129] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83,2845 (1999).
    [130] W. L. Barnes, W. A. Murray, J. Dintiinger, E. Devaux, and T.W. Ebbesen, Phys. Rev. Lett. 92,107401 (2004).
    [131] K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
    [132] R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathern, and K. L. Ka-vanagh, Phys. Rev. Lett. 92,037401 (2004).
    [133] K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72,045421 (2005).
    [134] A. Degiron and T.W. Ebbesen, J. Opt. A Pure Appl. Opt. 7, S90 (2005).
    [135] J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
    [136] Zhichao Ruan and Min Qiu, Phys. Rev. Lett. 96, 233901 (2006).
    [137] Xu Fang, et. al, Phys. Rev. Lett. 99, 066805 (2007).
    [138] M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, IEEE Trans. Antennas Propag. 53, 1897 (2005).
    [139] M. Beruete et al., Opt. Lett. 29, 2500 (2004).
    [140] M. Qiu, Opt. Express 13, 7583 (2005).
    [141] Z. Ruan and M. Qiu, Opt. Express 14, 6172 (2006).
    [142] Alastair P. Hibbins, Matthew J. Lockyear, Ian R. Hooper, and J. Roy Sambles, Phys. Rev. Lett. 96, 073904 (2006).
    [143] Jonah N. Gollub, David R. Smith, David C. Vier, Tim Perram and Jack J. Mock, Phys. Rev. B 71,195402 (2005).
    [144] E. Ozbay, Science, 311,189 (2006).
    [1] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [2] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
    [3] J. B. Pendry, et al., IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [4] J. B. Pendry, Contemp. Phys. 45, 191 (2004).
    [5] Weijia Wen, Lei Zhou, Jensen Ji, Weigun Ge, C. T. Chan, Ping Sheng, Phys. Rev. Lett. 89, 223901 (2002).
    [6] T. Koschny and M. Kafesaki, E. N. Economou, C. M. Soukoulis, Phys. Rev. Lett. 93, 107402 (2004).
    [7] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84,4184 (2000).
    [8] R. A. Shelby, D. R. Smith, S. Schultz, Science 292, 77 (2001).
    [9] R.A. Shelby, D.R.Smith, S.C. Nemat-Nasser,and S. Schultz, Appl. Phys. Lett. 78,489 (2001).
    [10] T. F. Gundogdu, I. Tsiapa, A. Kostopoulos, G. Konstantinidis, N. Katsarakis, R. S. Penciu, M. Kafesaki, E. N. Economou, Th. Koschny and C. M. Soukoulis, Appl. Phys. Lett. 89,084103 (2006).
    [11] M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, J. Appl. Phys. 95, 3778 (2004).
    [12] R. Marques, F. Medina, and R. Raffi-El-Idrissi, Phys. Rev. B 65, 144440 (2002).
    [13] R. Marques, F. Mesa, J. Martel, and F. Medina, IEEE Trans. Antennas Propag. 51, 2572 (2003).
    [14] J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phys. Rev. Lett. 95, 223902 (2005).
    [15] Atsushi Ishikawa ,Takuo Tanaka ,and Satoshi Kawata, Phys. Rev. Lett. 95, 237401 (2005).
    [16] Mehmet Bayindir, K. Aydin,and E. Ozbay, P. Markos and C.M.Soukoulis, Appl. Phys. Lett. 81, 120 (2002).
    [17] P. Markos and C. M. Soukoulis, Phys. Rev. E 65, 036622 (2002).
    [18] N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
    [19] Bogdan-Ioan Popa and S. A. Cummer, Phys. Rev. B 72,165102 (2005).
    [20] H. O. Moser, B.D. F. Casse, O. Wilhelmi, and B. T. Saw, Phys. Rev. Lett. 94, 063901 (2005).
    [21 ] http://www.nanotechnology.bilkent.edu.tr/millimeter-wave-scale.htm.
    [22] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science 303, 1494 (2004).
    [23] S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Science 306,1351(2004).
    [24] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
    [25] M .C. K. Wiltshire, J .B .Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, J. V. Hajnal, Science 291, 849 (2001).
    [26] Willie J. Padilla, Dimitri N. Basov, David R. Smith, materialstoday, 9, 28 (2006).
    [27] D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104(2002).
    [28] L. Zhou and S. T. Chui, Phys. Rev. B 74, 035419 (2006).
    [29] L. Zhou, S. T. Chui, Appl. Phys. Lett. 90, 041903 (2007).
    [30] X. Q. Huang, Y. Zhang, L. Zhou, S. T. Chui, Phys. Rev. B, to be published (2008).
    [31] Atsushi Ishikawa, Takuo Tanaka, Satoshi Kawata, Appl. Phys. Lett. 91, 113118 (2007).
    [32] Wei Wu, Zhaoning Yu, Shih-Yuan Wang, R. Stanley Williams, Yongmin Liu, Cheng Sun, Xiang Zhang, Evgenia Kim and Y. Ron Shen, Nicholas X. Fang, Appl. Phys. Lett. 90, 063107 (2007).
    [33] Shuang Zhang, Wenjun Fan, B. K. Minhas, Andrew Frauenglass, K. J. Malloy and S. R. J. Brueck, Phys. Rev. Lett. 94, 037402 (2005).
    [34] A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev and J. Petrovic, Nature 438, 335 (2005).
    [35] A. N. Grigorenko, Opt. Lett. 31, 2483 (2006).
    [36] Vladimir M Shalaev, Wenshan Cai, Uday K.Chettiar, Hsiao-kuan Yuan, Andrey K. Sarychev, Vladimir P. Drachev and Alexander V. Kildishev Opt. lett. 30,3356 (2005).
    [37] Shuang Zhang, Wenjun Fan, N. C. Panoiu, K.J. Malloy, R. M. Osgood, and S.R.J Brueck, Phys. Rev. Lett. 95, 137404 (2005).
    [38] Gunnar Dolling, Christian Enkrich, Martin Wegener, Costas. M. Soukoulis, Stefan Linden, Science 312, 892 (2006).
    [39] J. D. Jackson, Classical Electrodynamics, 3rd ed. (New York, Wiley, 1999).
    [40] R.Marques, J.Martel ,F.Mesa, and F. Medina, Phys. Rev. Lett. 89, 183901 (2002).
    [41] J. D. Baena, L. Jelinek, R. Marques, and F. Medina Phys. Rev. B 72, 075116 (2005).
    [42] Jaime Esteban, Carlos Camacho-Penalosa, Juan E. Page, Teresa M. Martin-Guerrero, and Enrique Marquez-Segura, IEEE Trans. Microwave Theory Tech. 53, 1506(2005).
    [43] Hao Xu, Zhiyu Wang, Jiaming Hao, Jiajie Dai, Lixin Ran, J. A. Kong, and Lei Zhou, Appl. Phys. Lett., 92, 041122 (2008).
    [44] P. M. Valanju, R. M. Walser, A. P. Valanju, Phys. Rev. Lett. 88, 187401 (2002).
    [45] N. Garcia and M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 207403 (2002).
    [46] C. G. Parazzoli, R. B. Greegor, K. Li, B. E.C. Koltenbah, and M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003).
    [47] Andrew A. Houck, Jeffrey B. Brock, and Isaac L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
    [48] John Pendry, Nature 423, 22 (2003).
    [49] M. Notomi, Phys. Rev. B 62, 10696 (2000).
    [50] C. Luo, S.G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 65, 201104(2002).
    [51] S. Foteinopoulou, E. N. Economou, and CM. Soukoulis, Phys. Rev. Lett. 90, 107402 (2003).
    [52] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and CM. Soukoulis, Nature (London) 423, 604 (2003).
    [53] P.V. Parimi, W.T. Lu, P. Vodo, and S. Shridar, Nature (London) 426,404 (2003).
    [54] A.Berrier, M. Mulot, M.Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, Phys. Rev. Lett. 93, 073902 (2004).
    [55] J. B. Pendry, Science 306, 1353 (2004).
    [56] Hocheol Shin and Shanhui Fan, Phys. Rev. Lett. 96, 073907 (2006).
    [57] Henri J. Lezec, Jennifer A. Dionne, Harry A. Atwater, Science 316, 430 (2007).
    [58] Yong Zhang, B. Fluegel, and A. Mascarenhas, Phys. Rev. Lett. 91, 157404 (2003).
    [59] X. L. Chen, Ming He,Yin Xiao Du, W. Y. Wang, and D. F. Zhang, Phys. Rev. B 72,113111 (2005).
    [60]Pochi Yeh,Optical Wave in Layered Media(wiley,New York,1988).
    [61]See,e.g.,K.Busch,C.T.Chan,and C.M.Soukoulis,in Photonic Band Gap Materials,edited by C.M.Soukoulis(Kluwer,Dordrecht,1996).
    [62]P.Markos and C.M.Soukoulis,Opt.Express,11,649(2003).
    [63]Xudong Chen,Tomasz M.Grzegorczyk,Bae-Ian Wu,Joe Pacheco,Jr.,and Jin Au Kong,Phys.Rev.E 70,016608(2004).
    [64]D.R.Smith,D.C.Vier,Th.Koschny,and C.M.Soukoulis,Phys.Rev.E 71,036617(2005).
    [1] D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, IEEE Trans. Microwave Theory Tech. 47, 2059 (1999).
    [2] R. Coccioli, F. R. Yang, K. P. Ma, T. Itoh, IEEE Trans. Microw. Theory Technol. 47, 2123 (1999).
    [3] Sergio Clavijo, Rodolfo E. Diaz, and William E. McKinzie, III, IEEE Trans. Antennas Propag. 51, 2678 (2003).
    [4] Li Yang, Mingyan Fan, Fanglu Chen, Jingzhao She, Zhenghe Feng, IEEE Trans. Microwave Theory Tech. 53, 183 (2005).
    [5] F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, IEEE Trans. Microwave Theory Tech. 47, 2092 (1999).
    [6] A. P. Fresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, IEEE Trans. Antennas Propag. 53, 209 (2005).
    [7] J. M. Hao, L. Zhou, and C. T. Chan, Appl. Phys. A 87, 281 (2007).
    [8] L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, Appl. Phys. Lett. 83,3257 (2003).
    [9] C. R. Simovski, P. de Maagt, S.A. Tretyakov, M. Paquary, A.A. Sochava, Electron. Lett. 40, 92 (2004).
    [10] J. McVay, N. Engheta, A. Hoorfar, IEEE Microw. Wirel. Comp. Lett. 14, 130 (2004).
    [11] C. R. Simovski, P. de Maagt, I. Melchakova, IEEE Trans. Antennas Propag. 53, 908 (2005).
    [12J D. J. Kern, D.H.Werner, A.Monorchio, L. Lanuzza, M.J.Wilhelm, IEEE Trans. Antennas Propag. 53, 8 (2005).
    [13] L. Zhou, CT. Chan, Appl. Phys. Lett. 84, 1444 (2004).
    [14] G. Goussetis, A.P. Feresidis, J.C. Vardaxoglou, IEEE Trans. Antennas Propag. 54, 82 (2006).
    [15] F. Yang, Y. Rahmat-Samii, IEEE Trans. Antennas Propag. 51, 2691 (2003).
    [16] Hossein Mosallaei, Kamal Sarabandi, IEEE Trans. Antennas Propag. 52, 2403 (2004).
    [17] Ning Yang, et al. Microwave Opt. Technol. Lett. 37, 62 (2003).
    [18] L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, Appl. Phys. Lett. 86, 101101 (2005).
    [19] A. Ourir, A. de Lustrac, and Jean-Michel Lourtioz, Appl. Phys. Lett. 88, 084103 (2006).
    [20] H.Q. Li, J.M. Hao, L. Zhou, Z.Y Wei, L.K. Gong, H. Chen, CT. Chan, Appl. Phys. Lett. 89, 104101 (2006).
    [21] K.S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
    [22] Lei Zhou, C. T. Chan, P. Sheng, J. Phys. D: Appl. Phy., 37, 368 (2004).
    [23] See, e.g., K. Busch, C. T. Chan, and C. M. Soukoulis, in Photonic Band Gap Materials, edited by C. M. Soukoulis (Kluwer, Dordrecht, 1996).
    [1] A. Kumar and H. D. Hristov, Microwave Cavity Antennas (Artech House, Norwood, MA, 1989).
    [2] J. D. Jackson, Classical Electrodynamics, 3rd ed. (New York, Wiley, 1998).
    [3] Jin Au Kong, Electrormagnetic Wave Theory (EMW, Cambridge, MA, 2000).
    
    [4] D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, IEEE Trans. Microwave Theory Tech. 47, 2059 (1999).
    [5] J. M. Hao, L. Zhou, and C. T. Chan, Appl. Phys. A 87, 281 (2007).
    [6] L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, Appl. Phys. Lett. 86, 101101 (2005).
    [7] H.Q. Li, J.M. Hao, L. Zhou, Z.Y. Wei, L.K. Gong, H. Chen, CT. Chan, Appl. Phys. Lett. 89, 104101 (2006).
    [8] F. Yang, Y. Rahmat-Samii, IEEE Trans. Antennas Propag. 51, 2691 (2003).
    [9] Hossein Mosallaei, Kamal Sarabandi, IEEE Trans. Antennas Propag. 52, 2403 (2004).
    [10] T. Akalin, J. Danglot, O. Vanbesien, and D. Lippens, IEEE Microw. Wirel. Com-pon. Lett. 12,48 (2002).
    [11] R. Sauleau, P. Coquet, T. Matsui, and J. P. Daniel, IEEE Trans. Antennas Propag. 51,3137(2003).
    [12] B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, J. Appl. Phys. 87, 603 (2000).
    [13] S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and R. Vincent, Phys. Rev. Lett. 89,213902(2002).
    [14] K.S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
    [15] Lei Zhou, C. T. Chan, P. Sheng, J. Phys. D: Appl. Phy., 37, 368 (2004).
    [16] N. Engheta, IEEE Antennas Wireless Propag. Lett. 3, 261 (2004).
    [17] N. Engheta, IEEE Antennas Wireless Propag. Lett. 1, 10 (2002).
    [1] Eli Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [2] Sajeev John, Phys. Rev. Lett. 58, 2486 (1987).
    [3] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [4] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
    [5] J. B. Pendry, et al, IEEE Trans. Microwave Theory Tech. 47,4075 (1999).
    [6] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84,4184 (2000).
    [7] R. A. Shelby, D. R. Smith, S. Schultz, Science 292, 77 (2001).
    [8] J. B. Pendary, Phys. Rev. Lett. 85, 3966 (2000).
    
    [9] Ulf Leonhardt, Science 312, 1777 (2006).
    [10] J. B. Pendry, D. Schurig, D. R. Smith, Science 312, 1780 (2006).
    [11] D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
    [12] L. Zhou, CT. Chan, and P. Sheng, Phys. Rev. B 68, 115424 (2003).
    [13] Shulin Sun, Xueqin Huang, and Lei Zhou, Phys. Rev. E 75, 066602 (2007).
    [14] Liangbin Hu and S.T. Chui, Phys. Rev. B 66, 085108 (2002).
    [15] Qiang Cheng and Tie Jun Cui, Appl. Phys. Lett. 87, 174102 (2005).
    [16] Tian Jiang, Junming Zhao and Yijun Feng, J. Phys. D: Appl. Phys. 40, 1821 (2007).
    [17] Jiaming Hao, Yu Yuan, Lixin Ran, Tao Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007)
    [18] Jiaming Hao and Lei Zhou, Phys. Rev. B 77, 094201 (2008)
    [19] Pochi Yeh, Optical Wave in Layered Media (wiley, New York, 1988).
    [20] See, e.g., K. Busch, C. T. Chan, and C. M. Soukoulis, in Photonic Band Gap Materials, edited by C. M. Soukoulis (Kluwer, Dordrecht, 1996).
    [21] Max Born, Emil Wolf, Principles of Optics (Cambridge university press, Cambridge, England, 1999).
    [22] Lei Zhou, Weijia Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 94, 243905 (2005).
    [1] Max Bora, Emil Wolf, Principles of Optics (Cambridge university press, Cambridge, England, 1999).
    [2] Jin Au Kong, Electrormagnetic Wave Theory (EMW, Cambridge, MA, 2000).
    [3] Eugene Hecht, Optics (Addison Wesley, New York, US, 2002).
    [4] Jiaming Hao, Yu Yuan, Lixin Ran, Tao Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007)
    [5] Jiaming Hao and Lei Zhou, Phys. Rev. B 77, 094201 (2008).
    [6] D. Sievenpiper, L. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, IEEE Trans. Microwave Theory Tech. 47, 2059 (1999).
    [7] J. M. Hao, L. Zhou, and C. T. Chan, Appl. Phys. A 87, 281 (2007).
    [8] K.S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
    [9] Lei Zhou, C. T. Chan, P. Sheng, J. Phys. D: Appl. Phy., 37, 368 (2004).
    [1 ] Pochi Yeh, Optical Wave in Layered Media (wiley, New York, 1988).
    [2] See, e.g., K. Busch, C. T. Chan, and C. M. Soukoulis, in Photonic Band Gap Materials, edited by C. M. Soukoulis (Kluwer, Dordrecht, 1996).
    14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700