直接空冷凝汽器空气侧流动换热问题的大涡模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空冷凝汽器作为直接空冷系统的核心换热设备,其气侧流动换热性能直接影响着整个机组的效率。而体积庞大的扁平管束间的相互干扰使管束尾部形成复杂的流动结构,凝汽器气测空气热阻大换热量低,翅片管束间空气流量分配不均,空冷风机与A型凝汽器间的耦合效应等,所有影响因素相互耦合使得空冷系统具备复杂的非线性尺度效应。本文用大涡数值模拟(LES)方法对直接空冷凝汽器空气侧流动换热问题进行了研究。
     首先基于圆柱绕流,将大涡模拟结果与他人实验数据进行对比分析,验证了大涡模拟在绕流问题中是一种行之有效的湍流模型和数值方法。本文把大涡模拟方法运用到了直接空冷凝汽器气侧流动换热问题的研究中,通过与他人雷诺时均结果的比较,表明大涡模拟能够捕获更多凝汽器流动换热的细节及相关湍流统计信息,能有效预测翅片管后复杂的旋涡运动,为进一步研究空冷凝汽器气侧流动结构与流动换热间所隐含的相互作用及热质传递规律提供理论基础。
     对不带翅片的扁平管固有的三维流动结构及换热特性进行了大涡模拟研究。计算结果表明,与圆管相比,扁平管的回流区长度、阻力系数都远小于圆管,体现了扁平管在空冷凝汽器应用中的优势。当扁平管长宽比L/D减小时,其具有较小的回流区、较快的旋涡脱落频率、良好的换热特性以及较小的阻力。
     研究了翅片扁平管束的相互干扰对流动换热的影响,结果表明,当考虑相邻翅片管的干扰时,与单翅片管相比,其边界层分离点、回流区范围、旋涡脱落模式、流动结构及换热特性明显不同。对双翅片管而言,两个翅片扁管尾部的旋涡脱落模式存在明显的相位关系,在扁平管间距为H/D=1.95,Re=4006时,每个扁平管尾部保持各自的流动形态,相互干扰影响较小,当雷诺数增大时非线性相互干扰明显增强。对于单翅片扁管因不受干扰,其两侧翅片的局部努赛尔数分布基本相同。当考虑相邻翅片管干扰时,其两侧翅片表面的局部努赛尔数呈现不同的变化趋势。雷诺数越高,不同翅片表面的局部努赛尔数差距越明显,并且在相同雷诺数下,单翅片管翅片表面的局部努赛尔数明显低于双翅片管,说明相邻翅片扁管尾部的相互干扰引发的二次频率对流动换热有增强的效果,所以在空冷凝汽器的设计中应充分考虑管束之间的相互干扰对流动换热的影响。
     对冲压三角形涡流发生器翅片通道的流动换热特性进行了大涡模拟研究。结果表明,与光滑的翅片通道相比,加装涡流发生器后,在计算雷诺数范围内,气侧平均努赛尔数Nu增加了约49.68%-54.14%,平均摩擦系数增加了约35.63%-37.35%,与他人实验关联式结果基本吻合。同时对纵向涡的强化传热机理进行了分析,近壁湍流的下扫过程利于换热。
     在翅片通道中分别布置梯形翼及斜截半椭圆柱面涡流发生器,对其流动换热机理进行了研究。计算结果表明,因斜截半椭圆柱面涡流发生器产生的端部涡和马蹄涡的综合作用,比梯形翼在强化传热方面具有优势。对于梯形翼来讲其下扫过程和上扬过程贡献的雷诺应力基本相同,基于x-y平面的象限分析手段,其雷诺应力分布在第Ⅱ象限和第Ⅳ象限;而斜截半椭圆柱面以上扬过程贡献的雷诺应力为主,其雷诺应力主要分布在第Ⅱ象限。当雷诺应力位于第Ⅳ象限,即下扫过程时,壁面往往具有较大的阻力,而斜截半椭圆柱面涡流发生器的雷诺应力大部分出现在第Ⅱ象限,所以其对壁面产生的阻力较小,揭示了其减阻的机理。基于湍流拟序结构理论,斜截半椭圆柱面涡发生器可同时实现强化传热和流动减阻。
     对不同波幅比上波长a0/λ=0.01、0.02、0.04、0.06的波纹翅片的流动换热进行大涡模拟研究。计算结果表明,当波纹翅片的波幅较小时,在波谷位置没有回流现象。当波幅为α0/λ=0.04时出现回流区,随着波幅的增大其回流区范围也在增大。当波幅较大时波纹面上的涡结构增加,并且在展向出现较多不等间距的高速和低速条带结构。不论是在波谷还是在波峰处,脉动速度都是随着波幅的增大而增大。在波纹的迎风侧其换热和剪切力较大,并出现斑块。当α0/λ=0.06时,其具有良好的换热性能和较大的阻力,其综合性能最优。
     实现了空冷风机与A型凝汽器的整机耦合计算,获得空冷单元内部较为真实的流场分布。计算结果表明,其内部流场分布极不均匀,导致凝汽器出口的温度分布也不均匀,同一出口面上,风机叶片迎风的一侧速度大温度较低,而背风的一侧速度小温度高。环境温度在250K~310K的范围变化时,凝汽器平均进口风速的变化范围不超过10%,并且凝汽器左右两侧的速度分布及大小并不完全相同,两侧相差2.9%左右。凝汽器两侧风量的偏差,导致即使在无环境风的条件下,凝汽器蒸汽管道顶端速度和温度不对称,出现偏置现象。
Air-cooled condenser is the key element of the direct air cooling system.The performance of direct air-cooled condensers is affected directly by air-side flow and heat transfer characteristics. The complex flow structures were generated among the wakes behind the bodies when the air flow past multiple wavy finned flat tubes, beacuse of the nonlinear interactions among the wakes. High thermal resistance of air side will lead to low heat transfer effieieney. The flow complexities at the exit of the axial flow fan result in the flow mal-distribution on the surface of the finned tube bundles. There exists the strong coupling relationship between the fan and A-shaped frame condenser cell. All of the influence factors will lead to nonlinear scale effect.The characteristics of the flow and heat transfer on air-side of the direct air-cooled condenser have been simulated using large eddy simulation (LES).
     The large eddy simulation results of flow around a circular cylinder are in well agreement with the experimental data. Using LES theory and method for the direct air-cooled condensers, can captures the complex turbulent motions of air-cooled condenser in detail. And the complex vortex motion in the wake region of the flat finned-tubes are predicted more precisely than RANS approach. It provides theoretical basis to study the mechanism of flow and heat transfer.
     Three-dimensional flow structure and heat transfer characteristics of the flat tube without of fins has been studied. The results show that the flat tube have lower air-side pressure drop and smaller wake region. When the aspect ratio L/D of flat tube is reduced, the flat tube have lower air-side pressure drop, smaller wake region and better heat transfer coefficients.
     When the wake interaction of the adjacent finned tube is considered,the separation points of the boundary layers, the range of wake region,vortex shedding pattern, flow structure and heat transfer have a notable deviation from the single tube. For double finned tube,the vortex shedding from one flat tube have a definite phase relationship with the other tube.At the spacing H/D=1.95and Re=4006, the vortices remain distinct and the interaction between the flat tubes is weaker. The degree of nonlinear wake interaction depends on the Reynolds number at the spacing.When the Reynolds number increases, the nonlinear interference is enhanced.The two side of the single flat finned-tube have the same distribution of local Nusselt number since they experience the same undisturbed fluid, whereas for the two side by-side flat finned-tubes the local Nusselt number distribution on both side of the tube is different, due to the mutual interference of the flat finned-tubes.The difference of the local Nusselt number between the two fins are larger when the Reynolds number increased. Furthermore, the local Nusselt number of the same fin in single finned-tube is lower than the two side-by-side finned tubes at same Reynolds number.The secondary frequency induced by the interactions of the flat finned-tubes have a better effect on heat transfer.The design of ACC should also account for wake interaction.
     The flow and heat transfer characteristics of flat tube wavy finned channel with punched six delta winglet pairs was studied by large eddy simulation. The results show that the average Nusselt number increase by49.68%-54.14%and the average friction factor increase by35.63%-37.35%.The results are in well agreement with the experimental correlations of Nusselt number and friction factor with Reynolds number by others.
     The head vortex system and horseshoe vortex are induced by oblique-cut semi-elliptic cylinder shells vortex generator.The combination of the two type vortex system plays a vital role in heat transfer enhancement. The contribution of reynolds stress in sweep process and ejection process are basically same for trapezoidal wing, and the Reynolds stress distribution is in the Ⅱ quadrant and IV quadrant.The reynolds stress contribution of oblique-cut semi-elliptic cylinder shells is in the II quadrant, and the contribution of Reynolds stress is mostly in ejection process. The drag is large when the distribution of Reynolds stress in the sweep process.So the semi-elliptic cylinder shells have low flow drag. Based on the theory of turbulent coherent structures, the oblique-cut semi-elliptic cylinder shells vortex generator can achieve the aim that heat transfer enhancement and flow drag reduction.
     Large eddy simulation has been employed to flow and heat transfer over wavy fin surface for different amplitude:ao/λ=0.01、0.02、0.04、0.06. The smaller wave amplitude of wavy surface in this study does not form the recirculation in the valley.With the almplitude increasing,the range of the recirculation and the quantity of the vortex is significantly increased.The high and low speed streaks are obvious increased. A number of high wall sheer stress and Nusselt number spindle-shaped spots are observed. The bigger wave amplitude surface have better heat transfer performance.
     A three dimensional coupled air flow field calculation is carried out for the rotational fan and the stock-still A-shaped frame-work, which can provide an accurate description of the detailed flow filed in air-cooled condenser cell. And the air mal-distribution on the finned tube bundles due to the interaction between the fan and air cooled condenser.With the ambient temperature increasing, the average inlet air velocity of the finned tube bundles is decreased, the variation range is less than10%. Furthermore, the inlet air velocity of the left side and right side of the finned tube bundles are not the same,which is related to the biased flow that the non-symmetric velocity distribution on the top of the exhaust steam pipe even under the no-wind condition.
引文
[1]N. Dekker, P. Venter, A. Parrock. Direct air cooled condenser support plateform at Matimba power station[J]. Civil Engineer in South Africa,1987,29(7):277-281.
    [2]R. Tawney, Z. Khan, J. Zachary. Economic and performance evaluation of heat sink options in combined cycle applications[C].Proceeding of Turbo Expo:ASME/IGTI Turbo Expo,Atlanta,Georgia,USA,2003:1-8.
    [3]D.G Kroger. Air-cooled heat exchangers and cooling towers:thermal-flow performance evaluation and design, Volume Ⅱ [M].Tulsa:Penwell Corporation,2004.
    [4]伍小林.我国火力发电厂空气冷却技术的发展现状[J].国际电力,2005,9(1):15-18.
    [5]丁尔谋.发电厂空冷技术[M].山西省电力工业局.水利电力出版社.1992.
    [6]温高.发电厂空冷技术[M].北京:中国电力出版社,2008.
    [7]2010年度全国600MW级火电机组能效对标及竞赛报告.太原:2011.5.
    [8]S. Lau, K. Annamalai, V. Shelton. Optimization of air-cooled condensers[J].ASME Journal of Energy Resources,1987,109(2):90-95.
    [9]J.R Bredell, D.G Kroger, GD. Thiart. Numerical investigation of fan performance in a forced draft air-cooled steam condenser [J].Applied Thermal Engineering,2006,26: 846-852.
    [10]Z. Gu, X. Chen, W. Lubitz, et al. Wind tunnel simulation of exhaust recirculation in an air-cooling system at a large power plant [J]. International Journal of Thermal Sciences, 2007,46(3):308-317.
    [11]P.Q Liu, H.S. Duan, W.I. Zhao. Numerical investigation of hot air recirculation of air-cooled condensers at a large power plant[J]. Applied Thermal Engineering,2009,29: 1927-1934.
    [12]荆有印,丁桂艳,王长海.空冷岛内气流分布不均对冷却效果的影响[J].东北电力技术,2008,11:4-7.
    [13]王志成.复杂边界条件流动换热问题的有限元/光滑轮廓法[D].中国科学院大学博士学位论文,2013.
    [14]杨立军,杜小泽,杨勇平,等.电站直接空冷凝汽器积灰监测[J].热能动力工程,2007,22(2):172-175.
    [15]X.Z. Du, H.M. Hu, Yinqi Shen, et al. Reduced order analysis of flow and heat transfer for air-cooled condenser of power generating unit[J]. Applied Thermal Engineering,2013,51: 383-392.
    [16]张璟.直接空冷凝汽器喷雾降温系统流动传热特性研究[D].中国科学院大学博士学位论文,2013.
    [17]李书营.蛇形翅片管及空冷单元流动换热规律数值研究[D].北京交通大学硕士学位论文,2009.
    [18]乔英杰,杨建国,张兆营,等.直接空冷凝汽器单排翅片管外部流动及换热特性分析[J].电站系统工程,2010,26(5):45-48.
    [19]栗鸿飞,宋文武.PIV技术在流动测试与研究中的应用[J].西华大学学报,2009,28(5):27-31.
    [20]B.Dargahi. The turbulent flow field around a circular cylinder[J]. Experiment in Fluids, 1989,8(1-2):1-12.
    [21]M.M. Zdravkovich. Flow around circular cylinders, Vol 1:fundamentals[M]. Oxford University Press,Oxford, New York,1997.
    [22]A.G. Kravchenko, P. Moin. Numerical studies of flow over a circular cylinder at ReD=3900[J]. Physical Fluids,2000,12(2):403-417.
    [23]M.M.Zdravkovich.Review of flow interference between two circular cylinders in various arrangement[J].ASME Journal of Fluids Engineering,1977,99:618-633.
    [24]Y.L. He, H. Han, W.Q. Tao, et al. Numerical study of heat-transfer enhancement by punched winglet-type vortex generator arrays in fin-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer,2012,55:5449-5458.
    [25]F. de Souza, J. Delville, J. Lewalle,et al. Large scale coherent structures in a turbulent boundary layer interacting with a cylinder wake [J].Experimental Thermal and Fluid Science,1999,19:204-213.
    [26]C.G. Lu, Q.J. Qi. Research into a theoretical mode of coherent structures in the wall region of a turbulent boundary layer induced by a wall local disturbance [J].Progress in Natural Science,2009,19(9):1119-1124.
    [27]V. V. Babenko, H H. Chun, I. Lee.Coherent vertical structures and methods of their control for drag reduction of bodies[J].Journal of Hydrodynamics,2010,22(5):45-50.
    [28]齐承英,闵春华.纵向涡发生器强化传热研究进展与展望[J].河北工业大学学报,2008,37(5):1-7.
    [29]周文平,唐胜利.空冷凝汽器单元流场的耦合计算[J].动力工程,2007,27(5):766-770.
    [30]周文平.火电厂直接空冷平台的数值模拟[D].重庆大学硕士学位论文,2007.
    [31]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].清华大学出版社,2008.1
    [32]P.Sagaut.Large eddy simulation for incompressible flows[M].Springer-Verlag Berlin Heidelberg,2006.
    [33]曾时明.电站直接空冷式翅片管换热和流动规律及空冷单元流场特性数值研究[D]. 北京交通大学硕士论文,2007.
    [34]马义伟.发电厂空冷技术的现状与进展[J].电力设备,2006,7(3):5-7.
    [35]戴振会.国内外直接空冷系统的发展及现状[J].电站系统工程,2009,25(3):1-5.
    [36]杨立军,周健,杜小泽,等.扁平管外蛇形翅片空间的流动换热性能数值模拟[J].工程热物理学报,2007,28(1):122-124.
    [37]丁丽瑗,陈帅,程友良.空冷凝汽器U型翅片管水平布置间隙优化[J].电力科学与工程,2013,29(9):62-69.
    [38]王钊,曾旭华.蛇形翅片单排管外侧空气流动与传热特性的数值研究[J].发电设备,2009,4:233-236.
    [39]张树国,赵兴楼.间断波纹翅片扁平管流动与换热的数值研究[J].发电设备,2009,1:9-12.
    [40]L.L. Feng, X.Z. Du, Y.P. Yang, L.J. Yang. Study on heat transfer enhancement of discontinuous short wave finned flat tube[J]. Science China Technological Sciences.2011, 54:3281-3288.
    [41]冯丽丽,杜小泽,杨勇平,等.交错蛇形短翅片对扁平管外传热的强化[J].中国电机工程学报,2012,32(17):70-75.
    [42]张璟,李宴君,温娟,等.平直翅片管与波浪翅片管流动换热性能比较[J].工程热物理学报.2011,32(08):1368-1370.
    [43]L.J. Yang, H. Tan, X.Z. Du, et al. Thermal-flow characteristics of the new wave-finned flat tube bundles in air-cooled condensers[J]. International Journal of Thermal Sciences,2012,53:166-174.
    [44]C. J. Meyer, D. G Kroger. Air-cooled heat exchanger inlet flow losses[J]. Applied Thermal Engineering,2001,21(9):771-786.
    [45]陆斌,孔德春,陶黎明,等.直接空冷单排管换热器试验研究[J].现代电力,2009,26(6):49-53.
    [46]胡汉波.直接空冷式凝汽器翅片散热器流动传热性能及单元流场特性研究[D].重庆大学硕士学位论文,2006.
    [47]杜小泽,杨立军,金衍胜,等.火电站直接空冷凝汽器传热系数实验关联式[J].中国电机工程学报,2008,28(14):32-37.
    [48]杨建国,张海珍.直接空冷凝汽器单排翅片管换热性能试验研究[J].电机工程学报,2012,32(35):74-79.
    [49]是勋刚.湍流[M].天津:天津大学出版社,1994.
    [50]M.M.Zdravkovich. The effects of interference between two circular cylinders in cross flow[J]. Journal of Fluids and Structures,1987,1:239-261.
    [51]S. Kang. Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers[J].Physics of Fluids,2003,15:2486-2498.
    [52]J. R. Meneghini, F. Saltara, C. L. R. Siqueira, J. A. Ferrari jr. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements [J]. Journal of Hydrodynamics,2001,15:327-350.
    [53]S.M. Hesam, N. Navid, Numerical simulation of flow over two side-by-side circular cylinders[J]. Journal of Hydrodynamics,2011,23 (6):792-805.
    [54]苑明顺.高雷诺数圆柱绕流的二维大涡模拟[J].水动力学研究与进展,1992,12:614-622.
    [55]王亚玲,刘应中,缪国平.圆柱绕流的三维数值模拟[J].上海交通大学学报,2001,35(10):1464-1469.
    [56]张兆顺,崔桂香,许春晓.湍流理论与模型[M].北京:清华大学出版社,2005.
    [57]姚熊亮,方媛媛,戴绍仕,等.基于LES方法圆柱绕流三维数值模拟[J].水动力学研究与进展,2007,22(5):564-572.
    [58]S.B. Chen, S. Sanitjai, K. Ghosh, R.J. Goldstein. Three-dimensional vortex flow near the endwall of a short cylinder in crossflow:uniform-diameter circular cylinder [J]. Applied Thermal Engineering,2012,49:73-78.
    [59]S.B. Chen, S. Sanitjai, K. Ghosh, R.J.Three-dimensional vortex flow near the endwall of a short cylinder in crossflow:stepped-diameter circular cylinder [J]. Applied Thermal Engineering,2012,40:36-47.
    [60]W. Rodi, J.H. Ferziger, M. Breuer, M. Pourquie. Status of large eddy simulation:results of a workshop[J].ASME Journal of Fluids Engineering,1997,119:248-262.
    [61]P. Rollet-Miet,D. Laurence, J. Ferziger. LES and RANS of turbulent fow in tube bundles[J].International Journal of Heat and Fluid Flow,1999,20:241-254.
    [62]M. Breuer. Numerical and modeling influences on large eddy simulation for the flow past a circular cylinder[J]. International Journal of Heat and Fluid Flow,1998,19:512-521.
    [63]L.M. Lourenco, C. Shihi. Characteristics of the plan turbulent near wake of a circular cylinder. A particle image velocimetry study[R]. Private communication,1993. (data from Kravchenko (2000)).
    [64]L.Ong, J.Wallace.The velocity field of the turbulent very near wake of a circular cylinder[J]. Experiment Fluids,1996,20:441-453.
    [65]M. Breuer. A challenging test case for large eddy simulation:high Reynolds number circular cylinder flow[J].International Journal of Heat and Fluid Flow,2000,21:648-654.
    [66]L. Chen, J.Y. Tu, G.H. Yeoh. Numerical simulation of turbulent wake flows behind two side-by-side cylinders[J]. Journal of Fluids and Structures,2003,18:387-403.
    [67]C.L. Liang, G. Papadakis. Large eddy simulation of pulsating flow over a circular cylinder at subcritical Reynolds number[J]. Computers & Fluids,2007,36:299-312.
    [68]贾晓荷,刘桦.双圆柱绕流的大涡模拟[J].水动力学研究与进展,2008,23(6):623-632.
    [69]M. S. Mon, U. Gross. Numerical study of fin-spacing effects in annular-finned tube heat exchangers[J]. International Journal of Heat and Mass Transfer,2004,47:1953-1964.
    [70]K.Lam, L.Zou. Experimental study and large eddy simulation for the turbulent flow aroundfour cylinders in an in-line square configuration[J]. International Journal of Heat and Fluid Flow,2009,30:276-285.
    [71]吴剑,齐鄂荣,李炜,等.应PIV系统研究横流中近壁水平圆柱绕流旋涡特性[J].水科学进展,2005 16(5):628-633.
    [72]Y. Cheng, F.S. Lien, E.Yee, R.Sinclair. A comparison of large eddy simulation with a standard k-ε Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes[J] Journal of Wind Engineering and Industrial Aerodynamics,2003,91:1301-1328.
    [73]D. Chatterjee, G. Biswas, S. Amiroudine. Numerical investigation of forced convection heat transfer in unsteady flow past a row of square cylinders[J].International Journal of Heat and Fluid Flow,2009,30:1114-1128.
    [74]S.C. Yen, J.H. Liu. Wake flow behind two side-by-side square cylinder[J].International Journal of Heat and Fluid Flow,2011,32:41-51.
    [75]Y.J. Wei, M.S. Zhu, Z.Y. He. Large eddy simulation and spectrum analysis of flow around two square cylinders arranged side by side[J]. Applied Mathematics and Mechanics,2004, 25:903-910.
    [76]陈素琴,顾明,黄自平.两并列方柱绕流相互干扰的数值研究[J].应用数学和力学,2000,21(2):131-146.
    [77]陈素琴,黄自萍,沈剑华等.两串列方柱绕流的干扰的数值研究[J].同济大学学报,2001,29(3):320-325.
    [78]魏英杰,何钟怡.横掠并列双方柱强制对流换热的频谱分析[J].哈尔滨工业大学学报,2005,37(9):1249-1251.
    [79]T.A. Ibrahim, A. Gomaa.Thermal performance criteria of elliptic tube bundle in cross flow [J].International Journal of Thermal Sciences,2009,48:2148-2158.
    [80]梁才航,杨永旺,黄斯珉.绕椭圆柱管束的流动与传热特性[J].科学技术与工程,2013,13(13):3592-3597.
    [81]H.M.S. Bahaidarah, N.K. Anand, H.C. Chen. A numerical study of fluid flow and heat transfer over a bank of flat tubes[J]. Numerical Heat Transfer, Part A,2005,48:359-385.
    [82]N. Benarji, C. Balaji, S.P. Venkateshan. Unsteady fluid flow and heat transfer over a bank of flat tubes[J], Heat Mass Transfer,2008,44:445-461.
    [83]V.T. Morgan.The overall convective heat transfer from smooth circular cylinders[J]. Advances in Heat Transfer.1975,11:199-264.
    [84]A. Sharma, V. Eswaran. Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime[J]. Numerical Heat Transfer, Part A:2004.45:247-269.
    [85]K.Suzuki.Numerical and experimental studies on a two dimensional model of an offset-strip-fin type compact heat exchanger used at low reynolds number [J]. International Journal of Heat and Mass Transfer,1985,28(4):823-836.
    [86]A.E.Bergles.Heat transfer enhancement-the encouragement and accommodation of high heat fluxes[J]. Journal of Heat Transfer,1997,119(1):8-19.
    [87]A.E. Bergles.The implications and challenges of enhanced heat transfer for the chemical process industries [J]. Chemical Engineering Research and Design,2001,79(4):437-444.
    [88]韩冰,徐之平.强化换热的方法及新进展[J],能源研究与信息,2008,24(4):233-237.
    [89]G. B.Schubauer, W. G. Spangenberg.Forced mixing in boundary layers [J].Jouranl of Fluid Mechanics,1960,8:10-31.
    [90]T. R. Johnson, P. N. Joubert.The influence of vortex generators on drag and heat transfer from a circular cylinder normal to an airstream [J].Journalof Heat Transfer,1969,91:91-99.
    [91]A.E.Bergles.ExHFT for fourth generation heat transfer technology [J]. Experimental Thermal and Fluid Science,2002,26(2-4):335-344.
    [92]Y. Chen, M. Fiebig, N.K. Mitra. Heat transfer enhancement of a fnned oval tube with punched longitudinal vortex generators [J]. International Journal of Heat and Mass Transfer,1998,41:4151-4166.
    [93]汤俊洁.斜截椭圆柱式涡流发生器强化传热机理研究[D.天津大学硕士学位论文,2006.
    [94]周国兵.新型涡流发生器强化传热的试验研究[D].河北工业大学硕士学位论文,2002.
    [95]齐承英,周国兵,曹惠玲,等.新型涡流发生器强化换热实验研究[J].工程热物理学报,2002,23:173-176.
    [96]周国兵,张于峰,齐承英,等.一种强化太阳能换热的新型涡流发生器换热机理与试验研究[J].太阳能学报,2003,24(6):781-785.
    [97]叶秋玲.斜截半椭圆柱面涡流发生器强化传热和压降特性实验研究[D].华北电力大学硕士学位论文,2010.
    [98]S.J. Kline, W.C. Reynolds, F.A. Schraub, et al. The structure of turbulent boundary layer[J]. Journal of Fluid Mechanics,1967,37:741-773.
    [99]林建忠.湍流的拟序结构[M].机械工业出版社,1995.
    [100]唐新宜.矩形通道内流动与强化传热的实验与数值研究[D].华南理工大学博士学位论文2012.
    [101]林建忠.流场拟序结构及控制[M].浙江大学出版社,2002.
    [102]刘宇陆,卢志明,蔡树棠.边界层湍流拟序结构与传热研究进展[J].上海大学学报,1997,3:36-42.
    [103]M.Fiebig. Embedded vortices in internal flow:heat transfer and pressure loss enhancement[J]. International Journal of Heat and fluid flow,1995,16:376-388.
    [104]K.S.Choi, D.M. Orchard.Turbulence management using riblets for heat and momentum transfer[J].Experimental Thermal and Fluid Science,1997,15:109-124.
    [105]T. M. Liou, C. C. Chen, T.W.Tsai. Heat transfer and fluid flow in a square with 12 different shaped vortex generators [J].Journal of Heat Transfer,2000,122:327-335.
    [106]罗志久.平板和沟槽面湍流边界层拟序结构的大涡模拟研究[D].吉林大学硕士学位论文,2006.
    [107]汪健生,李康宁,高小明.刚性波纹面与柔性波纹面传热及流动特性[J].化工学报,2012,63(11):3418-3427.
    [108]高小明,李惟毅,汪健生.湍流边界层内添加控制的流动与传热特性[J].中国电机工程学报,2013,33(14):67-74.
    [109]M.Fiebig,A.Valencia,K.Mitra.Local heat transfer and flow losses in fin-and-tube heat exchangers with vortex generators:A comparison of round and flat tubes[J].Experimental Thermal and Fluid Science,1994,8(1):35-45.
    [110]何雅玲,楚攀,谢涛.纵向涡发生器在管翅式换热器中的应用及优化[J].化工学报,2012,63(3):743-760.
    [111]Y.L. He, P. Chu, W.Q. Tao, et al. Analysis of heat transfer and pressure drop for fin-and-tube heat exchangers with rectangular winglet-type vortex generators[J]. Applied Thermal Engineering, 13,61 (2):770-783.
    [112]楚攀,何雅玲,李瑞,等.带纵向涡发生器的椭圆管翅片换热器数值分析[J].工程热物理学报,2008,29(3):488-490.
    [113]C.B. Allison,B.B. Dally.Effect of a delta-winglet vortex pair on the performance of a tube-fin heat exchanger[J].International Journal of Heat and Mass Transfer,2007,50: 5065-5072.
    [114]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社.2004.
    [115]C.H.Min,C.Y.Qi,X. F. Kong, et al. Experimental study of rectangular channel with modified rectangular longitudinal vortex generators[J].International Journal of Heat and Mass Transfer,2010,53(15-16):3023-3029.
    [116]叶秋玲,周国兵,等.斜截半椭圆柱面涡流发生器强化换热和压降特性的试验研究[J].机机械工程学报,2010,46(16):162-169.
    [117]A.Valencia.Turbulent flow and heat transfer in a channelwith a square bar detached from the wall[J].Number Heat Transfer PartA,2000,37:289-306.
    [118]A. Sohankar.Heat transfer augmentation in a rectangular channel with a vee-shaped vortex generator[J]. International Journal of Heat and Fluid Flow,2007,28:306-317.
    [119]汪健生,刘志毅,张金凤,等.斜截椭圆柱式涡流发生器强化传热的大涡模拟[J].机械工程学报,2007,43(10):55-61.
    [120]S. Ferrouillat, P. Tochon, C. Gamier, et al.Intensification of heat-transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity[J].Applied Thermal Engineering,2006,26:1820-1829.
    [121]M.S.Sohal, J.E. O'Brien.Improving air-cooled condenser performance using winglets and oval tubes in a geothermal power plant[J].Geothermal Resources Council Transactions,2001,25:1-7.
    [122]贾荣.带三角翼的矩形翅片空间流动特性实验研究[D].华北电力大学硕士学位论文,2009.
    [123]周国兵,杨来顺.涡流发生器对直接空冷凝汽器换热的影响[J].电机工程学报,2012.32(5):1-8.
    [124]周国兵,杨来顺,冯知正,等.柱面梯形翼强化直接空冷凝汽器换热及其流阻性能的数值模拟[J].电机工程学报,2012,32(23):55-63.
    [125]X.Z. Du, L.L.Feng, Yongping Yang, et al. Experimental study on heat transfer enhancement of wavy finned flat tube with longitudinal vortex generators[J]. Applied Thermal Engineering,2013,55-62.
    [126]冯丽丽.火电机组直接空冷凝汽器空气侧强化传热研究[D].华北电力大学博士学位论文,2012.
    [127]K. Duvenhage, D.G. Kroger. The influence of wind on the performance of forced draughtair-cooled heat exchangers [J]. Journal of Wind Engineering and Industrial Aerodynamics.1996.62.259-277.
    [128]C.J. Meyer, D.G. Kroger. Numerical investigation of the effect of fan performance on forced draught air-cooled heat exchanger plenum chamber aerodynamic behaviour [J]. Applied Thermal Engineering,2004,24:359-371.
    [129]P.J. Hotchkiss, C. J. Meyer. Numerical investigation into the effect of cross-flow on the performance of axial flow fans in forced draught air-cooled heat exchangers [J]. Applied Thermal Engineering,2006,26(2):200-208.
    [130]M.T.F. Owen. A numerical Investigation of Air-cooled Steam Condenser Performance Under Windy Conditions[D].Master Dissertation of University of Stellenbosch,2010.
    [131]胡汉波,李隆键,张义华,等.直接空冷凝汽器三维流场特性的数值分析[J].动力工程,2007,27(4):592-595.
    [132]L.J. Yang, X.Z. Du, Y.P.Yang. Space Characteristics of the thermal performance for air-cooled condensers at ambient winds[J]. International Journal of Heat and Mass Transfer,2011,54:3109-3119.
    [133]W.X. Zhang. L.J. Yang. X.Z Du, et al. Thermo-flow characteristics and air flow field leading of the air-cooled condenser cell in a power plant[J]. Science China Technological Sciences.2011,54(9):2475-2482.
    [134]张宛曦.空冷单元及空冷岛流场优化组织与传热强化[D].华北电力大学硕士学位论文,2012.
    [135]谭辉.倾斜波形翅片扁平管束流动换热特性及在直接空冷单元上的应用[D].华北电力大学硕士学位论文,2012.
    [136]卜永东.直接空冷单元流动传热特性及空气流场优化组织[D].华北电力大学博士学位论文,2013.
    [137]C.J.Meyer,D.GKroger. Plenum chamber flow losses in forced draught air-cooled heat exchangers[J].Applied Thermal Engineering,1998,18(9):875-893.
    [138]E.J. Walsh, R. Grimes, G Griffin. Flow distribution from an air cooled condenser in a 400mw power plant[C].Proceedings of the ASME International mechanical Engineering Congress and exposition,2011,4:33-38.
    [139]苏咸伟.火电厂直接空冷凝汽器传热性能试验研究[D].华北电力大学硕士学位论文,2007.
    [140]李宴君,唐大伟,张璟,等.直接空冷单元风机入口脉动气流的谱特征研究[J].中国电机工程学报,2012,32(29):73-78.
    [141]C. Song, X.Y. Chen, et al.Using computational tools for hydraulic design of hydropower plants [J].Hydro Review,1995,14(4):114-121.
    [142]W.Q. Wang, L.X. Zhang, Y. Yan. Large eddy simulation o f turbulent flow considering inflow wakes in a Francis turbine blade passage[J]. Journal of Hydrodynamics,2007, 19(2):201-209.
    [143]R.K.Byskov, C.B. Jacobsen, N. Pedersen. Flow in a centrifugal pump impeller at design and off design conditions-Part Ⅱ:Large eddy simulations[J]. Journal of Fluids Engineering,2003,125 (1):73-83.
    [144]G M. Eggels. Direct and large-eddy simulation of turbulent fluid f low using the Lattice-Boltzmann scheme[J]. International Journal of Heat and Fluid Flow,1996,17(3): 307-323.
    [145]J. Min, Z.M. Gao. Large Eddy Simulations of Mixing Time in a Stirred Tank [J].Chinese Journal of Chemical Engineering,2006,14(1):1-7.
    [146]田杰.空调器室外机轴流风机系统内部复杂流动及其气动声学研究[D].上海交通大学博士学位论文,2009.
    [147]黄剑峰,张立翔,王文全,等.基于大涡模拟的水轮机内瞬态湍流场特性分析[J].排灌机械工程学报,2010,28(6):502-505.
    [148]J. Smagorinsky. General Circulation Experiments with the Primitive Equations.Monthly Weather Review,1963,91:99-164.
    [149]J. W. Deardorff. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics,1970,41:453-480.
    [150]P. Moin, J. Kim. Numerical investigation of turbulent channel flow[J]. Journal of Fluid Mechanics,1982,118:341-377.
    [151]G.X. Cui, H.B. Zhou, Z.S. Zhang, et al. A new dynamic subgrid eddy viscosity model with application to turbulent channel flow [J].Physics of Fluids,2004,16(8):2835-2842.
    [152]刘难生,陆夕云,庄礼贤.一种改进的旋转湍流亚格子尺度模型及其应用[J].中国科学G辑,2004,34(2):213-226.
    [153]王汉青,王志勇,寇广孝.大涡模拟理论进展及其在工程中的应用[J].流体机械,2004,32(7):23-27.
    [154]王玲玲.大涡模拟理论及其应用综述[J].河南大学学报,2004,32(3):260-265.
    [155]邓小兵.不可压缩湍流大涡模拟研究[D].中国空气动力研究与发展中心,2003.
    [156]张兆顺,崔桂香,等.湍流理论与模拟[M].清华大学出版社,2005.
    [157]白志刚.三维波浪大涡模拟及其对结构的动态效应研究[D].天津大学博士学位论文,2003.
    [158]F. Tremblay. Direct and large-eddy simulation of fow around a circular cylinder at subcritical Reynolds numbers[D]. PhDThesis,Technische Universitat Munchen.2002.
    [159]C. Norberg. Effects of Reynolds number and low-intensity free stream turbulence on the flow around a circular. Department of Applied Thermosc and Fluid Mechanics, Chalmer University of Technolgy, Gothenburg, Sweden,1987. (data from Breuer(1998)).
    [160]P.A,Eibeck,J.K.Eaton.Heat transfer effects of a longitudinal vortex embedded in a turbulent boundary layer[J] Journal of Heat Transfer,1987,109:16-24.
    [161]黄乐萍.壁湍流的展向运动减阻机理研究[D].南京理工大学博士学位论文,2012.
    [162]S. K. Robinson. Coherent motions in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics,1991,23:601-639.
    [163]D.G. Bogard,W.G. Tiederman.Burst detection with single-point velocity measurement[J]. Journal of Fluid Mechanics,1986,162:389-413.
    [164]李康宁.波纹面传热与流动特性的大涡模拟[D].天津大学硕士学位论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700