药物与生物大分子相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文应用荧光光谱和紫外-可见吸收光谱技术等对药物与生物大分子的相互作用进行了研究。共分为四章:
     第一章,分别对药物小分子与DNA和蛋白质相互作用的研究进行了综述。介绍了该研究领域所用的各种分析技术,以及药物与生物大分子相互作用的研究内容及现状。
     第二章,研究了中药有效组分蒽醌类化合物——大黄酚、大黄素甲醚和1,8 -二羟基蒽醌与DNA相互作用的光谱性质,并计算得到了不同温度下的结合常数等定量数据,探讨了温度和离子强度对结合反应的影响,并确定了这些化合物与DNA的主要结合模式。
     第三章,以EB为DNA的荧光探针研究了芦丁、金丝桃苷和槲皮苷与DNA的相互作用,探讨了荧光猝灭过程的性质,并计算得到了这些化合物与DNA-EB的结合常数。通过熔点、离子强度和粘度的影响等实验的研究,推测了芦丁、金丝桃苷和槲皮苷与DNA的主要结合方式。
     第四章,利用紫外-可见吸收光谱法和荧光猝灭技术分别研究了盐酸多西环素与人血清白蛋白和牛血清白蛋白的结合性质。由药物对血清白蛋白的荧光猝灭作用,计算得到了盐酸多西环素与血清白蛋白的结合常数,并根据热力学参数,确定了盐酸多西环素与HSA和BSA之间的主要结合力。实验还进一步研究了Ca2+,Mg2+,Zn2+,Fe3+和Cu2+存在时对结合性质的影响。
The essential biological materials, such as nucleic acid and protein, have played vital roles in all kinds of biological phenomenan. They participate in many reactions. And the reactions and the function of nucleic acid and protein have high specificity. Medicines pass through several processes: absorption, distribution, metabolism and excretion from entering the organisms to leaving them. Nucleic acid and protein are the main targets of all drugs in organisms. The forms and binding sites of the interactions between the drugs and biomacromolecules influence the physiological, physical and chemical characters of biomacromolecules. Therefore, the researches on the functions between medicines and the nucleic acids or the proteins have the special value to design new medicines and study the pharmacology and toxicity of anticancer medicines. In this paper, the interactions of some drugs with DNA and serum albumin were studied by fluorescence and ultraviolet-visible absorption spectrometry.
     The structure and nature of DNA cannot be directly studied by fluorescence technique because the fluorescence of DNA is very weak, and the fluorescent probes can be brought in to solve this problem. Ethidium bromide is used as the earliest and broadest fluorescent probe. It can be used in the selecting of anticancer treatment medicine and the sensitive probe of binding mechanism between medicine and DNA. Chrysophanol, physcion and 1, 8-dihydroxy anthraquinone are the effective components in traditional herbal in China for treating various diseases. They possess antibacterial, laxative, and antitumor functions. In this work, the binding mechanism on the reaction of fish sperm deoxyribonucleic acid (DNA) with anthraquinones, such as chrysophanol, physcion and 1,8-dihydroxy anthraquinone, were investigated using ethidium bromide (EB) as fluorescence probe by fluorescence quenching technique and UV–vis spectrophotometry. The fluorescence intensities of DNA-EB were measured at different concentrations of anthraquinone compounds. According to the relationship of the fluorescence intensity and quenching reagent concentration, the binding constants of anthraquinones with DNA-EB complex at 25°C were figured out. The binding constants of chrysophanol, physcion and 1,8-dihydroxy anthraquinone with DNA-EB were 1.64×104,3.04×104,2.88×105 L·mol-1, respectively. In the experiment, the effects of the temperatures and ionic strength were further obtained. And the effects of DNA melting were also investigated, after three anthraquinones was added into the solution containing the DNA-EB. These studies suggest that the binding mode of chrysophanol, physcion and 1, 8-dihydroxy anthraquinone with DNA were evaluated to be groove binding.
     Ethidium bromide (EB) is a typical intercalative reagent of DNA. Its binding to DNA makes the fluorescence intensity of the system greatly enhanced. The interaction mechanisms of flavonoids, such as rutin, hyperoside and quercitrin, and DNA were studied using EB as fluorescence probes by fluorescence and ultraviolet-visible absorption spectrometry. Flavonoid is a secondary metabolite plant of widespread distribution. They widely exist in vegetables, fruits and medicinal plants. Their poisonous effect is small, and is one of the main active constituents in the medicinal plant. Here, the interactions of rutin, hyperoside and quercitrin with fish sperm deoxyribonucleic acid (DNA) by using EB as fluorescence probe were first reported. The character of fluorescence quenching process was investigated by spectrometric methods. The binding constants of flavonoids-double stranded DNA (dsDNA) or flavonoids-single stranded DNA (ssDNA) were obtained by the fluorescence quenching technique. Further, the effects of ionic strength and temperature on the fluorescence property of the system have also been investigated. The melting temperature (Tm) and viscosity of DNA was carried out to investigate binding mechanism of these flavonoids with DNA. The results of the assay indicate that the binding mode of rutin, hyperoside and quercitrin with DNA was evaluated to be intercalative binding. The binding constants of rutin, hyperoside and quercitrin with dsDNA (or ssDNA)-EB complex are 3.72×104 (or 7.65×103), 1.13×105 (or 5.73×104) and 5.59×104 (or 3. 63×104) L·mol?1, respectively.
     Doxycycline Hyclate is a semi-synthetic tetracycline antibiotic. It is frequently used to treat chronic prostatitis, sinusitis, syphilis, chlamydia, pelvic inflammatory disease, acne and rosacea. There are several advantages, such as relatively cheap, minor side-effects, and a slim risk of liver damage during prolonged use of the drug. Distribution and metabolism of many pharmaceutical molecules in the body are correlated with their affinities toward serum albumin. In this paper, the interactions of doxycycline with human serum albumin (HSA) and bovine serum albumin (BSA) were studied by fluorescence and ultraviolet-visible absorption spectrometry. The results showed that the fluorescence of serum albumins was strongly quenched by doxycycline. The quenching mechanism was static quenching procedure proved by the quenching rate constant (Kq). The main acting forces between doxycycline and serum albumins were hydrophobic force according to the thermodynamic parameters. The binding constants of doxycycline with human serum albumin and bovine serum albumin at different temperatures were obtained. The effects of metal ions, such as Ca2+, Mg2+, Zn2+, Fe3+ and Cu2+, on binding constants were also evaluated.
引文
[1]徐文芳主编.新药设计原理与方法[M].北京:中国医药科技出版社,1997.
    [2]张礼和等.以核酸为作用靶的药物研究[M].北京:科学出版社,1997.
    [3]孙小强,孟启,阎海波.超分子化学导论[M].北京:中国石化出版社,1997.
    [4]莱恩(法)著,沈兴海等译.超分子化学:概念和展望[M].北京:北京大学出版社,2002.
    [5] LORENA P F, ANTONIO J R C, JEAN G D, et al. Effect of spermine conjugation on the interaction of acridine with alternating purine-pyrimidine oligodeoxyribonucleotides studied by CD, fluorescence and absorption spectroscopies [J]. Spectrochimica Acta Part A, 2008, 69: 1089-1096.
    [6] CUI F L, QIN L X, ZHANG G S, et al. Interaction of anthracycline disaccharide with human serum albumin: Investigation by fluorescence spectroscopic technique and modeling studies [J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48: 1029-1036.
    [7] Bi S Y, Zhang H Q, Qiao C Y, et al. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method [J]. Spectrochimica Acta Part A, 2008, 69: 123-129.
    [8] LUCAS P, MILROY D A, THOMAS B J, et al. Pharmaceutical and biological propertieso poly(amino acid)/DNA polyplexes [J]. Journal of drug targeting, 1999, 7(2): 143-156.
    [9] YUAN X Y, GUO D S, WANG L L. Influence of Mg2+ and Cd2+ on the interaction between sparfloxacin and calf thymus DNA [J]. Spectrochimica Acta Part A, 2008, 69: 1130-1135.
    [10]仇缀百.药物设计学[M].北京:高等教育出版社,1999.
    [11] CAI C Q, CHEN X M, GONG H. Interaction of anticancer drug methotrexate with nucleic acids analyzed by multi-spectroscopic method [J]. Spectrochimica Acta Part A, 2009, 72: 46-49.
    [12] ZHANG X F, XIE L, LIU Y, et al. Molecular interaction and energy transfer between human serum albumin and bioactive component aloe dihydrocoumarin [J]. Journal of Molecular Structure, 2008, 888: 145-151.
    [13]杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002:329-332.
    [14] XIAO J B, CHEN J W, CAO H, et al. Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191: 222-227.
    [15] QIAO C Y, BI S Y, SUN Y, et al. Study of interactions of anthraquinones with DNA using ethidium bromide as a fluorescence probe [J]. Spectrochimica Acta Part A, 2008, 70 136-143.
    [16] MILLER I R. The structure of deoxyribonucleic acid ( DNA ) and ribonucleic acid in the water-mercury interface [J]. Journal of Molecular Biology, 1961, 3: 229-240.
    [17] ISKAM M M, PANDYA P, CHOWDHURY S R, et al. Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: Spectroscopic and molecular modeling studies [J]. Journal of Molecular Structure, 2008, 891: 498-507.
    [18] LIU S C, LIU Y J, LI J, et al. Study on the interaction between DNA and protein induced by anticancer drug carboplatin [J]. Journal Biochemical Biophysical Methods, 2005, 63: 125-136.
    [19] LEMMA T, PAWLLISZYN J. Human serum albumin interaction with oxaliplatin studied by capillary isoelectric focusing with the whole column imaging detection and spectroscopic method [J]. Journal of Pharmaceutical and Biomedical Analysis, 2008 (on line)
    [20] WANG B H, ZHANG K J, LI Z F, et al. Effect of dimethyl sulphoxide and some multicycles compounds with nitrogen atoms on calf thymus DNA [J]. Acta Physico -Chimica Sinica, 1994, 10(3): 266-271.
    [21]熊亚,黄素秋,吴鼎泉,等.两种水溶性卟啉与DNA相互作用的研究[J].物理化学学报,1996, 12(6): 543-546.
    [22]周力,王保怀,李芝芬,等.环方铂立方异构体与小牛胸腺DNA作用的研[J].物理化学学报,2000, 16(8): 729-731.
    [23] FENG P, HUANG X H, LI Y F, et al. Spectra of the supramolecular interaction of neutral red with double-stranded DNA in a neutral medium [J]. Acta Physico-Chimica Sinica, 2001, 17(3): 222-225.
    [24]杨周生,于俊生,陈洪渊.四环素-Al(Ⅲ)配合物与DNA的相互作用研究[J].高等学校化学学报,2002, 23(8): 1457-1459.
    [25] JOSEPH W, MEHMET O, CAI X H, et al. Interactions of antitumor drug daunomycin with DNA in solution and at the surface [J]. Bioelectrochemistry and Bioenergetics, 1998, 45: 33-35.
    [26] WASTON J D, CRICK F H C. Molecular structure of nucleic acids [J]. Nature, 1953, 171: 737-738.
    [27]沈同,王镜岩.生物化学[M].北京:高等教育出版社,2001.
    [28]刘次全,白春礼,张静,等.结构分子生物学[M].北京:高等教育出版社,1997.
    [29]张今,张红缨,李青山,等.核酸结构与动力学导论[M].北京:科学出版社,1995.
    [30] DICKERSON R E. Base sequence and helix structure variation in B and A DNA [J]. Journal of Molecular Biology, 1983, 166: 419-441.
    [31] OH D B, KIM Y G, RICH A. Z-DNA-binding proteins can act as potent effectors of gene expression in vivo [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99:16666-16671.
    [32]刘军,罗国安,王义明,等.小分子与核酸相互作用研究[J].药学学报,2001, 36: 74.
    [33]杨铭.药物研究中的分子识别[M].北京:北京医科大学中国协和医科大学联合出版社,1999.
    [34] SUN Y T, BI S Y, SONG D Q, et al. Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi [J]. Sensors and Actuators B, 2008, 129: 799-810.
    [35] PORSCHKE D. Dynamics of DNA condensation [J]. Biochemistry, 1984, 23(21): 4821-4828.
    [36] LOBER G. The fluorescence of dye-nucleic acid complexes [J]. Journal of Luminescence, 1981, 22: 221-265.
    [37] KUMAR C V, ASUNCION E H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe [J]. Journal of the American Chemical Society, 1993, 115(19): 8547-8553.
    [38] GIELEN M, LELIEVELD P, VOS D, et al. In vitro effect of organotin -substitutedsteroids in human tumor cell lines [J].Inorganica Chimica Acta, 1992, 196, 115-117.
    [39] SHAKKED Z, GUZIKEVICH-GUERSTEIN G, FROLOW F, et al. Determinants of repressor/operator recognition from the structure of the Trp operator binding site [J]. Nature, 1994, 368: 469-473.
    [40] LI Q S, YANG P, HUA E, et al. Diorganotin(IV) antitumour agents. Aqueous and solid-state coordination chemistry of nucleotides with R (2) SnCl (2) [J]. Journal of Coordination Chemistry, 1996, 40 (3): 227-236.
    [41] PENG W F, LI H M, WANG E K. Highly Selective determination of riboflavin by flow injection [J]. Journal of Electroanalytical Chemistry, 1994, 375: 185-192.
    [42] PULLMAN B. Molecular mechanisms of specificity in DNA-antitumour drug interactions [J]. Advances in Drug Research, 1989, 18:1-113.
    [43] LERMAN L S. Structural considerations in the interaction of DNA and acridines [J]. Journal of Molecular Biology, 1961, 3: 18-30.
    [44] YARMOLUK S M, KOVALSKA V B, KOVTAN Y P. Interaction of cyanine dye with nucleic acids V: toward model of "half intercalation”of monomethyne cyanine dyes into double-stranded [J]. Biopolimery I Kletka, 1999, 15 (1): 75-82.
    [45]杨频,郭茂林.金属抗癌剂研究进展与两极互补理论[J].化学通报,1996,1: 6-11.
    [46]张立金.甲萘威、乙霉威和克百威与DNA的相互作用[D].中国农业大学硕士学位论文,2004.
    [47]谭年元,肖小明.多吡啶配合物与DNA相互作用的研究进展[J].益阳师专学报,2002, 19(6): 35-38.
    [48]杨铭.以DNA为耙的小分子药物研究中的分子识别[J].北京医科大学学报,1998, 30(2): 97-99.
    [49]计亮年,张黔玲,刘劲刚.生物医学中的结构、构象、作用机制及其生物功能的研究进展[J].中国科学(B辑),2001, 31(3): 193-204.
    [50] ZHANG Z G, YANG P, GUO M L. Study of interactions between titanocene dichloride and mononucleotides by high-resolution H-1- and P-31-nuclear magnetic resonance [J]. Transition Metal Chemistry, 1996, 21(4): 322-326.
    [51]陈勇,李元宗,常文保等.核酸分子嵌入剂[J].分析科学学报,1994, 10(1): 67-74.
    [52]贺茜,李永刚.抗肿瘤药物双萘酰亚胺的研究进展[J].广州化学,2002, 27(2): 48-64.
    [53]杨铭.小分子化合物与DNA结合的研究取代基电性因素的影响[J].北京医科大学学报,1991, 23(4): 325-332.
    [54] MILLARD J T, WELDNER M F, RAUCHER S, et al. Determination of the DNA crosslinking sequence specificity of reductively activated mitomycin C at single-nucleotide resolution: deoxyguanosine residues at CpG are crosslinked preferentially [J]. Journal of the American Chemical Society, 1990, 112: 3637-3641.
    [55] NEIDLE S, WARING M J. Molecular aspects of anti-cancer drug action [M]. Weinheim: Verlag-Chemie, 1983.
    [56] HURLEY L H, NEEDHAM-VANDEVANTER D R. Covalent binding of antitumor antibiotics in the minor groove of DNA. Mechanism of action of CC-1065 and the pyrrolo (1,4) benzodiazepines [J]. Accounts of Chemical Research, 1986, 19: 230-237.
    [57] OTSUKA M, MASUDA T, et al. Synthetic studies on antitumor antibiotic, bleomycin. 27. Man-designed bleomycin with altered sequence specificity in DNA cleavage [J]. Journal of the American Chemical Society, 1990, 112: 838-845.
    [58] ZEIN N, MCGAHREN W J, MORTON G O, et al. Exclusive abstraction of nonexchangeable protons from DNA by calicheamicin .gamma.1I [J]. Journal of the American Chemical Society, 1989, 111: 6888-6890.
    [59] LEE S H, GOLDBERG I H. Sequence-specific, strand-selective, and directional binding of neocarzinostatin chromophore to oligodeoxyribonucleotides [J]. Biochemistry, 1989, 28: 1019-1026.
    [60] UCHIDA K, PYLE A M, MORII T, et al. High resolution footprinting of Eco RI and distamycin with Rh(phi)2bpy3+, a new photofootprinting reagent [J]. Nucleic Acids Research, 1989, 17: 10259-10279.
    [61] HERTZBERG R P, DERVAN P B. Cleavage of DNA with methidiumpropyl -EDTA-iron(II): reaction conditions and product analyses [J]. Biochemistry, 1984, 23(17): 3934-3945.
    [62] LIU J, ZHANG Y X, LU T B, et al. DNA-binding and cleavage studies of macrocycliccopper(II) complexes [J]. Journal of Inorganic Biochemistry, 2002, 9: 269-276.
    [63] SASTRI C V, ESWARAMOORTHY D, GIRIBABU L, et al. DNA interactions of new mixed-ligand complexes of cobalt(III) and nickel(II) that incorporate modified phenanthroline ligands [J]. Journal of Inorganic Biochemistry, 2003, 94, 138-145.
    [64]郭晓君.分光光度技术及其在生物化学中的应用[M].北京:北京科学出版社,1987.
    [65] HERSKORITS T T. Method in enzymology [M]. New York: Academic Press, 1987.
    [66] PERKAMPUS H H. UV-VIS spectroscopy and its application [M]. New York: Springer-Verlag, 1992.
    [67]杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002.
    [68]张若蘅,许筱杰,唐有祺.基因调控中的DNA结合蛋白[J].化学进展,1994, 6: 280-293.
    [69]沈同,王镜岩.生物化学(第二版) [M].北京:高等教育出版社,1990.
    [70] ZHANG G W, GUO J B, PAN J H, et al. Spectroscopic studies on the interaction of morin-Eu(III) complex with calf thymus DNA [J]. Journal of Molecular Structure 2009, 923: 114-119.
    [71] CHAIRES J B, DATTAGNJPTA N, CROTHERS D M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on the interaction of daunomycin with deoxyribonucleic acid [J]. Biochemistry, 1982, 21: 3933-3940.
    [72] PASTERNACK P F, GIBBS F J, VILLATRNACA J. Interactions of porphyrins with nucleic acids [J]. Biochemistry, 1983, 22: 2406-2414.
    [73] KUMAR C V, TURNER R S, ASUNCION E H. Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 74: 231-238.
    [74]李文友,朱守田,何锡文,等.光谱法研究Ge-132与DNA的作用机理[J].化学学报,2002, 60 (1): 105-108.
    [75] TURRO C, BOSSMANN S H, JENKINS Y, et al. Proton Transfer Quenching of the MLCT Excited State of Ru(phen)2dppz2+ in Homogeneous Solution and Bound to DNA [J].Journal of the American Chemical Society, 1995, 117: 9026-9032.
    [76] JIA T T, ZHAO Y M, XING F F, et al. Structures of N, N’, N’’-tris ( 3-pyridinyl ) -1, 3, 5-benzenetricarboxamide and its nano-scopic zinc(II) coordination ring and their interaction with calf thymus DNA [J]. Journal of Molecular Structure, 2009, 920: 18-22.
    [77] LI J F, DONG C. Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method [J]. Spectrochimica Acta Part A, 2009, 71: 1938-1943.
    [78] ZHOU Y L, LI Y Z. Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods [J]. Biophysical Chemistry, 2004, 107 (3): 273-281.
    [79] RUSINOVA E, TRETYACHENKO-LADOKHINA V, VELE O E, et al. Alexa and Oregon Green dyes as fluorescence anisotropy probes for measuring protein-protein and protein-nucleic acid interactions [J]. Analytical Biochemistry, 2002, 308: 18-25.
    [80] HEY T, LIPPS G, KRAUSS G. Binding of XPA and RPA to damaged DNA investigated by fluorescence anisotropy [J]. Biochemistry 2001, 40: 2901-2910.
    [81]黄承志,李原芳,李念兵.耐尔蓝硫酸盐在核酸分子表面的长距组装及核酸的三波长共振光散射测定[J].分析化学,1999, 27(11): 1241-1247.
    [82] LI W Y, XU J G, GUO XQ, et al. Study on the interaction between rivanol and DNA and its application to DNA assay [J]. Spectrochimica Acta Part A, 1997, 53(5): 781-787.
    [83] WANG J, LIU Z F, LIU J T, et al. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application [J]. Spectrochimica Acta Part A, 2008, 69: 956-963.
    [84] HUANG C Z, LI K A, TONG S Y. Determination of nanograms of nucleic acids by their enhancement effect on the Resonance Light Scattering of the cobalt(II)/4-[(5-chloro- 2-pyridyl)azo]-1,3-diaminobenzene complex [J]. Analytical Chemistry, 1997, 69(3): 514-520.
    [85] Huang C Z, Zhu J X, LI K A, et al. Determination of albumin and globulin at nanogram levels by a resonance light-scattering technique withα,β,γ,δ-Tetrakis (4-sulfophenyl) porphine [J]. Analytical Sciences, 1997, 13(2): 263-268.
    [86] KNOLL D A, BLOOMFIELD V. Light - scattering labels of DNA - resonance enhancement from bound dyes [J]. Biochemistry, 1984, 23: 3358-3358.
    [87] PASREMACK R F, BUSTAMANTE C, COLLINGS P J, et al. Porphyrin assemblies onDNA as studied by a resonance light-scattering technique [J]. Journal of the American Chemical Society, 1993, 115(16): 5393-5399.
    [88] Huang C Z, Li K A, Tong S Y. A resonance light-scattering analysis of the suprahelical helixes of nucleic acids induced by 5, 10, 15, 20- tetrakis [4- (trimethyammonio) phenyl] prophin [J]. Bulletin of the Chemical Society of Japan, 1997, 70: 1843-1848.
    [89]齐树民.药理学进展[M].北京:人民卫生出版社,1985.
    [90] TURRO C, BOSSMAN S H, LEROI G E, et al. Ligand-specific charge-localization in the MLCT excited state of ru(bpy)2 (dpphen)2+ monitored by time-resolved resonance raman spectroscopy [J]. Inorganic Chemistry, 1994, 33: 1344-1347.
    [91] WILSON W D, JONES R L, WHITTINGHAM M S, et al. Intercalation Chemistry [M]. New York: Acdemic Press, 1982, 445-501.
    [92] TYSOE S A, MORGAN R J, BAKER A D, et al. Spectroscopic investigation of differential binding modes ofΔ-andΛ-Ru(bpy)2 (ppz)2+ with calf thymus DNA [J]. Journal of Physical Chemistry, 1993, 97: 1707-1711.
    [93] COATES C G, Jacquet L, MCGARVEY J J, et al, Resonance Raman probing of the interaction between dipyridophenazine complexes of Ru(II) and DNA [J]. Journal of the American Chemical Society, 1997, 119(30): 7130-7136.
    [94] NEAULT J F, TAJMIR H A, RIAHI F. Diethyl stilbestrol-DNA interaction studied by fourier transform infrared and Raman spectroscopy [J]. Journal of Biological Chemistry, 1996, 271: 8140-8143.
    [95] NEAULT J F, TAJMIR H A, RIAHI F. DNA-chlorophyllin interaction [J]. Journal of Physical Chemistry B, 1998, 102: 1610-1614.
    [96] ALEX S, DUPUIS P. FT-IR and Raman investigation of cadmium binding by DNA [J]. Inorganica Chimica Acta, 1989, 157: 271-281.
    [97] SHOHREH N, FIROUZEH M, HEIDAR-ALI T-R, et al. Structural features of DNA interaction with caffeine and theophylline [J]. Journal of Molecular Structure, 2008, 875: 392-399.
    [98] ZHOU Y L, LI Y Z. Studies of the interaction between poly (diallyldimethyl ammonium chloride) and DNA by spectroscopic methods [J]. Colloid Surface A, 2004, 233: 129-135.
    [99] WANG Y, ZHOU A H. Spectroscopic studies on the binding of methylene blue with DNA by means of cyclodextrin supramolecular systems [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190: 121-127.
    [100] SOLIMANI R. Quercetin and DNA in solution: analysis of the dynamics of their interaction with a linear dichroism study [J]. International Journal Biological Macromolecules, 1996, 18: 287-295.
    [101] MELLO L D, PEREIRA R M S, SAWAYA A C H F, et al. Electrochemical and spectroscopic characterization of the interaction between DNA and Cu(II)-naringin complex [J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45: 706-713.
    [102] WANG Q X, JIAO K, LIU F Q, et al. Spectroscopic, viscositic and electrochemical studies of DNA interaction with a novel mixed-ligand complex of nickel (II) that incorporates 1-methylimidazole and thiocyanate groups [J]. Journal of Biochemical Biophysical Methods, 2007, 70: 427-433.
    [103] TIAN X, SONG Y H, DONG H M, et al. Interaction of anticancer herbal drug berberine with DNA immobilized on the glassy carbon electrode [J]. Bioelectrochemistry, 2008, 73: 18-22.
    [104] DIOPANA V, BABULAC P, SHESTIVSKA V, et al. Electrochemical and spectrometric study of antioxidant activity of pomiferin, isopomiferin, osajin and catalposide [J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48: 127-133.
    [105] PIVIDORI M I, MERKOCI A, ALEGRET S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods [J]. Biosensors and Bioelectronics, 2000, 15: 291-303.
    [106] NIELSEN P E. Targeting double stranded DNA with peptide nucleic acid (PNA). [J]. Current Medicinal Chemistry, 2001, 8: 545-550.
    [107] LUBBE A S, ALEXIOU C, BERGEMANN C. Clinical applications of magnetic srug targeting [J]. Journal of Surgical Research, 2001, 95: 200-206.
    [108] LIU S Q, CAO M L, DONG S L. Electrochemical and Ultraviolet-visible spectroscopic studies on the interaction of deoxyribonucleic acid with vitamin B6 [J]. Bioelectrochemistry, 2008, 74: 164-169.
    [109] BORCHARD G. Chitosans for gene delivery [J]. Advanced Drug Delivery Reviews, 2001, 52: 145-150.
    [110] CARTER M T, BARD A J. Voltammetric studies of the interaction of tris (1, 10-phenanthroline) cobalt (III) with DNA [J]. Journal of the American Chemical Society, 1987, 109: 7528-7530.
    [111] RODORIGUEZ M, BARD A J. Electrochemical studies of the interaction of metal chelates with DNA [J]. Journal of Analytical Chemistry, 1990, 62(24): 2658-2662.
    [112] CARTER M T, BARD A. Electrochemical investigations of the interaction of metal chelates with DNA. 3. Electrogenerated chemiluminescent investigation of the interaction of tris (1, 10-phenanthroline) ruthenium (II) with DNA [J]. Bioconjugate Chemistry, 1990, 1: 257-263.
    [113]彭图治,杨丽菊.生命科学中的电分析化学[M].杭州:杭州大学出版社,1999.
    [114] KARADENIZ H, ALPARSLAN L, ERDEM A, et al. Electrochemical investigation of interaction between mitomycin C and DNA in a novel drug-delivery system [J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45: 322-326.
    [115] ZHOU Y L, Y LI Z. Studies of the interaction between poly(diallyldimethyl ammonium chloride) and DNA by spectroscopic methods [J]. Colloids and Surfaces A, 2004, 233: 129-135.
    [116] COLLINS J G, SHIELDS T P, BARTON J K. 1H-NMR of Rh (NH3) 4phi3+ Bound to d(TGGCCA)2: Classical Intercalation by a Nonclassical Octahedral Metallointercalator [J]. Journal of the American Chemical Society, 1994, 116: 9840-9846.
    [117] GREGURIC I, ALDRICH F, WRIGHT J R, et al. A 1H NMR Study of the Binding ofΔ-[Ru(phen)2DPQ]2+ to the Hexanucleotide d(GTCGAC)2. Evidence for Intercalation from the Minor Groove [J]. Journal of the American Chemical Society, 1997, 119: 3621-3622.
    [118] COLLINS J G, SLEEMAN A D, ALDRICH F, et al. A 1H NMR Study of the DNA Binding of Ruthenium (II) Polypyridyl Complexes [J]. Inorganic Chemistry, 1998, 37: 3133-3141.
    [119] DUPUREUR C M, BARTON J K. Structural studies ofΛ-andΔ-[Ru(phen) 2dppz] 2+ bound to d(GTCGAC)2: characterization of enantioselective intercalation [J]. InorganicChemistry, 1997, 36: 33-43.
    [120] ERIKSSON M, LEIJON M, HIORT C, et al. Minor groove binding of [Ru(phen)3] 2+ to [d(CGCGATCGCG)]2 evidenced by two-dimensional NMR [J]. Journal of the American Chemical Society, 1992, 114: 4933-4934.
    [121] ROHMAN J P, BARTON J K. Proton NMR studies of tris(phenanthroline) metal complexes bound to oligonucleotides: characterization of binding modes [J]. Biochemistry, 1990, 29: 1701-1709.
    [122] DUPUREUR C M, BARTON J K. Use of selective deuteration and 1H NMR in demonstrating major groove binding of DELTA.-[Ru(phen)2dppz]2+ to d(GTCGAC)2 [J]. Journal of the American Chemical Society, 1994, 116: 10286-10287.
    [123] COLLINS J G, BARTON J K. 1H-NMR of Rh(NH3)4phi3+ bound to d (TGGCCA)2: classical intercalation by a nonclassical octahedral metallointercalator [J]. Journal of the American Chemical Society, 1994, 116(22): 9840-9846.
    [124] SATYANARA Y S, DABROWIAK J C, CHAIRS J B. Tris (phenanthroline) ruthenium (II) enantiomer interactions with DNA: Mode and specificity of binding [J]. Biochemistry, 1993, 32: 2573-2584.
    [125] Lenman L S. Structural considerations in the interaction of DNA and acridines [J]. Journal of Molecular Biology, 1961, 3: 18.
    [126] BRUN A M, HARRIUMAN, et al. Energy- and electron-transfer processes involving palladium porphyrins bound to DNA [J]. Journal of the American Chemical Society, 1994, 116: 10383-10393.
    [127] SMULEVICH G, FEIS A. Surface-enhanced resonance Raman spectra of adriamycin, 11-deoxycarminomycin, their model chromophores, and their complexes with DNA [J]. Journal of Physical Chemistry, 1986, 90: 6388-6392.
    [128] LANGLAIS M, TAIMIR-RIAHI H A, SAVOIE R. Raman spectroscopic study of the effects of Ca2+, Mg2+, Zn2+, and Cd2+ ions on calf-thymus DNA: binding sites and conformational changes [J]. Biopolymers, 1990, 30: 743-752.
    [129]易平贵,商志才,俞庆森.微量热法研究[Cu(phen)2]~(2+)、[Cu(bpy)_2]~(2+)与DNA的作用[J].无机化学学报,2001, 17(1): 77-81.
    [130] REMETA D P, MUDD C P, BERGER R I, et al. Thermodynamic characterization of daunomycin-DNA interactions: microcalorimetric measurements of daunomycin-DNA binding enthalpies [J]. Biochemistry, 1991, 30: 9799-9809.
    [131] KAGEMOTO A, TAKAGI H, NARUSE K, et al. Thermodynamic characterization of binding of DNA with cisplatin in aqueous solution by calorimetry [J]. Thermochimimica Acta, 1991, 190: 191-201.
    [132] KAGEMOTO A, KUNIHIRO A, BABA Y. Thermodynamic studies on interactions between DNA and dye [J]. Thermochimica Acta, 1994, 242: 65-75.
    [133]熊亚,黄素秋,吴晶泉,等.两种水溶性卟啉与DNA相互作用的研究[J].物理化学学报,1996, 12(6): 543-546.
    [134] PARKHURST K M, PARKHURSR L J. Kinetic studies by fluorescence resonance energy transfer employing a double-labeled oligonucleotide: hybridization to the oligonucleotide complement and to single-stranded DNA [J]. Biochemical, 1995, 34: 285-292.
    [135]魏亦男,李元宗,常文保,等.荧光共振能量转移技术在生物分析中的应用[J].分析化学, 1998, 26(4): 447-484.
    [136] NEWTON C, FAWCETT N, FLOWERS C, et al. Detection of poly (U) hybridization using azido modified poly (A) coated piezoelectric crystals [J]. Biochemical and Biophysical Research Communications, 1993, 196: 858-863.
    [137] YAMAGUCHI S, SHIMOMURA T, TATSUMA T, et al. Adsorption, immobilization, and hybridization of DNA studied by the use of quartz crystal oscillators [J]. Analytical Chemistry, 1993, 65: 1925-1927.
    [138] OKAHATA Y, MATSUNOBU Y, IJIRO K, et al. Hybridization of nucleic acids immobilized on a quartz crystal microbalance [J]. Journal of the American Chemical Society, 1992, 114: 8299-8300.
    [139] CARUSO F, RODDA E, FURLONG D N, et al. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development [J]. Analytical Chemistry, 1997, 69: 2043-2049.
    [140] KRAUTBAUER R, POPE L H, SCHRADER T E, et al. Discriminating small moleculeDNA binding modes by single molecule force spectroscopy [J]. FEBS Letters, 2002, 510: 154-158.
    [141]邹承鲁主编.第二遗传密码——新生肽链及蛋白质折叠的研究[M].湖南科学技术出版社,1997.
    [142]陶慰孙,李惟,姜涌明主编.蛋白质分子基础(第二版) [M].高等教育出版社,1995(2003重印).
    [143]赵南明,周海梦主编.生物物理学[M].高等教育出版社,2000.
    [144]张洪渊主编.生物化学教程(第二版) [M].四川大学出版社,1994.
    [145]杨频,高飞.生物无机化学[M].北京:科学出版社,2002.
    [146]王君,任百祥.药物与蛋白相互作用的分析测试[J].中国新医药,2003,2(5): 47-48.
    [147]冯志祥,张树功,刘启民,等. Tb3+和La3+与牛血清白蛋白作用的光谱研究[J].应用化学,1995, 12(3): 70-72.
    [148]刘媛,谢孟峡,康娟.三七总皂苷对牛血清白蛋白溶液构象的影响[J].化学学报, 2003, 61: 1305-1310.
    [149]迟燕华,庄稼,李娜,等.锌试剂与牛血清白蛋白机理的研究[J].高等学校化学学报,1999, 20: 1697-1702.
    [150] RANJAN K N, NILMONI S, RINTU B. Probing the interaction of ellagic acid with human serum albumin: A fluorescence spectroscopic study [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192: 152-158.
    [151]陶慰孙,李惟,姜涌明,等.蛋白质分子基础[M].北京:高等教育出版社,1995.
    [152] SULKOWSKA A, ROWNICKA J, BOJKO B, et al. Interaction of anticancer drugs with human and bovine serum albumin [J]. Journal of Molecular Structure, 2003, 651-653: 133-140.
    [153] JIANG M, XIE M X, ZHENG D, et al. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin [J]. Journal of Molecular Structure, 2004, 692: 71-80.
    [154] LIU Y, XIE M X, JIANG M, et al. Spectroscopic investigation of the interaction between human serum albumin and three organic acids [J]. Spectrochimica Acta Part A, 2005,61: 2245-2251.
    [155]陈国珍,黄贤智,郑朱梓,等.荧光分析法(第二版) [M].北京:科学出版社,1990, 502-506.
    [156] WANG C X, YAN F F, ZHANG Y X, et al. Spectroscopic investigation of the interaction between rifabutin and bovine serum albumin [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192: 23-28.
    [157]易平贵,刘俊峰,商志才,等.荧光光谱法研究亚甲基蓝与蛋白质的结合反应[J].光谱学与光谱分析,2001, 21(6): 826-828.
    [158] LAKOWICZ J R. Principles of fluorescence spectroscopy [M]. New York: Plenum Press, 1983, p257.
    [159] HU Y J, LI W, LIU Y, et al. Fluorometric investigation of the interaction between methylene blue and human serum albumin [J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39(3): 740-745.
    [160] LLOYD J B F. Synchronized excitation of fluorescence emission spectra [J]. Nature: Physics Science, 1971, 231: 64-65.
    [161]陈国珍,黄贤智,许金钩,等.荧光分子法(第二版) [M].北京:科学出版社, 1990, p.123.
    [162]费燕,陆国才,范国荣,等.西那沙星与牛血清白蛋白的相互作用及共存金属离子影响的研究[J].光谱学与光谱分析,2008, 28(11): 2609-2614.
    [163]张国文,王安萍,蒋婷,等.荧光光谱法研究橙皮苷与牛血清白蛋白相互作用特征[J].分析实验室,2008, 27(1): 1-4.
    [164]马春琪,李克安,赵凤林,等.牛血清白蛋白与铬天青S作用机理的研究[J].化学学报,1999, 57: 389-395.
    [165]潘祖亭,马勇,王巍.荧光光谱法研究克仑特罗与蛋白质的结合作用[J].分析试验室,2004, 23(1): 5-9.
    [166]朱铿,童沈阳.荧光黄与蛋白质相互作用的研究[J].高等学校化学学报,1996,17(4):539-542.
    [167]姚武,高峰,王伦.依诺沙星与牛血清白蛋白相互作用的荧光法研究[J].分析测试学报,2005,24(1): 76-79.
    [168]何华,于俊生,徐珊萍,等.环丙沙星与牛血清白蛋白的相互作用[J].药学学报, 2001, 36(7): 549-551.
    [169] BURSTEIN E A, VEDENKINA N S, IRKOVA M N. Fluorescence and the location of tryptophanresidues in protein molecules [J]. Photochemistry and Photobiology, 1973, 18: 263-279.
    [170] HAZRA P, CHAKRABARTY D, CHAKRABORTY A, et al. Probing Protein - surfactant interaction by steady state and time - resolved fluorescence spectroscopy [J]. Biochemical and Biophysical Research Communications, 2004, 314: 543-549.
    [171] JOHNSON D K. A fluorescence polarization immunoassay for cadmium (Ⅱ) [J]. Analytica Chimica Acta, 1999, 399 (1-2): 161-172.
    [172] MAITI T K, GHOSH K S, SAMANTA A, et al. The interaction of silibinin with human serum albumin: A spectroscopic investigation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194: 297-307.
    [173] SU Y L, XU Y Z, YANG L M, et al. Spectroscopic studies of the effect of the metal ions on the structure of mucin [J]. Journal of Molecular Structure, 2009, 920: 8-13.
    [174] DONG A, CAUGHEY W S. Infrared methods for study of hemoglobin resctions and structures [J]. Methods in Enzymology, 1994, 232: 139-175.
    [175] QU P, LU H, DING X Y, et al. Study on the interaction of 6-thioguanine with bovine serum albumin by spectroscopic techniques [J]. Journal of Molecular Structure, 2009, 920: 172-177.
    [176] MANDEVILLE J S, FROEHLICH E, TAJMIR-RIAHI H A. Study of curcumin and genistein interactions with human serum albumin [J]. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49: 468-474.
    [177] TIAN M Y, ZHANG X F, XIE L. The effect of Cu2+ on the interaction between an antitumor drug-mitoxantrone and human serum albumin [J]. Journal of Molecular Structure, 2008, 892: 20-24.
    [178]夏佑林,吴季辉,刘琴,等.生物大分子多维核磁共振[M].中国科学科技大学出版社,1996.
    [179]纪竹生,刘买利,胡继明.药物配体与生物大分子受体相互作用核磁共振的研究进展[J].分析化学,2004, 11: 1532-1537.
    [180] LEONE M, RODRIGUEZ-MIAS R A, PELLECCHIA M. Selective incorporation of 19F-labeled Trp side chains for NMR-spectroscopy-based ligand-protein interaction studies [J]. Chembiochem, 2003, 4(7): 649-650.
    [181] VOGTHERR M, FIEBIG K. NMR-based screening methods for lead discovery [J]. EXS, 2003, 93: 183-202.
    [182] MOORE J M. NMR screening in drug discovery [J]. Current Opinion in Biotechnology, 1999, 10(1): 54-58.
    [183] HAGE D S, NOCTOR T A G, WAINER I W. Charactenrization of the protein binding of chiral drugs by high-performance affinity chromatography: interaction of R-and S-ibuprofen with human serum albumin [J]. Journal of Chromatography A, 1995, 693(1): 23-32.
    [184] KAIBARA A, HIROSE M, NAKAGAWA T. Evaluation of hydrophobic interaction between acidic drugs and bovine serum albumin by reversed-phase high-performance liquid chromatography [J]. Chemical and Pharmaceutical Bulletin, 1991, 39(3): 720-723.
    [185] GALBUSERA C, CHEN J, DAVID D Y. Molecular interaction in capillary electrophoresis [J]. Current Opinion in Biotechnology, 2003, 14(1): 126-130.
    [186] NIMMO I A, ATKINS G L, STANGE R C, et al. An evaluation of ways of using equilibrium dialysis to quantify the binding of ligand to macromolecule [J]. Biochemistry, 1997, 165: 107-110.
    [187] VILLAMOR J P, ZATON A M L. Data plotting of warfarin binding to human serum albumin [J]. Journal of Biochemical and Biophysical Methods, 2001, 48: 33-41.
    [188] TOSHISKI S, KEISHI Y, TOMOKO S, et al. Interaction mechanism between indoxyl sulfate, a typical uremic toxin bound to siteⅡ, and ligands bound to siteⅠof human serum albumin [J]. Pharmaceutical Research, 2001, 18: 520-524.
    [189] MASULKA J, SALTMAN P. Zinc(Ⅱ) and copper (Ⅱ) binding to serum albumin. A comparative study of dog, bovine, and human albumin [J]. Journal of Biological Chemistry, 1994, 269 (41): 25557-25561.
    [190] SWINKELS L M, ROSS H A, BENRAAD T J. A symmetric dialysis method for thedetermination of free testosterone in human plasma [J]. Clinica Chimica Acta, 1987, 165: 341-349.
    [191] HONORE B. Protein binding studies with radiolabeled compounds containing radiochemical impurities: Equilibrium dialysis versus dialysis rate determination [J]. Analytical Biochemistry, 1987, 162: 80-88.
    [192] WADSOI. Isothermal microcalorimetry near ambient temperature: An overview and discussion [J]. Thermochimica Acta, 1997, 294: 1-11.
    [193] CHOWDHRY B Z, BEEZER A E, GREENHOW E J. Analysis of drugs by microcalorimetry : Isothermal power-conduction calorimetry and thermometric titrimetry [J]. Talanta, 1983, 30(4): 209-243.
    [194] SARI J C, GILLI R, PEYROTV, et al. A microcalorimetric method using a minimal quantity of reactant to determine protein-ligand binding parameters [J]. Thermochimica Acta, 1989, 147: 119.
    [195] PACE C N, MCGRTH T. Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation [J]. Journal of Biological Chemistry, 1980, 255: 3862-3865.
    [196] SCHWARZ P F. Interaction of cytidine 3'-monophosphate and uridine 3'- monophosphate with ribonuclease A at the denaturation temperature [J]. Biochemistry, 1988, 27: 8429-8436.
    [197] BRANDTS J F, LIN L N. Study of strong to ultratight protein interactions using differential scanning calorimetry [J]. Biochemistry, 1990, 29: 6927-6940.
    [198] LUO H X, DU Y, GUO Z X. Electrochemistry of N-n-undecyl-N’-(sodium-p -aminobenzenesulfonate) thiourea and its interaction with bovine serum albumin [J]. Bioelectrochemistry, 2009, 74: 232-235.
    [199]汪尔康. 21世纪的分析化学[M].北京:科学出版社,2001.
    [200]周波,孙润光,王丽华,等.蛋白质直接电化学研究及其应用[J].化学进展,2006, 18(7-8): 1010-1013.
    [201] BRITTO P J, SANTHANAM K S V, AJAYAN P M. Carbon nanotube electrode for oxidation of dopamine [J]. Bioelectrochemistry and Bioenergetics, 1996, 41(1): 121-125.
    [202] DAVIS J J, COLES R J, HILL H A O. The immobilization of proteins in carbonnanotubed [J]. Journal of Electroanalytical Chemistry, 1997, 440(2): 279-282.
    [203]林丽,周宇艳,鲜跃仲,等.微渗析-多壁碳纳米管修饰电极液相色谱电化学检测应用于药物与蛋白结合的研究[J].分析化学,2004, 20(2): 121-124.
    [204] WU Y H, JI X B, HU S S. Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin [J]. Bioelectrochemistry, 2004, 64(1): 91-97.
    [205]杨国龙,赵谋明,杨晓泉,等.超滤法生产大豆浓缩蛋白[J].食品与发酵工业,2004, 30(8): 120-124.
    [206]崔岩,凌伦奖,陈润生.计算生物大分子溶液可及表面积的快速算法[J].生物物理学报,1996, 12(3): 482-486.
    [207]胡远东,白坚石,焦克芳,等. PEG修饰牛血清白蛋白的计算机模拟研究[J].生物物理学报,2000, 16(2): 316-321.
    [208]张礼和,王梅祥主编.化学生物进展[M].化学工业出版社,2005, p. 513-514.
    [209] SCATCHARD G. The attractions of protein for small molecules and ions [J]. Annals of the New York Academy of Sciences, 1949, 51: 660-673.
    [210] TIMASEFF S N. Thermodynamics of protein interactions. In: Proteins of biological fluids (Ed. Peeters H) [M]. Oxford: Pergamon Press, 1972, p.511-519.
    [211] SULKOWSKA A. Interaction of drugs with bovine and human serum albumin [J]. Journal of Molecular Structure, 2002, 614: 227-232.
    [212] SULKOWSKA A, ROWNICKA J, BOJKO B, et al. Interaction of anticancer drugs with human and bovine serum albumin [J]. Journal of Molecular Structure, 2003, 651: 133-140.
    [213] SULKOWSKA A, BOJKO B, RO’WNICKA J, et al. Effect of urea on serum albumin complex with antithyroid drugs: fluorescence study [J]. Journal of Molecular Structure, 2003, 651-653: 237-243.
    [214] TWINE S M, GORE M G, MORTON P, et al. Mechanism of binding of warfarin enantiomers to recombinant domains of human albumin [J]. Archives of Biochemistry and Biophysics, 2003, 414: 83-90.
    [215]张勇,张贵珠,王月梅.光谱法研究丝裂霉素、血清白蛋白以及金属离子间的相互作用[J].分析科学学报,2000, 16: 445-448.
    [216] BI S Y, SONG D Q, TIAN Y, et al. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins [J]. Spectrochimica Acta Part A, 2005, 61: 629-636.
    [217] BI S Y, SONG D Q, KAN Y H, et al. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins [J]. Spectrochimica Acta Part A, 2005, 62: 203-212.
    [218] BENESI H A, HILDEBRAND J H. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons [J]. Journal of the American Chemical Society, 1949, 71: 2703-2707.
    [219] BHATTACHARYA J, BHATTACHARYA M, CHAKRABORTY A, et al. Interaction of chlorpromazine with mioglobin and hemoglobin. A comparative study [J]. Biochemical Pharmacology, 1994, 47: 2049-2052.
    [220] MALLICK A, BERA S C, MAITI S, et al. Fluorometric investigation of interaction of quinolizine with bovine serum albumin [J]. Biophysical Chemistry, 2004, 112: 9-14.
    [221] MALLICK A, HALDAR B, CHATTOPADHYAY N. Spectroscopic investigation on the interaction of quinolizine with serum albumin [J]. The Journal of Physical Chemistry B, 2005, 109: 14683-14690.
    [222] GUHARAY J, SENGUPTA B, SENGUPTA P K. Protein-flavonol interaction: fluorescence spectroscopic study [J]. Proteins, 2001, 43: 75-81.
    [223] SOLTES L, MACH M. Estimation of drug-protein binding parameters on assuming the validity of thermodynamic equilibrium [J]. Journal of Chromatography B, 2002, 768: 113-119.
    [224] ORAVCOVA J, BOHS B, LINDNER W. Drug-protein binding studies new trends in analytical and experimental methodology [J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1996, 677(1): 1-28.
    [225] ROSS P D, SUBRAMANIAN S. Thermodynamic of protein association reactions: forces contributing to stability [J]. Biochemistry 1981, 20: 3096-3102.
    [226] GONZALEA J Z, ACQUOTTEH J, CAYRE I. Fluorescence queeching studies on binding fluoreno-9-spiro-oxazolidinedione to human serum albumin [J]. Chemico- Biological Interactions, 1992, 84: 221-228.
    [227] SUR S S, RABBANI L D, LIBMAN L, et al. Fluorescence studies of native and modified neurophysms. Effects of peptides and pH [J]. Biochemistry, 1979, 18(6): 1026-1035.
    [228]徐岩,黄汉国,沈含熙.喹诺酮类药物对人血清白蛋白的荧光猝灭研究[J].分析化学,1998, (12): 1494-1497.
    [229] BERRY B, RODNEY W K, MIRIAM R W, et al. Correction for light absorption in flurecence studies of protein-ligand interactions [J]. Analytical Biochemistry, 1983, 132(2): 353-361.
    [230] Thomson R H. Naturally Occurring Quinones[M]. New York: Academic Press, 1971.
    [231] AGARWAL S K, S S SINGH, VERMA S, et al. Antifungal activity of anthraquinone derivatives from Rheum emodi [J]. Journal of Ethnopharmacology, 2000, 72: 43-46.
    [232]高锦明,张鞍灵,王姝清.黄酮类化合物的分布及开发利用[J].西北林业学报,2000, 15(1): 69-74.
    [1] WU M H, WU W Q, LIAN X A, et al. Synthesis of a novel fluorescent probe and investigation on its interaction with nucleic acid and analytical application [J]. Spectrochimica Acta Part A, 2008, 71: 1333-1340.
    [2] MARKOVITS J, ROQUES B P, LEPECQ J B. Ethidium dimer: A new reagent for the fluorimetric determination of nucleic acids [J]. Analytical Biochemistry, 1979, 94: 259-264.
    [3] WANER W, VINOGARD J. Interaction of closed circular DNA with intercalative dyes: II. The free energy of superhelix formation in SV40 DNA [J]. Journal of Molecular Biology, 1970, 47: 419-435.
    [4]张华山,王红,赵媛媛.分子探针与检测试剂[M].北京:科学出版社,2002,p.314.
    [5] CAO Y, HE X W, GAO Z, et al. Fluorescence energy transfer between Acridine Orange and Safranine T and its application in the determination of DNA [J]. Talanta, 1999, 49: 377-383.
    [6] LYLES M B, CAMERON I L. Interactions of the DNA intercalator acridine orange, with itself, with caffeine, and with double stranded DNA [J]. Biophysical Chemistry, 2002, 96: 53-76.
    [7]郭林,杨频,杨斌盛,等.以溴化乙锭为荧光探针研究二氯二茂钛与DNA作用方式[J].科学通报,1995,40(13): 1187-1190.
    [8]靳兰,杨频,李青山.荧光法研究手性金属配合物与DNA的作用机理[J].高等学校化学学报,1996, 17(9): 13451348.
    [9] REINHARDT C G, KRUGH T R. A comparative study of ethidium bromide complexes with dinucleotides and DNA: direct evidence for intercalation and nucleic acid sequence preferences [J]. Biochemistry, 1978, 17(23): 4845-4854.
    [10] VERGANI L, MASCETTI G, GAVAZZO P, et al. Ethidium bromide intercalation and chromatin structure: A thermal analysis [J]. Thermochimica Acta, 1997, 294: 193-204.
    [11] SUTHERLA J C, SUTHERLA B M. Ethidium bromide-DNA complex -wavelength dependence of pyrimidine dimer inhibition and sensitized fluorescence as probes of excited states [J]. Biopolymer, 1970, 9: 639-654.
    [12]武婷,李楠,李洁,等.蒽醌类物质的研究近况[J].生命科学仪器,2005,5:54-56.
    [13] AGARWAL S K, S S SINGH, VERMA S, et al. Antifungal activity of anthraquinone derivatives from Rheum emodi [J]. Journal of Ethnopharmacology, 2000, 72: 43-46.
    [14] MARMUR J. A procedure for the isolation of deoxyribonucleic acid from microorganisms [J]. Journal of Molecular Biology, 1961, 3(1): 208-218.
    [15] REICHMANN M E, RICE S A, THOMAS C A, et al. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid [J]. Journal of the American Chemical Society, 1954, 76: 3047-3053.
    [16] PHILIP K W, MALKHAZ K, QU Y, et al. A circular dichroism study of ethidium bromide binding to Z-DNA induced by dinuclear platinum complexes [J]. Journal of Inorganic Biochemistry, 1996, 63: 9.
    [17] TU C, WU X, LIU Q, et al. Crystal structure, DNA-binding ability and cytotoxic activity of platinum(II) 2, 2′- dipyridylamine complexes [J]. Inorganica Chimica Acta, 2004, 357: 95-102.
    [18] NI Y, LIN D, KOKOT S. Synchronous fluorescence and UV-vis spectrometric study of the competitive interaction of chlorpromazine hydrochloride and Neutral Red with DNA using chemometrics approaches [J]. Talanta, 2005, 65: 1295-1302.
    [19] LYLES M B, CAMERON I L. Interactions of the DNA intercalator acridine orange, with itself, with caffeine, and with double stranded DNA [J]. Biophysical Chemistry, 2003, 96: 53-76.
    [20] VERGANI L, MASCETTI G, GAVAZZO P, et al. Ethidium bromide intercalation and chromatin structure: A thermal analysis [J]. Thermochimica Acta, 1997, 294(2): 193-204.
    [21] REINHARDT C G, KRUGH T R. A comparative study of ethidium bromide complexes with dinucleotides and DNA: direct evidence for intercalation and nucleic acid sequence preferences [J]. Biochemistry, 1978, 17(23): 4845-4854.
    [22] BI S Y, ZHANG H Q, QIAO C Y, et al. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method [J]. Spectrochimica Acta Part A, 2008, 69(1): 123-129.
    [23]肖崇厚.中药化学[M].上海科学技术出版社,1997.
    [24] PYLE A M, REHMANN J P, MESHOYRER R, et al. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA [J]. Journal of the American Chemical Society, 1989, 111: 3051-3058.
    [25] LONG E C, BARTON J K. On demonstration DNA intercalation [J]. Accounts of Chemical Research, 1990, 23: 271-273.
    [26] CANTOR C, SCHIMMEL P R. Biophysical Chemistry, W. H. Freeman (Ed.): San Francisco, 1980, 2: 398.
    [27] CHEN G Z, HUANG X Z, XU J G, et al. The methods of fluorescence analysis, 2nd ed. [M]. Beijing: Science Press, 1990, p. 112.
    [28] DEWEY T G (Ed.). Biophysical and Biochemical Aspects of Fluorescence Spectroscopy [M]. New York: Plenum Press, 1991, p. 1-41.
    [29] LAKOWICA J R, WEBER G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules [J]. Biochemistry, 1973, 12: 4161-4170.
    [30] STEINER R F, WEINRYB L. Excited states of protein and nucleic acid [M]. New York: Plenum Press, 1971, p. 40.
    [31] WARE W R. Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process [J]. Journal of Physical Chemistry, 1962, 66: 455-458.
    [32] JIANG C Q, GAO M X, MENG X Z. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples [J]. Spectrochimica Acta Part A, 2003, 59: 1605-1610.
    [33] PRATVIEL G, BERNADOU J, MEUNIER B. Carbon-hydrogen bonds of DNA sugar units as targets for chemical nucleases and drugs [J]. Angewandte Chemie International Edition in English, 1995, 34(7): 746-769.
    [34] KUMAR C V, TURNER R S, ASUNCION E H. Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 74: 231-238.
    [35] WANG A H J, TENG M K. Crystallographic and modeling methods in molecular design [M]. New York: Springer, 1990, p. 123.
    [36] PATEL D J. Nuclear magnetic resonance studies of drug-nucleic acid interactions at thesynthetic DNA level in solution [J]. Accounts of Chemical Research, 1979, 12(4): 118-125.
    [37] ROSS P D, SABRAMANIAN S. Thermodynamics of protein association reactions: forces contributing to Stabiliby [J]. Biochemistry, 1981, 20(11): 3096-3102.
    [1] HORNE D A, DERVAN P B. Recognition of mixed-sequence duplex DNA by alternate-strand triple-helix formation [J]. Journal of the American Chemical Society, 1990, 112: 2435-2437.
    [2] PULLMAN A, Jortner J. Moleculer basis of specificity in nucleic acid- drug interaction [M]. Dordrecht: Kluwer, 1990.
    [3]高锦明,张鞍灵,王姝清.黄酮类化合物的分布及开发利用[J].西北林业学报,2000, 15(1): 69-74.
    [4] PATEL D J. Nuclear magnetic resonance studies of drug-nucleic acid interactions at the synthetic DNA level in solution [J]. Accounts of Chemical Research, 1979, 12(4): 118-125.
    [5]陈国珍,黄贤智,许金钩,等.荧光分析法(第二版) [M].北京:科学出版社,1990: 112.
    [6] LAKOWITCZ J R, Principles of Fluorescence Spectroscopy [M]. New York: Plenum Press, 1999, p. 237-259.
    [7] CHEN G Z, HUANG X Z, XU J G, et al. The methods of fluorescence analysis, 2nd ed. [M]. Beijing: Science Press, 1990, p. 112.
    [8] DEWEY T G (Ed.). Biophysical and biochemical aspects of fluorescence spectroscopy [M]. New York: Plenum Press, 1991, p. 1-41.
    [9] LAKOWICA J R, WEBER G. Quenching of fluorescence by oxygen probe for structural fluctuations in macromolecules [J]. Biochemistry, 1973, 12: 4161-4170.
    [10] STEINER R F, WEINRYB L. Excited states of protein and nucleic acid [M]. New York: Plenum Press, 1971, p. 40.
    [11] WARE W R. Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process [J]. Journal of Physical Chemistry, 1962, 66: 455-458.
    [12] JIANG C Q, GAO M X, MENG X Z. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples [J]. Spectrochimica Acta Part A, 2003, 59(7): 1605-1610.
    [13] ROSS P D, SABRAMANIAN S. Thermodynamics of protein association reactions: forces contributing to Stabiliby [J]. Biochemistry, 1981, 20(11): 3096-3102.
    [14] PRATVIEL G, BERNADOU J, MEUNIER B. Carbon-hydrogen bonds of DNA sugar units as targets for chemical nucleases and drugs [J]. Angewandte Chemie International Edition in English, 1995, 34: 746-769.
    [15] KUMAR C V, TURNER R S, ASUNCION E H. Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect [J]. Photochemistry and Photobiology A: Chemistry, 1993, 74: 231-238.
    [16] SATYANARAYANA S, DABROWIAK J C, CHAIRES J B. Neither DELTA- nor LAMBDA-tris (phenanthroline) ruthenium (II) binds to DNA by classical intercalation [J]. Biochemistry, 1992, 31: 9319-9324.
    [17] SATYANARSYANA S, DABRONIAK C, CHAIRES J B. Tris (phenanthroline) ruthenium (II) enantiomer interactions with DNA: Mode and specificity of binding [J]. Biochemistry, 1993, 32 (10): 2573-2584.
    [18] LERMAN L S. Structural considerations in interaction of DNA and acridines [J]. Journal of Molecular Structure, 1961, 3: 18-30.
    [19] YANG G, WU J Z, JI L N, et al. Study of the Interaction Between Novel Ruthenium(II)-Polypyridyl Complexes and Calf Thymus DNA [J]. Journal of Inorganic Biochemistry, 1997, 66(2): 141-144.
    [20] KAPICAK L, GABBAY E J. Effect of aromatic cations on the tertiary structures of deoxyribonucleic acid [J]. Journal of the American Chemical Society, 1975, 97: 403-408.
    [21] SONG Y F, YANG P. Mononuclear tetrapyrido [3, 2-a:2′, 3′-c:3′′′, 2′′′-h:2′′′, 3′′′-j] phenazine (tpphz) cobalt complex [J]. Polyhedron, 2001, 20: 501-506.
    [22] SATYANARYANS S. DABROWIAL J C, CHAIRES J B. Neither .DELTA.- nor. LAMBDA. -tris (phenanthroline) ruthenium (II) binds to DNA by classical intercalation [J]. Biochemistry, 1992, 31(39): 9319-9324.
    [23] COHEN G, EISENBERG H. Viscosity and sedimentation study of sonicated DNA-proflavine complexes [J]. Biopolymers, 1969, 8: 45-55.
    [1]杨频,高飞.生物无机化学原理[M].北京:科学出版社,2002,p.22-23.
    [2] ERCELEN S, KLYMCHENKO A S, MELY Y, et al. The binding of novel two-color fluorescence probe FA to serum albumins of different species [J]. International Journal of Biological Macromolecules, 2005, 35 (2): 231-242.
    [3] ANDERSON N G. The human protein index [J]. Clinical Chemistry, 1982, 28: 739-748.
    [4] ROST B. Marrying structure and genomes [J]. Structure, 1998, 6: 259-263.
    [5] LAKOWITCZ J R. Principles of Fluorescence Spectroscopy [M]. New York: Plenum Press, 1999, p. 237-259.
    [6] LAKOWICA J R, WEBER G. Quenching of fluorescence byoxygen. Probe for structural fluctuationsin macromolecules [J]. Biochemistry, 1973, 12(21): 4161-4170.
    [7] WARE W R. Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process [J]. Journal of Physical Chemistry, 1962, 66: 455-458.
    [8] STEINER R F, WEINRYB L. Excited States of Protein and Nucleic Acid [M]. New York: Plenum Press, 1971, p. 40.
    [9] LIU X F, XIA Y M, FANG Y. Effect of metal ions on the interaction between bovine serum albumin and berberine chloride extracted from a traditional Chinese Herb coptis chinensis franch [J]. Journal of Inorganic Biochemistry, 2005, 99: 1449-1457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700