仿生微纳粘附阵列的制备与物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壁虎能够在墙壁、天花板等任何表面做无障碍运动,其高超的攀爬能力一直是近年来科研人员重点研究对象。壁虎具备超强的粘附能力是因为其脚掌上长有无数根由超疏水性的β-角蛋白构成的超细刚毛阵列。这种粘附力来自绒毛与接触表面的范德华力。制造仿壁虎脚掌刚毛阵列需要考虑阵列的尺寸、形貌、弹性模量以及倾斜角等因素。通过仿制这种具有超细绒毛结构的材料可以实现极高的实用价值。贻贝等软体动物中有一种特殊的粘附蛋白,可在水下与固体表面形成交联,用以粘附并固定在外界的各种固体表面。贻贝中的这种粘附蛋白都含有多巴胺(DOPA),含有多巴的天然或合成粘附剂都具有很强的粘附力,而且多巴含量越高粘附力越大。多巴胺修饰的微阵列在潮湿环境下仍然具有粘附作用的特点。这样,经过多巴胺修饰过的粘附阵列具有更广泛的应用。
     论文第一章回顾了仿生壁虎脚掌的研究进展,概况了壁虎的粘附、脱附机理。另外还介绍了利用不同手段和不同材料制备的微纳粘附阵列。最后简单地介绍了粘附阵列的力学测试方法。
     论文第二章主要介绍了微米级和纳米级粘附阵列的制备工艺并设计实验平台测试宏观粘附力。用原子力显微镜测试微观粘附力。合成了仿贻贝粘附蛋白聚合物-多巴胺-甲基丙烯酸酰胺/甲氧基乙基丙烯酸酯共聚物(P(DMA-co-MEA)),然后修饰在聚氨酯粘附阵列上。实验发现多巴胺修饰后的样品粘附力大大提升,而且在水中也有很好的粘附效果。最后探讨了修饰机理以及粘附机理。
     在第三章中,选择以4,4`-二苯基甲烷二异氰酸酯(MDI)为单体制备聚氨酯高分子材料,通过调整单体MDI和聚四氢呋喃(PTMG)以及1,4-丁二醇的比例可以调整软硬段的比例从而实现弹性模量的改变。用聚二甲基硅氧烷(PDMS)模板可以得到不同尺寸的聚氨酯粘附阵列。通过纳米压痕仪器测试高分子材料的弹性模量和粘附阵列的粘附力大小,实验结果发现:聚氨酯中软段比例提高可使弹性模量变小;弹性模量调节的范围介于0.62~175MPa;聚氨酯阵列的直径尺寸变小可使阵列有效弹性模量变小;随着粘附阵列弹性模量的减少,粘附阵列的粘附力大小随之增大。这些实验结果都和理论计算值相吻合。
Geckos can walk freely on the walls, ceilings and any other surfaces, which attracted the focus of the researchers in recent years. The climbing ability of geckos is attributed to fibrillar arrays, consisting of stiff, hydrophobicβ-keratin which covers the bottom of gecko’s feet. Such high dry adhesion between the feet and surfaces originates from Vander Waals forces. To mimic gecko foot hairs, surface design parameters such as pillar size, shape, elastic modulus, or tilt angle need to be considered. To simulate the materials with microstructure has a high practical value. Mussels have a special adhesion to surface in the water. The amazing ability of adhesion is due to a kind of proteins in mussels that is dopamine (DOPA). Either natural or synthetic DOPA has an excellent adhesion. The higher content of the DOPA has a greater adhesion. Dopamine-modified microarrays have an ability of adhesion in a wet environment. It can broaden the application of the microarrays by the modification of dopamine-polymer.
     In the first chapter, we reviewed the development of bio-mimick gecko and generalize the mechanism of the adhesion and detachment. In addition, we introduced the preparation of the gecko-inspired arrays by different methods and different materials. In the last, we introduced the main methods of the adhesion measurement.
     In the second chapter, we introduced the fabrication technology of the micro/nano polymer arrays and designed a platform to investigate the macro adhesion of the fabricated arrays. Atomic force microscope(AFM) was utilized to measure the micro adhesion of the arrays. 3,4-dihydroxy-ι-phenylalanine(DOPA) was synthesized and then was modified to the polyurethane polymer arrays. The experimental result shows that the dopamine-modified microarrays can enhance the adhesion of the, also have an ability of adhesion in a wet environment. We have also discussed the mechanism of the modification and adhesion of the arrays.
     In the last chapter, segmented polyurethane (PU) was utilized to fabricate micro arrays by the porous polydimethyl siloxane (PDMS) membrane molding method. We fabricated a series of segmented PU from 4, 4’- diphenylmethane diisocyanate (MDI), Polyoxytertramethylene Glycol (PTMG) (Mn = 1000), with 1, 4– butanediol (BDO) as the chain extender. We studied the influence of the elastic modulus on the gecko-inspired dry adhesion by regulating the elastic modulus of bulk polyurethane combined with changing the size of microarrays. By varying the ratios of hard and soft segments of the bulk PU and changing the radius of the PU arrays, regulation of the elastic modulus of PU micro arrays is achieved to realize the modulation of the dry adhesion. The properties of the micro arrays, such as the elastic modulus and adhesion were investigated by Triboindenter. The study demonstrates that bulk surfaces show the highest effective modulus, with similar values at around 175 MPa and decreasing the arrays radius causes a significant decrease in E, down to 0.62 MPa. The corresponding adhesion experiment shows that decrease of the elastic modulus can enhance the adhesion which is consistent with the recent theoretical models.
引文
[1]毕树生,宗光华,关于21世纪初我国仿生机械与仿生制造的若干思考,中国机械工程,2001,12(10):1201-1204
    [2]马光,仿生机器人的研究进展,机器人,2001,23(5):463- 466
    [3]张秀丽,郑浩峻,陈恳,段广洪,机器人仿生学研究综述,机器人,2002, 24(2):188-192
    [4]杜家纬,生命科学与仿生学,生命科学,2004,16(5):317-323
    [5]郭策,戴振东,孙久荣,生物机器人的研究现状及其未来发展,机器人, 2005,27(2):187-192
    [6] Gillett J. D, Wigglesworth V. B, The climbing organ of an insect, Rhodnius prolixus (Hemiptera, Reduviidae). Proc. R. Soc. Lond, B 1932, 111:364-376
    [7] Dickinson M H, Farley C T, Full R J, How Animals Move: An Integrative View. Science, 2000,288(7):100-106
    [8] Gorb S N, The design of the fly adhesive pad: distal tenent setae are adapted for the delivery of an adhesive secretion, Proc Roy Soc, B 2000, 265:747-752
    [9] Jiao Y K, Gorb N S, Scherge M, Adhesion measured on the attachment pads of Tettigonia vi ridissima (Orthoptera Insecta), J Ex p Biol, 2000, 203:1887-1895
    [10] Gorb S. N, Jiao Y, Scherge M, Ultrastructural architecture andmechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae), J.Comp. Physiol. A 2000, 186:821-831
    [11] Jiao Y, Gorb S N, Scherge M, Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta), J. Exp. Biol. 2000, 203: 1887-1895
    [12] Gorb S N, Elena Gorb, Victoria Kastner, Scale effects on the attachment pads and friction forces in syrphid flies(Diptera,Syrphidae), The Journal of Experimental Biology, 2001,204:1421–1431
    [13] Senta Niederegger, Stanislav Gorb, Tarsal movements in flies during leg attachment and detachment on a smooth substrate, Journal of Insect Physiology, 2003,49: 611-620
    [14]杨帆,杨卫,从苍蝇与物面的触粘看尺度效应,力学与实践,2004,26(4):12-14
    [15] Rischick D J, Austin C C, Petren K, Fisher R N, Losos J B, Ellers, A comparative analysis of clinging ability among pad-bearing lizards, Biol. J. Linn Soc, 1996, 59:21-35
    [16] Scherge M, Gorb S N, Biological Micro and Nanotribology: Nature’s Solutions. Berlin: Springer-Verlag. 2001
    [17] Zhendong Dai, Stanislav N Gorb, Uli Schwarz, Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae), The Journal of Experimental Biology, 2002,205: 2479-2488
    [18] Niederegger S,Gorb N S , Jiao Y K, Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera , Calliphoridae), J Comp Physiol A ,2002 ,187:961-970
    [19] Russell A P, Integrative functional morphology of the Gekkotan adhesive system (Reptilia: Gekkota), Integrative Comparative Biology, 2002, 42:1154-63
    [20] Zaaf A, R Van Damme, Limb proportions in climbing and ground-dwelling geckos (Lepidosauria, Gekkonidae): A phylogenetically informed analysis, Zoomorphology, 2001, 121:45-53
    [21]戴振东, Stanislav Gorb,蝗虫脚掌微结构及其接触的有限元分析,上海交通大学学报,2003,37(1):66-69
    [22]孙久荣,郭策,程红等,螳螂与壁虎刚毛的比较及改形对其功能的影响,动物学报, 2005,51(4):761-767
    [23] Arzt E, Gorb S, Spolenak R, From micro to nano contacts in biological attachment devices,Proc. Natl Acad. Sci, USA 2003, 100:10603-10606
    [24] Gao X, Jiang L. Biophysics: water-repellent legs of water striders. Nature, 2004,432:36
    [25] Ren LQ, Tong J, Li JQ, Cheng BC. Soil adhesion and biomimetics of soil-engaging components: a review. J Agriculture Engineering, 2001,79(3):239-263
    [26] Ren L, Tong J, Cong Q. Unsmooth cuticles of soil animals and their characteristics of reducing adhesion and resistance. Sciences Bulletin, 1998,43:166-169
    [27] Shelley T. Worms show way to efficiently move. Eureka,2004,24(1):28-29
    [28] Soni P, Salokhe VM. Influence of dimensions of UHMW~PE protuberances on sliding resistance and normal adhesion of bangkok clay soil to biomimetic plates. Journal of Bionic Engineering, 2006,3(2):63-71
    [29] Sun JR, Li JQ, Cheng H, Dai ZD, Ren LQ. Restudies on body surface of dung beetle and application of its bionics flexible technique. J Bionics Engineering, 2004,(1):53-60
    [30] Schmidt H R. Jena Z. Naturw. , 1904 , 39 : 551
    [31] Ruibal R , Ernst V. J . Morphol . , 1965 , 117 : 271–293
    [32] Gao, H., Wang, X., Yao, H., Gorb, S. and Arzt, E.,“Mechanics of hierarchical adhesion structures of geckos,”Mech. Mater.,Vol. 37, No. 2-3, pp. 275-285, 2005.
    [33] Autumn K, Liang Y A, Hsieh T, Adhesive force of a single gecko foot-hair, Nature,2000, 405(8): 681-685
    [34] S.S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, M.R.Cutkosky, IEEE Trans. Robotics 24 (2008) 65.
    [35] H.E. Jeong, J.K. Lee, H.N. Kim, S.H. Moon, K.Y. Suh, Proc. Natl.Acad. Sci. U.S.A. 106 (2009) 5639.
    [36] A. Mahdavi, L. Ferreira, C. Sundback, J.W. Nichol, E.P. Chan,D.J.D. Carter, C.J. Bettinger, S. Patanavanich, L. Chignozha,E. Ben-Joseph, A. Galakatos, H. Pryor, I. Pomerantseva, P.T.Masiakos, W. Faquin, A. Zumbuehl, S. Hong, J. Borenstein, J. Vacanti, R. Langer, J.M. Karp, Proc. Natl. Acad. Sci. U.S.A. 105(2008) 2307.
    [37] Grnnero J GJ . Nature History , 1969 , 78 : 36-43
    [38] Simmermacher, G. 1884. Untersuchungenüber Haftapparate an Tarsalgliedern von Insekten. Zeitschr Wiss Zooology, 40:481–556.
    [39] Dellit, W. D. Zur Anatomie und Physiologie der Geckozehe, Jena. Z Naturwiss, 1934.68:613–658.
    [40] Derjaguin, B. V., Muller, V. M., Toporov, Y. P., 1975. Effect of contact deformations on the adhesion of particles.Journal of Colloid and Interface Science, 53, 314–326.
    [41] Johnson, K. L., Kendall, K., Roberts, A. D. 1971. Surface energy and the contact of elastic solids. Proceedings of the Royal Society A, A 324:301–313.
    [42] Skinner, S. M., Savage, R. L., Rutzler, J. E. 1953. Electrical phenomena in adhesion I: electron atmospheres in dielectrics. Journal of the Appied Physics, 24:438–450.
    [43] Shaw, P. E. 1923. Electrical separation between identical solid surfaces. Proceedings of the Physical Society,39:449–452.
    [44] Henry, P. S. H. 1953. The role of asymmetric rubbing in the generation of static electricity. British Journal of Applied Physics, S2:S31–S36.
    [45] Wahlin, A., Backstrom, G. 1974. Sliding lectrification of teflon by metals. Journal of Applied Physics, 45:2058–2064.
    [46] Hora, S. L. 1923. The adhesive apparatus on the toes of certain geckos and tree frogs. Proceedings of Asiatic Society of Bengal, 9:137–145.
    [47] Bhushan, B. 2002. Introduction to Tribology. Wiley, New York.
    [48] Bhushan, B. 2005. Introduction to Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg, New York.
    [49] Hiller, U. 1968. Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morphol Tiere, 62:307–362.
    [50] Huber G, Mantz H , S polenak R , et al . Proc. Natl . Acad. Sci .USA,2005 ,102 : 16293-16296.
    [51] Gao H J, Yao H M, Shape insensitive optimal adhesion of nanoscale fibrillar structures, Proceedings of the national academy of sciences of the USA, 2004, 101(21):7851-7856
    [52] Campolo D, Jones S, Fearing R S, Fabrication of gecko foot-hair like nano structures and adhesion to random rough surfaces. Proceedings of the IEEE International Conference on Nanotechnology. Piscataway, USA, 2003,856-859
    [53] Sitti M, Fearing R S. Synthetic gecko foot-hair micro/nano-structures for future wall-climbing robots. IEEE international conference on robotics and automation, Taiwan, 2003, 1: 1164-1170
    [54] Gaurav J S , Metin S. Proc. IEEE Int . Conf . on Robotics and Biomimetics , 2004. 873-79
    [55]王辉静(Wang HJ),梅涛(Mei T).中国科学技术大学学报(Journal of University of Science and Technology of China),2006 ,36:845-851.
    [56] Autumnl K, Majidi C , Groff R E , et al . J . Exp. Biol . , 2006 ,209 : 3558-3568.
    [57] Geim A K, Dubonos S V, Grigorieva I V, Microfabricated adhesive mimicking gecko foot-hair, Nature Materials, 2003, 2(7): 461-463
    [58] Burak Aksak, Michael P. Murphy, and Metin Sitti, Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays, Langmuir 2007, 23, 3322-3332.
    [59] S. Kim and M. Sitti, 'Biologically Inspired Polymer Microfibers with Spatulate Tips as Repeatable Fibrillar Adhesives,' Applied Physics Letters, vol. 89, no. 26,pp. 26911-13, 27. 2006.
    [60] M.P. Murphy, S. Kim, M. Sitti, Enhanced Adhesion by Gecko-Inspired Hierarchical Fibrillar Adhesives ACS Appl. Mater. Interfaces 1 (2009) 849.
    [61] Y. Zhao et al., J. Vac. Sci. Technol. B 24, 331 (2006).
    [62] M. F. Yu, T. Kowalewski, R. S. Ruoff, Phys. Rev. Lett. 86,87 (2001).
    [63] L. Qu, L. Dai, Adv. Mater. 19, 3844 (2007).
    [64] L. Ge, S. Sethi, L. Ci, P. M. Ajayan, A. Dhinojwala,Proc. Natl. Acad. Sci. U.S.A. 104, 10792 (2007)
    [65] H. J. Gao, H. M. Yao, Proc. Natl. Acad. Sci. U.S.A. 101,7851 (2004).
    [66] H. Yao, H. J. Gao, J. Mech. Phys. Solids 54, 1120 (2006).
    [67] J. Lee, B. Schubert, C. Majidi, R. S. Fearing, J. R. Soc.Interface 5, 835 (2008).
    [68] C. S. Majidi, R. E. Groff, R. S. Fearing, J. Appl. Phys. 98,103521 (2005).
    [69] Qu L T, Dai L M, Stone M, et al. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science, 2008, 322:238—242.
    [70] Davies J et al A practical approach to the development of a synthetic gecko tape Int. J. Adhes. Adhes. 2008 29 380-90.
    [71] Schubert B et al 2008 Sliding induced adhesion of stiff polymer microfiber arrays: 2 microscale behavior J. R. Soc. Interface 5 845–53.
    [72] Wirth C T et al 2008 Surface properties of vertically aligned carbon nanotube arrays Diamond Relat. Mater.17 1518-24.
    [73] Sameoto D and Menon C .A low-cost, high yield fabrication method for producing optimized biomimetic dry adhesives J. Micromech. Microeng. 2009 .19 11 5002.
    [74] Kim S et al 2008 Fabrication of bio-inspired elastomer nanofiber arrays with spatulate tips using notching effect IEEE Nano 2008 pp 780-2.
    [75] Aksak B et al Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces IEEE Int. Conf. on Robotics and Automation. 2008.pp 3058-63.
    [76] Long R et al 2008 Modelling the soft backing layer thickness effect on adhesion of elastic microfiber arrays J. Appl. Phys.104 044301.
    [77] Kim S et al 2009Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives Langmuir25 7 196-9.
    [78] Kim S et al 2009 Reversible dry micro-fibrillar adhesives with thermally controllable adhesion Soft Matter 5 3689–93.
    [79] Greiner C and Azrt E 2009 Hierarchical gecko-like adhesives Adv. Mater. 21 479–82 .
    [80] Glass P et al 2009 Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions Langmuir 25 6607–12.
    [81] Sameoto D and Menon C 2010 A large-scale ?exible molding technology for producing biomimetic dry adhesives in multiple materials using a commercial acrylic master Proc. Solid State Sensors and Actuators and Microsystems Workshop pp 304–7.
    [82] Shen L et al 2008 Strongly enhanced static friction using a film-terminatedfibrillar interface Soft Matter 4 618–25.
    [83] Vajpayee S et al 2009 Effect of rate on adhesion and static friction of a film-terminated fibrillar interface Langmuir 25 2765–71.
    [84] Sitti M et al 2009 Dangling chain elastomers as repeatable fibrillar adhesives Appl. Mater. Interfaces 1 2277–87.
    [85] Lee J and Fearing R S 2008 Contact self-cleaning of synthetic gecko adhesive from polymer microfibers Langmuir 24 10587–91.
    [86] Lee J et al 2008 Directional adhesion of gecko-inspired angled microfiber arrays Appl. Phys. Lett. 93 191910 .
    [87] Parness A et al 2009 A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime J. R. Soc. Interface 6 1223–32.
    [88] Murphy M P et al 2009 Gecko-inspired directional and controllable adhesion Small 5 170–5.
    [89] Autumn K and Gravish N 2008 Gecko adhesion: evolutionary nanotechnology Phil. Trans. R. Soc. A 366 1575–90.
    [90] Jeong H E et al 2009 A non transferring dry adhesive with hierarchical polymer nanohairs Proc. Natl Acad. Sci.106 5639–44.
    [91] Kim T-I et al 2009 Stooped nanohairs: geometry-controllable, unidirectional, reversible and robust gecko-like dry adhesive Adv. Mater. 21 2276–81.
    [92] Yoon H et al 2009 Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition Nanotoday 4 385–92.
    [93] Li Y et al 2009 Properties validation for an anistropic adhesion designed for legged climbing robots IEEE Int. Conf. on Robotics and Biomimetics (Guilin Guangxi).
    [94] Kendall K 1975 Thin-film peeling—the elastic term J. Phys. D:Appl. Phys. 8 1449–52.
    [95] Gorb S et al 2007 Biomimetic mushroom-shaped fibrillar adhesive microstructure J. R. Soc. Interface 4 271–5.
    [96] Daltorio K A et al 2005 A robot that climbs walls using microstructured polymer feet Proc. 8th Int. Conf. on Climbing and Walking Robots and the Support Technologies for Mobile Machines pp 131–8.
    [97] Kim S et al 2007 Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays Appl. Phys. Lett. 91 161905.
    [98] Greiner C et al 2009 Experimental parameters controlling adhesion of biomimetic fibrillar surfaces J. Adhes.85 646–61.
    [99] Kroner E et al 2009 Effect of repeated contact on adhesion measurements involving olydimethylsiloxane structural material IOP Conf. Ser.: Mater. Sci. Eng. 5 012004.
    [1] Sitti M, Fearing R S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of adhesion science and technology. 2003, 17(8): 1055-1074.
    [2] Sitti M, Fearing R S. Synthetic gecko foot-hair micro/nano-structures for future wall-climbing robots. Proceedings of the IEEE International Conference on Robotics and Automation. 2003, 1: 1164-1170.
    [3] Campolo D, Jones S, Fearing R S. Fabrication of gecko foot-hair like nano structures and adhesion to random rough surfaces. IEEE Nanotechnology. 2003,2: 856-859.
    [4] Sitti M. High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nano-molding and directed self-assembly. IEEE/ASME advanced mechatronics conference. 2003, 2. 886-890.
    [5] Sitti M, Fearing R S. Nanomolding based fabrication of synthetic gecko foot-hairs. IEEE Nanotechnology. 2002: 137-140.
    [6] Meihua Jin, Xinjian Feng, Lin Feng, et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Advanced Materials. 2005, 17: 1977-1981.
    [7] Geim A K, Dubonos S V, Grigorieva I V, Microfabricated adhesive mimicking gecko foot-hair, Nature Materials, 2003, 2(7): 461-463
    [8] Burak Aksak, Michael P. Murphy, and Metin Sitti, Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays, Langmuir 2007, 23, 3322-3332
    [9]杨海洋,朱平平,何平笙.利用全范德华力作用原理制备仿生干型高分子粘合材料-“壁虎胶带”.功能高分子学报. 2004年04期: 684-688.
    [10]朱平平,杨海洋,何平笙.微制造技术与仿生壁虎腿.化学通报. 2004年07期: 506-510.
    [11] Chantal Khan Malek and Volker Saile,Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review,Microelectronics Journal,2004(35) 131-143
    [12] Xiang-meng Jing, Di Chen, Dong-ming Fang etc,Multi-layer microstructure fabrication by combining bulk silicon micromachining and UV-LIGA technology,Microelectronics Journal,2007(38)1 120-124
    [13] M. Matteucci, F. Pérennès, B. Marmiroli etc,Compact micropumping system based on LIGA fabricated microparts,Microelectronic Engineering,2006(83)1288-1290
    [14] Shamus McNamara and Yogesh B. Gianchandani,LIGA fabricated 19-element threshold accelerometer array,Sensors and Actuators A: Physical, 2004(112)1, 175-183
    [15] F. Munnik, F. Benninger, S. Mikhailov etc,High aspect ratio, 3D structuring of photoresist materials by ion beam LIGA,Microelectronic Engineering,2003(67-68)96-103
    [16] Marius M. Blideran, Günter Bertsche etc,A mechanically actuated siliconmicrogripper for handling micro- and nanoparticles , Microelectronic Engineering,2006(83)4-9,1382-1385
    [17] W. J. Dauksher, S. B. Clemens, D. J. Resnick,Deep silicon etch modeling for fabrication of 200-mm SCALPEL masks,Microelectronic Engineering,2001(57-58)607-612
    [18] F. Marty , L. Rousseau , B. Saadany etc,Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures, Microelectronics Journal 2005(36) 673–677
    [19] 1M.J. de Boer, J.G.E. Gardeniers, H.V. Jansen etc, , Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures, IEEE/ASME Journal of Micro-electromechanical Systems 11 (4) (2002) 385–401.
    [20] A. Chelnokov, S. David, K. Wang ,etc, Fabrication of 2D and 3D silicon photonic crystals by deep etching, IEEE Journa lof Selected Topic sin Quantum Electronics 8(4) (2002) 919–927.
    [21] A. Kumar, H. A. Biebuyck, etc., Langmuir, 1994, 10, 1498-1511
    [22] J.L. Wilbur, A. Kumar, E. Kim, G.M. Whitesides, Adv. Mater., 1994, 6, 600-604
    [23] .A. Kumar, N几、Abbott, E. Kim, H.A. Biebuyck, G.M. Whitesides, Acc. Chem. Res., 1995, 28,219-226
    [24] J.L. Wilbur, A. Kumar, H.A. Biebuyck, E. Kim, G.M. Whitesides, Nanotechnology, 1996, 7,452-457
    [25] J.F. KOnzler, Trends polymer. Sci., 1996, 4, 52-59
    [26] Keller F, Hunter MS, Robinson DL, J. Electrochem. Soc. [J] 1953, 100, 411.
    [27] Dorsey G. J. Electrochem. Soc. [J] 1969, 116, 466.
    [28] Murphy JF, Michelson CE. A theory for the formation of anodic coatings on aluminum. A.D.A.Conference on anodizing of aluminium, Nottingham,[B] 1961
    [29] Thompson GE, Furneaux RC, Wood GC. Trans. Inst. Met. Fin. [J] 1978, 56, 159.
    [30] Wada K, Shimohira T. J. Mater. Sci. [J] 1986, 21, 3810.
    [31] Parkhutik VP, Shershulsky VI. J. Phys. D: Appl. Phys. [J] 1992, 25, 1258.
    [32] Masuda H, Yasui K, Nishio K. Adv. Mater. [J] 2000, 12, 1031.
    [33] Gao T, Fan JC, Meng GW, Chu ZQ, et al. Thin Solid Films[J] 2001, 401, 102.
    [34] Liu K, Nogues J, Leighton C, et al. Appl. Phys. Lett. [J] 2002, 81, 4434.
    [35] Mei X, Kim D, Ruda HE, et al. Appl. Phys. Lett. [J] 2002, 81, 361.
    [36] Liang J, Chik H, Yin A, et al. J. Appl. Phys. [J] 2002, 91, 2544.
    [37] Deb P, Kim HY, Rawat V, et al. Nano Lett. [J] 2005, 5, 1847.
    [38] Lei Y, Chim WK. Chem. Mater. [J] 2005, 17, 580.
    [1]何曼君,陈维孝,董西侠编.高分子物理(修订版).上海:复旦大学出版社出版,1990
    [2]马德柱,何平笙,徐种德,周绮琴编.高聚物的结构与性能(第二版).北京:科学出版社,1999
    [3]潘才元编.高分子化学.合肥:中国科学技术大学出版社,1997
    [4]山西省化工研究所编.聚氨酯弹性体手册.北京:化学工业出版社,材料科学与工程出版中心,2001:77-89页
    [5] B.N.J. Persson, S.J. Gorb, J. Chem. Phys. 119 (2003) 11437.
    [6] B.N.J. Persson, J. Chem. Phys. 118 (2003) 7614.
    [7] C.Y. Hui, A. Jagota, Y.Y. Lin, E.J. Kramer, Constraints on microcontact printing imposed by stamp deformation. Langmuir, 18 (4) (2002) 1394.
    [8] K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. Ser. A 324 (1971)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700