微纳米力学在纳米复合材料和仿壁虎爪纳米纤维阵列中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技的高速发展给材料领域带来了许多发展机遇和挑战。如纳米材料的特异性能加上复合材料的协同作用,使得纳米复合材料具有较传统复合材料更加优异的物理机械性能。自上世纪八十年代,纳米复合材料.就已然成为科研界的热点,目前取得很多优异的成果和应用。又如对自然界多种生物体的研究表明,许多生物体的奇异特性与其微观结构密不可分,因此微纳米仿生学逐渐成为学者们关注的热点话题。自本世纪初兴起的仿壁虎爪粘附材料经过十多年的发展也取得了许多突破性的进展。
     基于微纳米材料的制备工艺和微纳米力学性能表征技术,本文的第一部分系统地研究了纳米复合材料的微观力学和摩擦磨损性能,一定程度地弥补了纳米复合材料在微纳米力学和摩擦学性能研究上的空白。第二部分以纳米多孔膜为模板,制备了仿壁虎爪纳米纤维阵列材料,对单根纳米线的力学性能进行了表征,对阵列有效弹性模量的表达式进行了修正,并结合实验和模拟研究了纳米纤维阵列结构的微观粘附性能。全文的主要工作内容和结果如下:
     1.以不同结构的环氧树脂(EP)为基体,以溶胶Si02纳米颗粒(-25nm)为填料,利用纳米压痕技术测定了不同组分的EP/SiO2复合体系的微力学性能,并研究了压入针尖形貌(圆锥形和三棱锥形)对测试结果的影响。结合有限元模拟,分析了纳米压痕的针尖形貌效应和纳米颗粒的改性机理。结果表明,纳米颗粒的加入能显著提高聚合物基体的硬度和模量,实测值与理论模型预测值相吻合。纳米颗粒能够有效地分布和传递基体内的应力,大大提高复合体系的承载能力。不同形貌的压针会引起压痕内部应力的不同分布,进而造成压痕周围材料的不同效应(pile-up或sink-in)。
     2.基于纳米压痕设备的划痕模式,测试了不同组分的EP/SiO2复合体系的微尺度抗刮擦(scratch-resistance)和摩擦性能,对比分析了两种压针在划痕过程中的摩擦特性。结合有限元模拟,分析了纳米颗粒对聚合物摩擦性能的改性机理。划痕测试结果表明,纳米颗粒的加入能显著提高环氧树脂基体的抗刮擦性,同时能起到一定的减摩作用。抗划性的提高源于复合体系力学性能的提高,减摩机理包括纳米颗粒的润滑作用和滚球效应。两种压针在划痕过程表现出的不同摩擦特性基于不同形状造成的不同主导接触机制。
     3.利用纳米压痕仪的连续刻划功能,测试了不同组分的EP/SiO2复合体系的微观耐磨性能,并研究了载荷和磨损次数对微纳米磨损的影响。针对纳米压痕仪对微区磨损量测量的不足,采用图像处理技术改进了计算方法,分析了纳米颗粒对基体磨损性能的改性机理。测试结果表明,材料的磨损量随载荷和磨损次数的增加而增大,特别是在较大载荷多次磨损时,磨损体积急剧增大,对应着磨损由磨粒磨损和黏着磨损向微纳米疲劳磨损的转变。小载荷低磨损次数下,纳米粒子对基体耐磨性的改性源于硬度的增大、摩擦系数的减小、粒子的滚球效应及宏观的软基体中硬质相承载机理;高载荷多次磨损下,由于复合体系塑性指数的减小和强度的增加,其达到疲劳破坏所需的应力大小和循环次数得到了提高,进而抗疲劳磨损性能得到了改善。
     4.采用二步阳极氧化法制备了孔径均匀有序的氧化铝模板,并基于模板熔融浸润法制备了聚丙烯纳米阵列。结合不同制备条件下的扫描电镜(SEM)和透射电镜(TEM)表征结果,探讨了模板和纳米阵列的最佳制备工艺。根据表征结果,模板的孔径和纳米纤维的直径约为100nm,阵列的长度与模板的厚度相当。在本文研究的制备条件范围内,氧化铝模板的最佳制备工艺条件为:0.3mol/1草酸溶液,二次氧化4h,5wt%磷酸溶液30℃下通孔38min。聚丙烯纳米阵列的最佳制备工艺条件为:熔体充分浸润固化后使用0.1mol/1NaOH溶液去模板45min以上。
     5.使用原子力显微镜(AFM)三点弯曲法测试单根聚丙烯纳米线的弹性模量,并推导分析了纳米阵列有效弹性模量与材料体模量和单根纳米线模量间的关系。结合粘附理论,利用有限元技术对阵列的粘附性能进行模拟,并与使用纳米压痕仪平头压针(1×100μm2)测试的结果进行对比分析。最后,根据模拟和理论分析,探讨了倾斜阵列结构方向性粘附的机理。AFM测试结果表明,聚丙烯纳米线的弹性模量为10.15GPa,比其宏观模量大出6倍之多。纳米阵列微观粘附力的测试结果表明,在较大的预压力254N/cm2下,法向粘附力达12.3N/cm2,与壁虎爪的粘附强度相当,模拟结果与实验结果大致吻合。具有倾斜结构的微纳米纤维的方向性粘附机理在于纤维内部弹性恢复力矩的作用。
With the rapid development of nano science and technology, material science encounters numerous opportunities and challenges. For example, combining the peculiar traits of nanomaterials and the synergistic effects of composites, nanocomposites always show more excellent physical and mechanical properties than traditional composites. Nanocomposites have raised lots of attentions and attained many outstanding achievements and practical applications since the80s of last century. For another example, many studies regarding to natural organisms show the unique features are related to their microscopic structures. As a result, micro-and nano-biomimetics is becoming a concerned topic these years. Specially, studies on gecko-inspired adhesives began in the turn of this century and have gained plentiful constructive progresses.
     Based on the fabrication and mechanical characterization techniques of micro/nano materials, the first part of this study systematically investigates the micro-to nano-scale mechanical and tribological properties of two series of nanocomposites, which fills the gaps of micro/nano mechanical and tribological studies on nanocomposites. The second part of this work focuses on fabricating and testing the gecko-inspired nanofibrillar arrays. This fibrillar structure was fabricated through versatile anodic alumina porous template. The elasticity of the individual nanowire was measured by using atomic force microscope (AFM). The effective modulus of the array was adapted on the basis of the properties of individual fiber. The micro adhesive behaviors of the fabricated nano-arrays were studied through two parallel and independent approaches:experiments and finite element simulations. The detailed research contents and results are summarized as follows:
     1. The nanocomposites are comprised of epoxy resins (EP) with different structures and colloidal silica particles with average size of25nm. The micro mechanical properties of the nanocomposites with various components were studied through nanoindentations tests. Two different probes, conical-shaped and Berkovich triangular pyramid-shaped, were used to study the geometrical effects on nanoindentations. Based on the finite element simulations, the probe effects and the strengthening mechanisms of nanoparticles were analyzed. Experimental and simulative results show that the addition of silica nanoparticles can significantly improve the hardness and modulus of the polymeric matrix. The test results are in close agreements with the theoretical predictions of mesomechanics. The mechanisms of these improvements are the stiff nanoparticles can effectively distribute and transmit the stress in the matrix and thus enhance the load capacity of the matrix. Different geometries of the probes can cause different stress distributions during the indentations and result in different surface effects (pile-up or sink-in).
     2. The micro scratch-resistance and the tribological properties of the nanocomposites were studied through the scratch mode in the nanoindenter equipment. The probe geometrical effects were also included. The modification mechanisms of nanoparticles were analyzed based on finite element simulations. Results show the scratch-resistance is largely improved meanwhile the friction is reduced after the incorporation of nanoparticles. The improved scratch-resistance should be ascribed to the enhanced mechanical properties and the anti-friction effect can be due to the lubrication effects and the rolling effect of the smooth nanoparticles. Different dominated contact mechanisms can be used to interpret the different frictional performances for the two probes.
     3. The micro/nano-wear behaviors of the nanocomposites were tested by using the multiple nano-scratch patterning techniques. The effects of the wear loads and cycles were studied. A novel method to precisely calculate the wear volumes based on image processing techniques was proposed. Experimental results show the wear volume increase with the increasing wear loads and cycles. Under the larger loads and multiple cycles wear conditions, the wear volumes change abruptly, which signifies the wear regime transition from abrasive and adhesive wear to fatigue and peeling wear. Under slight wear conditions, the improved wear-resistance of the nanocomposites can be ascribed to the increased hardness, the decreased frictional coefficient and the rolling effect of the nanoparticles. While under severe wear conditions, the transition thresholds for the fatigue wear are improved due to the decreased plasticity index and the increased strength of the nanocomposites, thus the fatigue wear-resistance is enhanced.
     4. Nanoporous alumina template was fabricated by a typical two-step anodization process. The polypropylene (pp) nano-wire arrays were fabricated through universal template wetting method. The optimal fabrication conditions were explored with the help of the scanning electron microscope (SEM) and transmission electron microscope (TEM). The morphological characterization results show the diameters of the template pores and the pp fibers are approximate to100nm. The height of the array is close to the thickness of the template, implying the complete wetting and template-dissolving. Within the research scope of this study, the optimal fabrication conditions for the template and the pp nano-arrays are:0.3M oxalic acid;4h for the second anodization;38min for pore-opening and enlarging in5wt%phosphoric acid at30℃; morethan45min for template-dissolving in0.1M sodium hydroxide solution.
     5. The elastic modulus of single pp nanowire was measured by the typical three-point bending test carried out in AFM. The relationships between the effective modulus of the array and the bulk modulus of the material together with the elasticity of the individual nanowire were discussed. The adhesion was simulated by finite element method on the basis of the traditional adhesion theories. The simulative results were compared with the ones obtained by experiments, which were implemented in the Tribolndenter system with a wedge-shaped probe (1×100μm2). According to the three-point bending test, the elastic modulus of the individual pp nanowire is10.15GPa, which is more than6times larger than its bulk modulus. Experimental results show the adhesion strength reaches12.3N/cm2under the preload of254N/cm2. This adhesion strength is comparable to natural gecko except the ultrahigh preload. The simulative results show quantitative agreements with the tests. The mechanisms of the directional adhesion of the slanted fiber arrays were explored by using finite element simulations and theoretical derivations. The directional adhesion of the slanted structures can be attributed to the additional peeling moment caused by relative deformations of the fiber tip and fiber stalk.
引文
[I]Hoffman DW, Roy R, Komarneni S. A new class of materials-phases in the system Al2O3-SiO2 [J].J. Am. Ceram. Soc.1984.67(7):468-471.
    [2]Sanjines R. Abad MD. Vaju C. et al.Electrical properties and applications of carbon based nanocomposite materials:An overview[J]. Surf. Coat. Technol.2011.206(4):727-733.
    [3]Singha S, Thomas MJ. Dielectrics properties of epoxy nanocomposites [J]. IEEE Transactions. 2008,15(1):12-23.
    [4]Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes [J]. Prog. Polym. Sci.2009,34(10):1068-1133.
    [5]Innocenzi P, Lebeau B. Organic-inorganic hybrid materials for non-linear optics [J]. J. Mater. Chem.2005,15(35-36):3821-3831.
    [6]Lu SW, Schmidt HK. Nanostructures, optical properties, and imaging application of lead-sulfide nanocomposites coatings [J]. Int. J Appl. Ceram. Technol.2004,1:119-128.
    [7]Frolov Gl. Magnetic properties and application of nanocomposites films [J]. Bulletin of the Russian Academy of Sciences:Physics.2007,71:1629-1631.
    [8]Jin A, Pramoda KP, Xu G, et al. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites [J]. Chem. Phys. Lett.2001,337(1-3): 43-47.
    [9]Silvestre C, Lopez-Tendero MJ, Cruz-Yusta M, et al. Hybrid nanocomposites coatings for application in construction materials:Tribological study [J]. Solid State Phenomena.2009, 151:234-239.
    [10]Yun S, Gadd GE, Latella BA, et al. Mechanical properties of Biodegradable Polyhydroxy-Alkanoates/Single Wall Carbon Nanotube nanocomposites films [J]. Polym. Bull.2008, 61(2):267-275.
    [11]陈县萍,王贵友,徐强等.聚氨酯/Al2O3纳米复合材料的制备与性能[J].功能高分子学报,2008,21(2):123-127.
    [12]刘生.2008.纳米颗粒增韧环氧树脂研究[D]:[博士].北京:国家纳米中心,5-30.
    [13]Liu KS, Jiang L. Bio-inspired design of multiscale structures for function integration [J]. Nano Today.2011,6:155-175.
    [14]Feng L, Li SH, Li YS, et al. Super-hydrophobic surfaces:From natural to artificial [J]. Adv. Mater.2002,14(24):1857-1860.
    [15]Vukusic P, Sambles JR. Photonic structures in biology [J]. Nature.2003,424(6950):852-855.
    [16]Vukusic P, Hooper I. Directionally controlled fluorescence emission in butterflies [J]. Science. 2005,310(5751):1151-1151.
    [17]Liu MJ, Wang ST, Wei ZX. et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface [J]. Adv. Mater.2009,21(6):665-669.
    [18]Vollrath F, Knight DP. Liquid crystalline spinning of spider silk [J]. Nature.2001,410(6828): 541-548.
    [19]Emile O, Le Floch A, Vollrath F. Biopolymers:shape memory in spider draglines [J]. Nature. 2006,440(7084):621-621.
    [20]Zheng YM, Bai H, Huang ZB, et al. Directional water collection on wetted spider silk [J]. Nature.2010,463(7281):640-643.
    [21]Gao XF, Jiang L. Water-repellent legs of water striders [J]. Nature.2004,432(7013):36-36.
    [22]Hansen WR, Autumn K. Evidence for self-cleaning in gecko setae [J]. PNAS.2005,102(2): 385-389.
    [23]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [24]倪克钒,单国荣,翁志学.制备有机-无机杂化纳米材料的研究进展[J].高分子通报,2006,11:58-62.
    [25]张志强,马琦,张宝柱等.有机-无机杂化材料的制备技术和应用前景[J].应用化工,2005,34(7):389-393.
    [26]刘盈,鲁在君,李美顺.基于嵌段共聚物的纳米材料[J].高分子通报,2006,4:52-60.
    [27]顾书英,任杰.聚合物基纳米复合材料[M].北京:化学工业出版社,2007.
    [28]张留成,王家喜.高分子材料进展[M].北京:化学工业出版社,2005:253.
    [29]Zhang H, Zhang Z, Friedrich K, et al. Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content [J]. Acta. Mater. 2006,54(7):1833-1842.
    [30]Zhang H, Tang L, Zhang Z, et al. Wear-resistant and transparent acrylate-based coating with highly filled nanosilica particles [J]. Tribol. Int.2010,43:83-91.
    [31]Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites [J]. Carbon.2005,43(7):1378-1385.
    [32]Kinloch AJ, Mohammed RD, Taylor AC, et al. The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers [J]. J. Mater. Sci. 2005,40(4):5083-5086.
    [33]柯扬船,皮特.斯壮.聚合物-无机纳米复合材料[M].北京:化学工业出版社,2003:265.
    [34]李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002:177.
    [35]Gloaguen JM, Lefebvre JM. Plastic deformation behavior of thermoplasticity/clay nanocomposites [J]. Polymer.2001,42(13):5841-5847.
    [36]Wetzel B, Rosso P. Haupert F, et al. Epoxy nanocomposites-fracture and toughening mechanisms [J]. Eng. Fract. Mech.2006,73(16):2375-2398.
    [37]张以河,付绍云,李国耀等.聚合物基纳米复合材料的增强增韧机理[J].高技术通讯.2004,14(5):99-105.
    [38]温诗铸,黄平.摩擦学原理(第二版)[M].北京:清华大学出版社,2002.
    [39]Wang Q H, Xue Q J. Liu W M, et al. The effect of nanometer SiC filler on the tribological behavior of PEEK under distilled water lubrication[J]. J. Appl. Polym. Sci.2000,78(3): 609-614.
    [40]Wang QH, Xue QJ. Wear mechanisms of polyetheretherketone composites filled with various kinds of SiC[J]. Wear,1997,213(1-2):54-58.
    [41]陈奎,雒向东,邵月君.水(润滑条什下聚丙烯/有机改性蒙脱土纳米复合材料摩擦磨损性能研究[J].润滑与密封,2008,33(1):11。-112.
    [42]Hou XH, Shan CX, Choy KL. Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles[J]. Surf. Coat. Technol.2008,202(11):2287-2291.
    [43]Sun XJ, Li JG. Friction and wear Properties of electrodeposited Nickel-Titania nanocomposite coatings[J]. Tribol. Lett.2007,28(3):223-228.
    [44]Stempfle P, Pollet F, Carpentier L.Influence of intergranular metallic nanoparticles on the fretting wear mechanisms of Fe-Cr-Al2O3 nanocomposites rubbing on Ti-6Al-4V[J]. Tribol. Int.2008,41(11):1009-1019.
    [45]张爱波,李明,郑亚萍等.碳纳米管/环氧复合材料的摩擦磨损性能研究[J].西北工业大学学报,2008,26(1):20-24.
    [46]龚俊,付士军,郭精义等.聚四氟乙烯及其石墨和MoS2填充复合材料的摩擦学性能研究[J].材料开发与应用,2006,21(4):18-20.
    [47]Xiang DH, Gu C J. A study on the friction and wear behavior of PTFE filled with ultra-fine kaolin particulates [J]. Mater. Lett.2006,60(5):689-692.
    [48]雷晓宇,向定汉.纳米高岭十和石墨填充PTFE复合材料摩擦磨损性能[J].润滑与密封,2008,33(1):97-100.
    [49]Chang L, Zhang Z, Breidt C, et al. Tribological properties of epoxy nanocomposites, Part1. Enhancement of the wear resistance by nano-TiO2 particles[J]. Wear.2005(1-4),258: 141-148.
    [50]Zhang Z, Breidt C, Chang L, et al. Enhancement of the wear resistance of epoxy:short carbon fibre, graphite, PTFE and nano-TiO2[J]. Composites Part A.2004,35(12): 1385-1392.
    [51]Chang L, Zhang Z. Tribological properties of epoxy nanocomposites. Part 2. A combinative effect of short carbon fibre with nano-TiO2[J]. Wear.2006,260(7-8):869-878.
    [52]Song HJ, Zhang ZZ. Study on the tribological behaviors of the phenolic composite coating filled with modified nano-TiO2[J]. Tribol. Int.2008.41(5):396-403.
    [53]Men XH, Song HJ,Zhang ZZ, et al. Functionalization of carbon nanotubes to improve the tribological properties of poly(furfuryl alcohol) composite coatings[J]. Compos. Sci. Technol. 2008,68(3-4):1042-1049.
    [54]Liu WM, Chen YX, Kou GT, et al. Characterization and mechanical/tribological properties of nano Au-TiO2 composite thin films prepared by a sol-gel process[J]. Wear.2003,254(10): 994-1000.
    [55]Koestenbauer H, Mitterer C, Fontalvo GA, et al. Tribological properties of TiN/Ag nanocomposite coatings[J]. Tribol. Lett.2008,30(1):53-60.
    [56]Bhimaraj P, Sawyer WG, Burris D, et al. Tribological investigation of the effects of particle size, loading and crystallinity on poly(ethylene) terephthalate nanocomposites[J]. Wear,2008, 264(7-8):632-637.
    [57]Kasiarova M, Rudnayova E, Dusza J, et al. Some tribological properties of a carbon-derived Si3N4/SiC nanocomposite[J]. J. Eur. Ceram. Soc.2004,24(12):3431-3435.
    [58]章跃,刘义发,史邵君Al2O3/Cu复合材料的微动摩擦学特性[J].润滑与密封,2008,33(4):78-81.
    [59]Chang L, Zhang Z, Ye L, et al. Tribological properties of epoxy nanocomposites:part III. Characteristics of transfer films [J]. Wear.2007.262(5-6):699-706.
    [60]姚洪,杨寅威,黄嘉兴.尼龙6/蒙脱土纳米复合材料的摩擦学特性及磨损机理[J].机械工程材料,2006,30(9):64-66.
    [61]李长生,刘艳清,郝茂德等.纳米NbSe2-同基复合材料的摩擦磨损性能研究[J]矿冶工程,2008,28(2):79-82.
    [62]杨文进,隋国鑫,孙兆松等.PA66/Si3N4纳米复合材料的摩擦磨损性能[J].润滑与密封,2008,33(1):76-80.
    [63]Wu CD, Lin JF. Molecular dynamic simulation and characterization of self-assembled monolayer under sliding friction [J]. Comput. Mater. Sci.2007,39(4):808-816.
    [64]Yang P, Liao NB, Yang DG. Property simulation for nano-scale interfacial friction between two kinds of material in MEMS based on an atomistic simplified model [J]. Int. J. Mod. Phys. 2007,21(20):3581-3590.
    [65]Sung IH, Kim DE. Molecular dynamics simulation study of the nano-wear characteristics of alkanethiol self-assembled monolayers [J]. Appl. Phys. A-Mater. Sci. Proc.2005,81(1): 109-114.
    [66]Autumn K, Liang YA, Hsieh ST, et al. Adhesive force of a single gecko foot-hair [J]. Nature. 2000,405(6787):681-685.
    [67]Autumn K, Peattie AM. Mechanisms of adhesion in Geckos [J]. Inter. Comp. Biol.2002. 42(6):1081-1090.
    [68]Autumn K, Sitti M, Liang YA, et al. Evidence for van der Waals adhesion in gecko setae [J]. PNAS.2002,99(19):12252-12256.
    [69]Autumn K. Properties, principles, and parameters of the gecko adhesive system [J]. Biological Adhesives.2006,225-256.
    [70]Autumn K, Gravish N. Gecko adhesion:evolutionary nanotechnology [J]. Phil. Trans. R. Soc. A.2008,366:1575-1590.
    [71]Kwak MK, Pang CY, Jeong HE, et al. Towards the next level of bioinspired dry adhesives: New designs and applications [J]. Adv. Func. Mater.2011,21:3606-3616.
    [72]Dai ZD, Sun JR. Progress in study on gecko locomotion and biomimetic gecko-robot [J]. Prog. Nat. Sci.2007,17:1-5.
    [73]Geim AK, Dubonos SV, Grigorieva IV, et al. Microfabricated adhesive mimicking gecko foot-hair [J]. Nat. Mater.2003,2(7):461-463.
    [74]Reddy S, Arzt E, del Campo A. Bioinspired surfaces with switchable adhesion [J]. Adv. Mater. 2007,19(22):3833-3841.
    [75]Santos D, Spenko M, Parness A. Directional adhesion for climbing:theoretical and practical considerations [J]. J. Adhes. Sci. Technol.2007,21 (12-13):1317-1341.
    [76]Lee J, Bush B, Maboudian R. Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface [J]. Langmuir.2009,25(21):12449-12453.
    [77]Murphy MP, Kim S, Sitti M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives [J]. ACS Appl. Mat. Interfaces.2009,1(4):849-855.
    [78]Jeong HE, Lee SH, Kim P, et al. Stretched polymer nanohairs by nanodrawing [J]. Nano Lett. 2006,6(7):1508-1513.
    [79]Jeong HE, Lee JK, Kim HN, et al. A nontransferring dry adhesive with hierarchical polymer nanohairs [J]. PNAS.2009,106(14):5639-5644.
    [80]Yoon H, Jeong HE, Kim TI, et al. Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition [J]. Nano Today.2009,4(5):385-392.
    [81]Kim TI, Jeong HE, Suh KY, et al. Stooped nanohairs:geometry-controllable, unidirectional, reversible and robust gecko-like dry adhesive [J]. Adv. Mater.2009,21(22):2276-2283.
    [82]Jeong HE, Kwak MK, Suh KY, et al. Stretchable, adhesion-tunable dry adhesive by surface wrinkling [J]. Langmuir.2010,26(4):2223-2226.
    [83]Kwak MK, Jeong HE, Bae WG, et al. Anisotropic adhesion properties of triangular-tip-shaped micropillars [J]. Small.2011.7(16):2296-2300.
    [84]Majidi C. Grodd RE. Maeno Y. et al. High friction from a stiff polymer using microfiber arrays [J]. Phys. Rev. Lett.2006,97(7):6103-6106.
    [85]Jeong HE, Lee SH, Kim P, et al. High aspect-ratio polymer nanostructures by tailored capillarity and adhesive force [J]. Colloids. Surf. A 2008,313:359-364.
    [86]Lee JH, Fearing RS, Komvopoulos K. Directional adhesion of gecko-inspired angled microfiber arrays [J]. Appl. Phys. Lett.2008,93(19):191910.
    [87]Aksak B, Murphy MP, Sitti M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays [J]. Langmuir.2007,23(6):3322-3332.
    [88]Murphy MP, Aksak B, Sitti M. Gecko-inspired directional and controllable adhesion [J]. Small.2009,5(2):170-175.
    [89]Gorb S, Varenberg M, Peressadko A, et al. Biomimetic mushroom-shaped fibrillar adhesive microstructure [J]. J. R. Soc. Interface.2007,4(13):271-275.
    [90]Davies J, Haq S, Hawke T, et al. A practical approach to the development of a synthetic gecko tape [J]. Int. J. Adhes.Adhes.2009,29(4):380-390.
    [91]del Campo A, Greiner C, Alvarez I, et al. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices [J]. Adv. Mater.2007,19(15):1973-1979.
    [92]Greiner C, Arzt E, del Campo A. Hierarchical gecko-like adhesives [J]. Adv. Mater.2009, 21(4):479-487.
    [93]Kustandi TS, Samper VD, Ng WS, et al. Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template [J]. J. Micromech. Microeng.2007,17(10):75-81.
    [94]Yurdumakan B, Raravikar NR, Ajayan PM, et al. Synthetic gecko foot-hairs from multiwalled carbon nanotunes [J]. Chem. Commun.2005,30:3799-3801.
    [95]Zhao Y, Tong T, Delzeit L, et al. Interfacial energy and strength of multiwalled carbon-nanotube-based dry adhesive [J]. J. Vac. Sci. Technol. B 2006,24(1):331-335.
    [96]Ge L, Sethi S, Ci L, et al. Carbon nanotube-based synthetic gecko tapes [J]. PNAS.2007, 104(26):10792-10795.
    [97]Qu L, Dai L. Gecko-foot-mimetic aligned single-walled carbon nanotubes dry adhesives with unique electrical and thermal properties [J]. Adv. Mater.2007,19(22):3844-3852.
    [98]Qu LT, Dai LM, Stone M, et al. Carbon nanotubes arrays with strong shear binding-on and easy normal lifting-off [J]. Science.2008,322(5899):238-242.
    [99]Wang ZZ, Xu Y, Gu P. Adhesive behavior of gecko-inspired nanofibrillar arrays:combination of experiments and finite element modeling [J].J. Phys. D:Appl. Phys.2012,45:142001.
    [100]Autumn K. Majidi C, Groff RE, et al. Effective elastic modulus of isolated gecko setal arrays [J]. J. Exp. Biol.2006,209(18):3558-3568.
    [101]Persson BN.I. On the mechanism of adhesion in biological systems [J]. J. Chem. Phys.2003. 118(16):7614-7621.
    [102]Greiner C, Buhl S, del Campo A, et al. Experimental parameters controlling adhesion of biomimetic fibrillar surfaces [J]. J. Adhes.2009,85(9):646-661.
    [103]Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices [J]. PNAS.2003,100(19):10603-10606.
    [104]Chung JY, Chaudhury MK. Roles of discontinuities in bio-inspired adhesive pads [J]. J. R. Soc. Interface 2005,2(2):55-61.
    [105]Crosby AJ, Hageman M, Duncan A. Controlling polymer adhesion with "pancakes" [J]. Langmuir 2005,21 (25):11738-11743.
    [106]Greiner C, del Campo A, Arzt E. Adhesion of bioinspired micropatterned surfaces:Effects of pillar radius, aspect ratio and preload [J]. Langmuir 2007,23(7):3495-3502.
    [107]Spolenak R, Gorb S, Gao HJ, et al. Effect of contact shape on the scaling of biological attachments [J]. Proc. R. Soc. A 2005,461(2054):305-319.
    [108]Glassmaker NJ, Jagota A, Hui CY. Adhesion enhancement in a biomimetic fibrillar interface. Acta Biomater [J].2005,1(4):367-375.
    [109]Lamblet M, Verneuil E, Vilmin T, et al. Adhesion enhancement through micropatterning at polydimenthylsiloxane-acrylic adhesive interfaces [J]. Langmuir 2007,23(13):6966-6974.
    [110]del Campo A, Alvarez I, Filipe S, et al.3D microstructured surfaces obtained by soft-lithograpgy using fast-crosslinking elastomeric precursors and 2D masters [J]. Adv. Funct. Mater.2007,17(17):3590-3597.
    [111]Glassmaker NJ, Jagota A, Hui CY, et al. Design of biomimetic fibrillar interfaces:I. Making contact [J]. J. R. Soc. Interface 2004,1(1):23-33.
    [112]del Campo A, Greiner C, Arzt E. Contact shape controls adhesion of bioinspired fibrillar surfaces [J]. Langmuir 2007,23(20):10235-10243.
    [113]Murphy MP, Aksak B, Sitti M. Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips [J]. J. Adhes. Sci. Technol. 2007,21(12-13):1281-1296.
    [114]Kim S, Aksak B, Sitti M. Enhanced friction of elastomer microfiber adhesives with spatula tips [J]. Appl. Phys. Lett.2007,91(22):221913.
    [115]Greiner C, Spolenak R, Arzt E. Adhesion desion maps for fibrillar adhesives:The effect of shape [J]. Acta Biomater.2009,5(2):597-606.
    [116]Autumn K, Dittmore A. Santos D, et al. Frictional adhesion:a new angle on gecko attachment [J]. J. Exp. Biol.2006.209(18):3569-3579.
    [117]Kim S, Spenko M. Trujillo S. et al. Smooth vertical surface climbing with directional adhesion [J]. IEEE Trans. Robotics 2008,24(1):65-74.
    [118]Jeong HE, Lee JK, Kwak MK, et al. Effect of leaning angle of gecko-inspired slanted polymer nanohairs on dry adhesion [J]. Appl. Phys. Lett.2010,96(4):043704.
    [119]Santos D, Kim S, Spenko M, et al. Directional adhesive structure for controlled climbing on smooth vertical surfaces [J]. IEEE International Conference on Robotics and Automation. 2007,4:1261-1267.
    [120]刘彬,张吴,郭尔杰等.倾斜仿生刚毛的设计、制备及黏附性能研究[J].摩擦学学报.2009,29(5):393-398.
    [121]Persson BNJ. Biological adhesion for locomotion:basic principles. J. Adhes. Sci. Technol [J].2007,21(12-13):1145-1173.
    [122]Bhushan B, Peressadko AG, Kim TW. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for'smart adhesion'[J]. J. Adhes. Sci. Technol. 2006,20(13):1475-1491.
    [123]Yao H, Gao H. Mechanics of robust and releasable adhesion in biology:Bottom-up designed hierarchical structures of gecko [J]. J. Mech. Phys. Solids 2006,54(6):1120-1146.
    [124]Ho AYY, Yeo LP, Lam YC, et al. Fabrication and analysis of gecko-inspired hierarchical polymer nanoscale [J]. ACS nano 2011,5(3):1897-1906.
    [125]Boesel LF, Greiner C, Arzt E, et al. Gecko-inspired surfaces:A path to strong and reversible dry adhesives [J]. Adv. Mater.2010,22(19):2125-2137.
    [126]Kim S, Sitti M, Hui CY, et al. Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays [J]. Appl. Phys. Lett.2007,91(16):161905.
    [127]Long R, Hui CY, Kim S, et al. Modeling the soft backing layer thickness effect on adhesion of elastic microfiber arrays [J].J. Appl. Phys.2008,104(4):044301.
    [128]Spolenak R, Gorb S, Arzt. Adhesion desion maps for bio-inspired attachment systems [J]. Acta Biomater.2005,1(1):5-13.
    [129]Jeong HE, Suh KY. Nanohairs and nanotubes:efficient structural elements for gecko-inspired artificial dry adhesives [J]. Nano Today 2009,4(4):335-346.
    [130]Kim S, Spenko M, Trujillo S, et al. Whole body adhesion:hierarchical, directional and distributed control of adhesive forces for a climbing robot [J]. IEEE International Conference on Robotics and Automation.2007,4:1268-1273.
    [131]Lee DH, Kim Y, Fearing RS. et al.Effect of Fiber Geometry on Macroscale Friction of Ordered Low-Density Polyethylene Nanofiber Arrays[J]. Langmuir 2011,27(17): 11008-11016.
    [132]Gillies AG. Fearing RS. Shear Adhesion strength of thermoplastic gecko-inspired synthetic adhesive exceeds material limits[J]. Langmuir 2011,27(18):11278-11281.
    [133]Gillies AG, Fearing RS. A micromolded connector for reconfigurable millirobots[J]. J. Micromech. Microeng.2010,20(10):105011.
    [134]http://robotics.eecs.berkeley.edu/-ronf/Gecko/index.html
    [135]Liu KS, Du JX, Wu JT, et al. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials [J]. Nanoscale 2012,4(3):768-772.
    [136]Kwak MK, Jeong HE, Suh KY. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch [J]. Adv. Mater.2011,23(34):3949-3953.
    [137]Jia QM, Zheng M, Xu CZ, et al. The mechanical properties and tribological behavior of epoxy resin composites modified by different shape nanofillers [J]. Polym. Adv. Tech.2006, 17(3):168-173.
    [138]Shi G, Zhang MQ, Rong MZ, et al. Friction and wear of low nanometer Si3N4 filled epoxy composites [J]. Wear 2003,254(7-8):784-796.
    [139]Xing XS, Li RKY. Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles [J]. Wear 2004,256(1-2):21-26.
    [140]Wetzel B, Haupert F, Zhang MQ. Epoxy nanocomposites with high mechanical and tribological performance [J]. Compos. Sci. Techn.2003,63(14):2055-2067.
    [141]胡幼华,高辉,阎逢元等.纳米ZnO/环氧树脂复合材料的力学性能和摩擦学性能[J].摩擦学学报.2003,23(3):216-220.
    [142]纪秋龙,章明秋,容敏智等.纳米碳化硅填充环氧树脂复合材料的摩擦磨损性能[J].复合材料学报.2004,21(6):14-20.
    [143]Perry SS, Tysoe WT. Frontiers of fundamental tribological research[J]. Tribol. Lett.2005, 19(3):151-161.
    [144]Thompson GE, Wood GC. Porous anodic film formation on aluminum [J]. Nature.1981, 290(5803):230-232.
    [145]Zhao QZ, Jiang XX, Shi CS, et al. Effects of anodizing conditions on anodic alumina structure [J]. J. Mater. Sci.2007,42(11):3878-3882.
    [146]Friedman AL, Brittain D, Menon L. Roles of pH and acid type in the anodic growth of porous alumina [J]. J. Chem. Phys.2007,127(15):154717.
    [147]Masuda H, Asoh H, Watanabe M, et al. Square and triangular nanohole array architectures in anodic alumina [.I], Adv. Mater.2001.13(3):189-192.
    [148]Cao GZ, Liu DW. Template-based synthesis of nanorod, nanowire. and nanotube arrays [J]. Adv. Colloid Interface Sci.2008.136(1-2):45-64.
    [149]Oliver WC. Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J].J. Mater. Res. 1992,7(6):1564-1583.
    [150]Doerner MF, Nix WD. A method of interpreting the data from depth-sensing indentation instruments [J]. J. Mater. Res.1986,1(4):601-609.
    [151]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社,2004:57-67.
    [152]Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation:Advance in understanding and refinements to methodology [J]. J. Mater. Res. 2004,19(1):3-20.
    [153]Hendrix BC. The use of shape correction factors for elastic indentation measurements [J]. J. Mater. Res.1995,10(2):255-257.
    [154]Powles RC, Mckenzie DR, Meure SJ, et al. Nanoindentation response of PEEK modified by mesh-assisted plasma immersion ion implantation [J]. Surf Coat Tech.2007,201(18): 7961-7969.
    [155]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社.,2004:71-76.
    [156]张泰华,杨亚敏.纳米硬度技术的发展和应用[J].力学进展,2002,32(3):349-364.
    [157]Fischer-Cripps AC. Nanoindentation [M]. Spring-Verlag, New York,2002.
    [158]Hong D, Thomas WS, John JA. Adhesion assessment of silicon carbide, carbon, and carbon nitride ultrathin overcoats by nanoscratch techniques [J]. J. Appl. Phys.1997,81(8): 5396-5405.
    [159]Vincent DJ, Oliver WC. Viscoelastic behavior of polymer films during scratch test:a quantitative analysis [C]. Pennsylvania:MRS,2000:251-256.
    [160]Degiampietro K, Colaco R. Nanoabrasive wear induced by an AFM diamond tip on stainless steel [J]. Wear.2007,263(7-12):1579-1584.
    [161]王止直,辜萍,杨翀等.基于MATLAB图像处理技术计算微纳米级磨损量[J].实验力学,2009,24(5):389-394.
    [162]Zhang H, Tang LC, Zhang Z, et al. Fracture behaviors of in situ silica nanoparticle-filled epoxy at different temperatures[J]. Polymer.2008,49:3816-3825.
    [163]王正直,辜萍.纳米复合材料摩擦磨损性能研究进展[J].润滑与密封,2009,34(5):109-114.
    [164]Briscoe B.I, Fiori L. Pelillo E. Nano-indentation of polymeric surfaces[J]. J. Phys. D Appl. Phys.1998,31:2395-2405.
    [165]Wang ZZ, Gu P, Zhang Z. Indentation and scratch behavior of nano-SiO2/polycarbonate composite coating at the micro/nano-scale[J]. Wear.2010,269:21-25.
    [166]Wang ZZ. Gu P. Zhang Z. et al. Mechanical and tribological behavior of epoxy/silica nanocomposites at the micro/nano scale[J]. Tribo. Lett.2011,42:185-191.
    [167]Zhang YF, Bai SL, Li XK, et al. Viscoelastic properties of nanosilica-filled epoxy composites investigated bydynamic nanoindentation[J]. J. Polym. Sci. Polym. Phys.2009, 47(10):1030-1038.
    [168]Zou M, Yang D. Nanoindentation of silica nanoparticlesattached to a silicon substrate[J]. Tribol. Lett.2006,22(2):189-196.
    [169]Bolshakov A, Pharr GM. Influences of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques[J]. J. Mater. Res.1998,13:1049-1058.
    [170]ABAQUS Inc., ABAQUS User's manual Version 6.9, (2009).
    [171]陈健.2005.多空氧化铝薄膜的制备、表征和应用研究[D]:[硕士].合肥:中国科学技术大学,43-45.
    [172]Wymyslowski A, Dowhan L, Wittler O, et al. Application of nanoindentation technique to extraction of thin films properties through experimental and numerical analysis[J]. Mater. Sci. 2010.28:655-662.
    [173]Pelletier H, Krier J, Cornet A, et al.Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials[J]. Thin Solid Films 2000, 379:147-155.
    [174]Chatterjee A, Polycarpou AA, Abelson JR, et al. Nanoscratch study of hard HfB2 thin films using experimental and finite element techniques[J]. Wear 2010,268:677-685.
    [175]Bucaille JL, Felder E, Hochstetter G. Experimental and three-dimensional finite element study of scratch test of polymers at large deformations[J]. J. Tribol-T. ASME.2004,126: 372-379.
    [176]Sneddon IN. The relation between load and penetration in the axisymmetrical Boussinesq problem for a punch of arbitrary profile[J]. Int. J. Eng. Sci.1965,3:47-56.
    [177]Xu N, Zong BY. Stress in particulate reinforcements and overall stress response on aluminum alloy matrix composites during straining by analytical and numerical modeling[J].Comput. Mater. Sci.2008,43:1094-1100.
    [178]Ouyang CJ, Huang MS, Li ZH.Circular nano-indentation in particle-reinforced metal matrix composites:Simply uniformly distributed particles lead to complex nano-indentation response[J]. Comput. Mater. Sci.2010,47:940-950.
    [179]Zhang P, Li FG. Microstructure-based Simulation of Plastic Deformation Behavior of SiC Particle Reinforced AI Matrix Composites[J]. Chin. J. Aeronaut.2009,22:663-669.
    [180]Mondali M, Abedian A, Adibnazari S.FEM study of the second stage creep behavior of Al6061/SiC metal matrix composite[J]. Comput. Mater. Sci.2005.34:140-150.
    [181]Jiang ZH, Li GY, Lian HS.Elastic-plastic stress transfer in short fibre-reinforced metal-matrix composites[J].Compos. Sci. Technol.2004,64:1661-1670.
    [182]Rosenberger MR, Forlerer E, Schvezov CE.Modeling the micro-indentation of metal matrix composites[J]. Mater. Sci. Eng., A 2007,463:275-283.
    [183]Bellemare S, Dao M, Suresh S. The frictional sliding response of elasto-plastic materials in contact with a conical indenter[J].Int. J. Solids Struct.2007,44:1970-1989.
    [184]Wymyslowski A, Dowhan L. Wittler O, et al. Application of nanoindentation technique to extraction of thin films properties through experimental and numerical analysis[J]. Mater. Sci. 2010,28:655-662.
    [185]Chawla N, Sidhu RS, Ganesh VV. Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites[J]. Acta. Mater.2006,54:1541-1548.
    [186]Chawla N, Ganesh W, Wunsch B. Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites[J]. Scripta Mater.2004,51:161-165.
    [187]Chen XL, Liu YJ.Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites[J].Comput. Mater. Sci.2004,29: 1-11.
    [188]Kari S, Berger H, Rodriguez-Ramos R.Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles[J].Compos. Struct.2007,77:223-231.
    [189]Cannillo V, Leonelli C, Manfredini T.Mechanical performance and fracture behaviour of glass-matrix composites reinforced with molybdenum particles[J].Compos. Sci. Technol. 2005,65:1276-1283.
    [190]Heness GL, Ben-Nissan B, Gan LH.Development of a finite element micromodel for metal matrix composites[J]. Comput. Mater. Sci.1999,13:259-269.
    [191]Chawla N, Shen YL. Mechanical behavior of particle reinforced metal matrix composites[J]. Adv. Eng. Mater,2001,3:357-370.
    [192]Jiang H, Browning R, Sue HJ. Understanding of scratch-induced damage mechanisms in polymers[J]. Polymer.2009,50:4056-4065.
    [193]Lafaye S, Gauthier C, Schirrrer R. Analysis of the apparent friction of polymeric surfaces[J]. J. Mater. Sci.2006,41:6441-6452.
    [194]Israelachvili JN. Microtribology and microrheology of molecularly thin liquid film[M]. New York:CRC Press LLC.2001:24-26.
    [195]温诗铸,黄平.摩擦学原理(第三版)[M].北京:清华大学出版社,2008:220-236;262-274;291-304.
    [196]郭清兵,潭赟华,李翠金.聚合物基纳米复合材料减摩耐磨性能研究进展[J].塑料工业.2010,38(8):5-9.
    [197]Wang ZZ, Gu P, Zhang Z, et al. Finite element modeling of the indentation and scratch response of epoxy/silica nanocomposites[J]. Mech. Adv. Mater. Struc.To be published.
    [198]Suh YS, Joshi SP, Ramesh KT. An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites[J]. Acta. Mater.2009,57: 5848-5861.
    [199]Wisnom MR.Modelling discrete failures in composites with interface elements[J], Composites Part A.2010,41:795-805.
    [200]Seidel GD, Allen DH, Helms KLE.A model for predicting the evolution of damage in viscoelastic particle-reinforced composites[J].Mech. Mater.2005,37:163-178.
    [201]罗智.2010.单向纤维增强复合材料力学性能的数值模拟研究[D]:[硕士].合肥:中国科学技术大学,5-11.
    [202]Li C. Jordens K, Wilkes GL. Abrasion-resistant coatings for plastic and soft metallic substrates by sol-gel reactions of a triethoxysilylated diethylenetriamine and tetramethoxysilane[J]. Wear.2000,242(1-2):152-159.
    [203]Bauer F, Flyunt R, Czihal K, et al. Nano/micro particle hybrid composites for scratch and abrasion resistant polyacrylate coatings[J]. Macromol. Mater. Eng.2006,291(5):493-498.
    [204]Zhang H, Zhang H, Tang LC, et al. Comparative study on the optical, surface mechanical and wear resistant properties of transparent coatings filled with pyrogenic and colloidal silica nanoparticles[J]. Compos. Sci. Technol.2011,71(4):471-479.
    [205]Carrion FJ, Sanes J, Bermudez MD. Influence of ZnO nanoparticle filler on the properties and wear resistance of polycarbonate[J]. Wear 2007,262(11-12):1504-1510.
    [206]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998:160;183.
    [207]陈天华.数字图像处理[M].北京:清华大学出版社,2007:1-2.
    [208]宋彦琦,高春艳,牛建广.应用MATLAB图像处理技术提取云纹中心线[J].实验力学,2006,21(15):640-64.
    [209]葛哲学.精通MATLAB[M]北京:电子工业出版社,2008:1-5.
    [210]Rabinowicz E, Friction and Wear of Materials.2nd ed.[M], John Wiley and Sons, New York. USA,1965.
    [211]Hatchings IM. Tribology:Friction and Wear of Engineering Materials[M]. CRC press, Arnold. USA.1995.
    [212]Beake BD, Vishnyakov VM, Valizadeh R, et al. Influence of mechanical properties on the nanoscratch behaviour of hard nanocomposite TiN/Si3N4 coatings on Si[J]. J. Phys. D Appl. Phys.2006,39(7):1392-1397.
    [213]Prioli R, Reigada DC, Freire FL. Nanoscale friction and wear mechanisms at the interface between a boron carbide film and an atomic force microscope tip[J]. J. Phys. D Appl. Phys. 2000,87(3):1118-1122.
    [214]Ayala P, Prooli R, Freire FL. Nano-and micro-scale wear of fluorinated carbon films[J]. Surf Coat Tech 2004,182(2-3):335-341.
    [215]Leyland A, Matthews A. On the significance of the H/E ratio in wear control:a nanocomposites coating approach to optimized tribological behavior[J]. Wear 2000; 246(1-2): 1-11.
    [216]Rajesh JJ, Bijwe J, Tewari US. Abrasive wear performance of various polyamides[J]. Wear 2002,252(9-10):769-776.
    [217]Shi B, Sullivan JL, Beake BD. An investigation into which factors control the nanotribological behaviour of thin sputtered carbon films[J]. J. Phys. D Appl. Phys.2008, 41(4):1-7.
    [218]Mohan N, Natarajan S, KumareshBabu SP, et al. Investigation on two-body abrasive wear behavior of silicon carbide filled glass fabric-epoxy composites[J]. Journal of Minerals & Materials Characterization & Engineering.2010,9(3):231-246.
    [219]Rapoport L, Bilik Y, Feldman Y, et al. Hollow nanoparticles of WS2 as potential solid-state lubricants[J]. Nature 1997,387:791-793.
    [220]Rapoport L, Leshchinsky V, Lapsker I, et al. Tribological properties of WS2 nanoparticles under mixed lubrication[J]. Wear 2003,255(7-12),785-793.
    [221]Stachowiak GW, Batchelor AW. Engineering Tribology,2nd ed.[M], Butterworths /Heinemann, Woburn, USA,2001.
    [222]Beake BD, Shipway PH, Leggett GJ. Influence of mechanical properties on the nanowear of uniaxially oriented poly(ethylene terephthalate) film[J]. Wear2004,256(1-2):118-125.
    [223]Beake BD, Leggett GJ, Shipway PH. Nanotribology of biaxially oriented poly(ethylene terephthalate) film[J].Polymer,2001,42(16):7025-7031.
    [224]Wang DF, Kato K. NanoOscale fatigue wear of carbon nitride coatings:Part Ⅱ-Wear mechanisms[J].J. Tribol.-T. ASME 2003,125:437-444.
    [225]Sitti M, Fearing RS. Synthetic fecko foot-hair micro/nano-structures for future wall-climbing robots[J]. J. Adhes. Sci. Technol.2003,17(8):1055-1073.
    [226]Jin M. Feng X, Feng L. Superhydrophobic aligned polystyrene nanotube films with high adhesive force[J]. Adv. Mater.2005.17(16):1977.
    [227]许云,李林斌,辜萍.聚酰亚胺纳米线阵列的制备及浸润机理研究[J].中国科学技术大学学报.2010,40(10):999-1003.
    [228]Steinhart M, Wendorff JH, Greiner A, et al. Polymer nanotubes by wetting of ordered porous templates[J]. Science.2002,296(5575):1997.
    [229]Steinhart M, Wehrspohn RB, Gosele U, et al. Nanotubes by template wetting:A modular assembly system[J]. Angew. Chem. Int. Ed.2004,43(11):1334-1344.
    [230]Masuda H, Fukuda K. Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina[J]. Science.1995,268(5216):1466-1468.
    [231]Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays in anodic alumina[J]. Appl. Phys. Lett.1998,72(10):1173-1175.
    [232]Sarkar J, Khan GG, Basumallick A. Nanowires:properties, applications and synthesis via porous aluminium oxide template[J]. Bull. Mater. Sci.2007,30(3):271-290.
    [233]Kong J, Yung KL, Xu Y, et al. Self-organizedmicropattemsofhighaspectratio polymer nanofibers by wetting of nanopores[J]. J. Polym. Sci. B-Polym. Phys.2008,46(12): 1280-1289.
    [234]Keller F, Hunter MS, Robinson DL. Structural features of oxide coatings on aluminum[J]. J. Electrochem. Soc.1953,100:411-419.
    [235]O'sullivan JP, Wood GC. The morphology and mechanism of formation of porous anodic films on aluminium[J]. Pro. Roy. Soc. London 1970, A317:511-543.
    [236]Xu Y, Thompson, GE, Wood GC. Mechanism of anodic film formation on aluminium[J]. Trans. Inst. Met. Finish 1985,63:98-103.
    [237]Parkhutik VP, Shershulsky VI. Theoretical modeling of porous oxide growth on aluminium[J].J. Phys. D Appl. Phys.1992,25(8):1258-1263.
    [238]Ng KO, Vanderbilt D. Stability of periodic domain structures in a two-dimensional dipolar model[J]. Phys. Rev. B 1995,52(3):2177-2183.
    [239]Yang XL, Zhu XF, Jia HB, et al. Oxygen evolution:the mechanism of formation of porous anodic alumina[J]. Monatsh. Chem.2009,140(6):595-600.
    [240]Asoh H, Ono S, Hirose T. Growth of anodic porous alumina with square cells[J]. Electrochom. Acta 2003,48(20-22):3171-3174.
    [241]Lee J, Majidi C. Schubert B, et al. Sliding-induced adhesion of stiff polymer microfiber arrays. I. Macroscale behavior[J]. J. Roy. Soc. Interface 2008,5(25):835-844.
    [242]Schubert B. Lee J, Majidi C. et al. Sliding-induced adhesion of stiff polymer microfiber arrays. H. Microscale behavior[J]. J. Roy. Soc. Interface 2008.5(25):845-853.
    [243]Steinhart M. Supramolecular organization of polymeric materials in nanoporous hard templates[J]. Adv. Polym. Sci.2008,220:123-187.
    [244]Tan EPS, Lin CT. Mechanical characterization of nanofibers-A review[J]. Compos. Sci. Technol.2006,66(9):1099-1108.
    [245]Bai XD, Xu Z, Liu KH, et al. In situ TEM probing properties of individual one-dimensional nanostructures[J]. Int. J. Nanotechnol.2007,4(1-2):119-128.
    [246]Zhu Y, Ke, C, Espinosa. Experimental techniques for the mechanical characterization of one-dimensional nanostructures[J]. Exp. Mech.2007,47(1):7-24.
    [247]Han XD, Zhang Z, Wang ZL. Experimental nanomechanics of one-dimensional nanomaterials by in situ microscopy[J]. Nano 2007,2(5):249-271.
    [248]Gianola DS, Eberl C. Micro-and nanoscale tensile testing of materials[J]. JOM 2009,61(3): 24-35.
    [249]Li XD, Chasiotis I, Kitamura T. In situ scanning probe microscopy nanomechanical testing[J]. MRS Bull.2010,35(5):361-367.
    [250]Stan G, Cook RF. Mechanical properties of one-dimensional nanostructures[M]. Berlin: Springer-Verlag 2010:571-611.
    [251]Agrawal R, Loh O, Espinosa HD. The evolving role of experimental mechanics in 1-D nanostructure-based device development[J]. Exp. Mech.2011,51(1):1-9.
    [252]Kis A, Kasas S, Babic B, et al. Nanomechanics of microtubules[J]. Phys. Rev. Lett.2002, 89(24):248101/1-4.
    [253]Wong EW, Sheehan PE, Lieber CM, et al. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and naotubes[J]. Science 1997,277(5334):1971-1975.
    [254]Wu B, Heidelberg A, Boland JJ. Mechanical properties of ultrahigh-strength gold nanowires[J]. Nat. Mater.2005,4(7):525-529.
    [255]Salvetat JP, Briggs GAD, Bonard JM, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Phys. Rev. Lett.1999,82(5):944-947.
    [256]Ni H, Li XD. Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques[J].Nanotechnology 2006,17(14):3591-3597.
    [257]Zhou P, Wu CW, Li XD. Three-point bending Young's modulus of nanowires[J]. Meas. Sci. Technol.2008,19(11):115703.
    [258]Shanmugham S, Jeong JW, Alkhateeb A, et al.Polymer nanowire elastic moduli measured with digital pulsed force mode A FM[J].Langmuir 2005,21 (22):10214-10218.
    [259]Kim YJ, Son K, Choi iC, et al. ExploringNanomechanicalBehaviorofSiliconNanowires: AFM Bending Versus Nanoindentation[J]. Adv. Funct. Mater.2011.21(2):279-286.
    [260]Zhang H, Tang J, Zhang L, et al. Atomic force microscopy measurement of the Young's modulus and hardness of single LaB(6) nanowires[J].Appl. Phys. Lett.2008,92(17): 173121.
    [261]Tan EPS, Lim CT. Physical properties of a single polymeric nanofiber[J].Appl. Phys. Lett. 2004,84(9):1603-1605.
    [262]Song JH, Wang XD, Riedo E, et al. Elastic property of vertically aligned nanowires[J]. Nano Lett.2005,5(10):1954-1958.
    [263]Han XD, Zhang YF, Zheng K, et al. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism[J].Nano Lett.2007,7(2):452-457.
    [264]Lourie O, Cox DM, Wagner HD. Buckling and collapse of embedded carbon nanotubes[J].Phys. Rev. Lett.1998,81(8):1638-1641.
    [265]Sundararajan S, Bhushan B, Namazu T.Mechanical property measurements of nanoscale structures using an atomic force microscope[J].Ultramicroscopy 2002,91(1-4):111-118.
    [266]Namazu T, Isono Y. Quasi-static bending test of nano-scale SiO2 wire at intermediate temperatures using AFM-based technique[J].SENSOR ACTUAT A-PHYS 2003,104: 78-85.
    [267]Kim GT, Gu G, Waizmann U, et al. Simple method to prepare individual suspended nanofibers[J].Appl. Phys. Lett.2002,80(10):1815-1817.
    [268]Tombler TW, Zhou CW, Alexseyev L, et al.Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation[J].Nature 2000,405(6788):769-772.
    [269]Cuenot S, Demoustier-Champagne S, Nysten B. Elastic modulus of polypyrrole nanotubes[J]. Phys. Rev. Lett.2000,85(8):1690-1693.
    [270]Yu MF, Files BS, Arepalli S, et al. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties[J]. Phys. Rev. Lett.2000,84(24):5552-5555.
    [271]Yu MF, Lourie O, Dyer MJ, et al. Strength and Breaking Mechanism of Multivvalled Carbon Nanotubes under tensile load[J]. Science 2000,287(5453):637-640.
    [272]Tan ESP, Lim CT. Novel approach to tensile testing of micro-and nanoscale fibers[J]. Rev. Sci. Instrum.2004,75(8):2581-2585.
    [273]Tan ESP, Ng SY, Lim CT. Tensile testing of a single ultrafine polymeric fiber[J]. Biomaterials 2005,26(13):1453-1456.
    [274]Han XD, Zheng K. Zhang YF. et al. Low-temperature in situ large-strain plasticity of silicon nanowires[J].Adv. Mater.2007,19(16):2112.
    [275]Zhang YF. Han XD. Zheng K. et al. Direct observation of super-plasticity of beta-SiC nanowires at low temperature[J].Adv. Funct. Mater.2007.17(17):3435-3440.
    [276]Huang JY, Chen S, Wang ZQ, et al.Superplastic carbon nanotubes-Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes[J]. Nature 2006,439(7074):281.
    [277]Yu MF, Dyer MJ, Skidmore GD, et al. Three-dimensional manipulation of carbon nanotubes under ascanning electron microscope[J]. Nanotechnology 1999,10(3):244-252.
    [278]Tan EPS, Goh CN, Sow CH, et al. Tensile test of a singlenanofiber using an atomic force microscope tip[J]. Appl. Phys. Lett.2005,86(7):073115.
    [279]Demczyk BG, Wang YM, Cumings J, et al.Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes[J].Mater. Sci. Eng. A 2002, 334(1-2):173-178.
    [280]Inai R, Kotaki M, Ramakrishna S, et al. Structure and properties of electrospun PLLA single nanofibres[J].Nanotechnology 2005,16(2):208-213.
    [281]Kaplan-Ashiri I, Cohen SR, Gartsman K, et al. Mechanical behavior of individual WS2nanotubes[J]. J. Mater. Res 2004,19(2):454-459.
    [282]Sohn YS, Park JS, Yoon G, et al. Mechanical Properties of Silicon Nanowires[J]. Nanoscale Res. Lett.2010,5(1):211-216.
    [283]Li XD, Gao HS, Murphy CJ, et al. Nanoindentation of Silver Nanowires[J]. Nano Lett.2003, 3(11):1495-1498.
    [284]Tan EPS, Lim CT. Nanoindentation study of nanofibers[J]. Appl. Phys. Lett.2005, 87(12):123106.
    [285]Poncharal P, Wang ZL, Ugarte D, et al. Electrostaticdeflections and electromechanical resonances of carbon nanotubes[J].Science 1999,283(5407):1513-1516.
    [286]Chen CQ, Shi Y, Zhang YS, et al. Size dependence of Young's modulus in ZnO nanowires[J]. Phys. Rev. Lett.2006,96(7):075505.
    [287]Riaz M, Fulati A, Amin G, et al. Buckling and elastic stability of vertical ZnO nanotubes and nanorods[J]. J. Appl. Phys.2009,106(3):034309.
    [288]Boussaad S, Tao NJ. Polymer wire chemical sensor using amicrofabricated tuning fork[J]. Nanolett.2003,3(8):1173-1176.
    [289]Cuenot S, Fretigny C, Demoustier-Champagne S, et al. Measurement of elastic modulus of nanotubes by resonant contact atomicforce microscopy[J]. J. Appl. Phys.2003, 93(9):5650-5655.
    [290]Haque MA, Saif MTA. A review of MEMS-based microscale andnanoscale tensile and bending testing[J]. Exp. Mech.2003,43(3):248-255.
    [291]Ko F. Gogotsi Y, Ali A, et al. Electrospinning of continuous carbon nanotube-filled nanofiberyarns[J].Adv. Mater.2003,15(14):1161-1165.
    [292]Bischel MS, Vanlandingham MR, Eduljee RF, et al. On the use of nanoscale indentation with the AFMin the identification of phases in blends of linear low densitypolyethylene and high density polyethylene[J]. J. Mater. Sci.2000,35(1):221-228.
    [293]Chen YX, Dorgan BL, Mcllroy DN, et al. Onthe importance of boundary conditions on nanomechanicalbending behavior and elastic modulus determination ofsilver nanowires[J]. J.Appl. Phys.2006,100(10):104301.
    [294]Chen Y X, Stevenson I, Pouy R, et al. Mechanicalelasticity of vapour-liquid-solid grown GaN nanowires[J]. Nanotechnlogy 2007,18(13):135708.
    [295]Liang YA, Autumn K, Hsieh ST, et al.Adhesion force measurements on single gecko setae[C]. Technical Digest. Solid-State Sensor and Actuator Workshop 2000:33-38.
    [296]Israelachvili JN. Intermolecular and surface forces (3rd Ed.)[M]. London Elsevier 2011: 1-18.
    [297]Johnson KL. Contact Mechanics [M]. Cambridge University Press, Cambridge 1987.
    [298]Johnson KL, Kendall K, Roberts AD. Surface energy and the contact of elastic solids[J]. Proc. R. Soc. Lond. A 1971,324:301-313.
    [299]Derjaguin BV, Muller VM, Toporov YuP. Effect of contact deformation on the adhesion of particles[J]. J. Colloid Interf. Sci.1975,53:314-326.
    [300]Maugis D. Adhesion of spheres-the JKR-DMT transition using a Dugdale model[J]. J. Colloid Interf. Sci.1992,150,243-269.
    [301]Grierson DS, Flater EE, Carpick RW. Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy[J]. J. Adhesion Sci. Technol.2005, 19(3-5):291-311.
    [302]Tabor D. Surface forces and surface interactions[J]. J. Colloid Interface Sci.1977,58:2-13.
    [303]Greenwood JA. Adhesion of elastic spheres[J]. Proc. R. Soc. Lond. A 1997,453: 1277-1297.
    [304]Spolenak R, Gorb S, Gao HJ, et al. Effects of contact shape on the scaling of biological[J]. Proc. R. Soc. Lond. A 2005,461 (2054):305-319.
    [305]Carpick RW, Ogletree DF, Salmeron M. A general equation for fitting contact area and friction vs load measurements[J]. J. Colloid Interf. Sci.1999,211(2):395-400.
    [306]Dahlquist CA. Pressure-sensitive adhesives. In Treatise on Adhesionand Adhesives[M]. 1969, New York:Dekker 219-260.
    [307]Hui CY, Glassmaker NJ. Tang T.Design of biomimetic fibrillar interfaces:2. Mechanics of enhanced adhesion[J].J. R.Soc. Interface 2004.1(1):12-26.
    [308]Sitti M. Fearing RS. Synthetic gecko foot-hair micro/nanostructures as dry adhesives[J].J. Adhesion Sci. Technol.2003,17(8):1055-1073.
    [309]Spolenak R, GorbS, Arzt E. Adhesion design maps for bio-inspired attachment systems[J]. Acta Biomater.2005,1(1):5-13.
    [310]Tong T, Zhao Y, Delzeit L, et al. Compressiveproperties of dense vertically aligned multi-walled carbon nanotube arrays[C].NANO2005 ASME Integrated Nanosystems: Design, Synthesis & Applications.2005, California, USA:14-16.
    [311]Olofsson N, Ek-Weis J, Eriksson A, et al. Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays:a simple nanotube-based varactor[J].Nanotechnology 20(38):385710.
    [312]Bullock JMR, Federle W. Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles:effective elastic modulus and attachment performance[J]. J. Exp. Biol.2009,212(12):1876-1888.
    [313]Zhang Y, Suhir E, Xu Y. Effective Young's modulus of carbon nanofiber array[J]. J. Mater. Res.2006,21(11):2948-2954.
    [314]Cao AY, Dickrell PL, Sawyer WG, et al. Super-Compressible Foamlike Carbon Nanotube Films[J]. Science 2005,310(5752):1307-1310.
    [315]San Paulo A, Arellano N, Plaza JA, et al. Suspended Mechanical Structuresbased on elastic silicon nanowire arrays[J]. Nano Lett.2007,7(4):1100-1104.
    [316]Jagota A, Bennison SJ. Mechanics of Adhesion Through a Fibrillar Microstructure[J]. Integr.Comp.Biol.2002,42:1140-1145.
    [317]Zhang XJ, Zhang XH, Wen SZ. Finite Element Modeling of the Nano-scale Adhesive Contact and the Geometry-based Pull-off Force[J].Tribol. Lett.2011,41(1):65-72.
    [318]Cho SS, Park S. Finite element modeling of adhesive contact using molecular potential[J].2004,37(9):763-769.
    [319]Feng XQ, Li H, Zhao HP, et al.Numerical simulations of the normal impact of adhesive microparticles with a rigid substrate[J].Powder Technol.2009,189(1):34-41.
    [320]Guo ZJ, McGruer NE, Adams GG. Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch[J]. J. Micromech. Microeng.2007,17(9):1899-1909.
    [321]Varenberg M. Peressadko A. Gorb S. et al. Effect of real contact geometry on adhesion[J]. Appl. Phys. Lett.2006,89(12):121905.
    [322]Park JY. Ogletree DF. Salmeron M, et al. Elastic and inelastic deformations of ethylene-passivated tenfold decagonal Al-Ni-Coquasicrystal surfaces[J]. Phys. Rev. B 2005.71(14):144203.
    [323]Varenberg M,Gorb S. Close-up of mushroom-shaped fibrillar adhesive microstructure: contact element behaviour[J].J. R. Soc. Interface 2008,5(24):785-789.
    [324]Bartlett MD, Croll AB, King DR, et al. Looking beyond fibrillar features to scale gecko-like adhesion[J]. Adv. Mater.2012,24(8):1078-1083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700