卫星光通信误差反馈振动补偿算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星间光通信与微波通信相比具有通信容量大、终端体积小和保密性好等突出优点,但是由于激光束宽窄,传输距离长等原因,要求卫星光通信中负责建立和保持激光通信链路的瞄准、捕获、跟踪系统(Pointing、Acquisition and Tracking简称PAT)的跟瞄精度为微弧度量级,卫星平台角振动可达到100urad,严重影响了光通信的质量。因此对光通信平台的振动进行控制和补差具有重要意义。
     目前,针对卫星平台振动控制的方法主要分为两类:被动隔离和主动补偿。被动隔离是直接在星上安装振动隔离系统,它的有效补偿范围在振动的高频区,对低频振动(100Hz以下)的控制效果不好,通常针对低频振动采用主动补偿,主动补偿是在精瞄子系统中通过快速偏转镜对振动进行补偿,因此主动补偿的关键是获得精瞄镜的振动补偿量。
     本论文针对卫星平台的低频振动提出一种新型振动主动补偿方法,采用基于LMS算法的自适应滤波器获得精瞄镜的振动补偿量,自适应滤波器的输入参考信号由加速度计提供,通过CCD探测器获得的误差信号调节自身的权系数矢量,使得精瞄镜振动补偿量到最优值,从而达到对卫星平台振动进行主动补偿的目的。因此算法具有很强“自我调节“的能力,能够通过误差信号调节,自动改变自身的参数。适应系统参数和振动的变化,在一定程度上缓解硬件设计的不足。
     文章系统的分析了卫星光通信平台振动误差反馈补偿算法的原理,建立系统性能仿真模型,并利用MATLAB软件对算法性能进行了仿真研究,主要从四个方面分析了算法的性能:平台振动幅度对算法的性能影响,平台的振动频率对算法的性能影响,加速度计和CCD探测器的采样频率对算法的性能的影响,以及系统的延时对算法性能的影响,同时为了降低系统延时对算法性能的影响,采用振动预测的方法提高算法的性能。通过对仿真结果分析可知,卫星光通信自适应振动补偿算法具有很优越的性能,是一种很好的平台低频振动补偿算法。
     本论文的工作开阔了卫星平台振动主动补偿方法的视野,为误差反馈补偿算法在具体硬件系统中实现提供了可靠理论和仿真依据。
The merits of Intersatellite Optical Communication is large communication volume,small terminal, good security and so on, contrast to the microwave communication, so it is attended. the narrowly beam of the laser,the long communication distance also bring huge difficulty to the PAT system, which answer for the constitution of the link of laser communication .In order to ensure communicating, the accuracy of tracing and pointing need to reach the magnitude of micro-radian.,the vibration amplitude of satellite flatform can arrive 100urad, that reduct the quality of optical communication,so it is meaning to control and compensate the vibration of intersatellite flatform.
     Now the vibration controlling mainly include passive isolation and active compensation. The passive isolation is that people set up the vibration isolation system, which is effective to the vibration of high frequency, but the effect isn’t good to low frequency vibration.people usually adopt active compensation method to control low frequency vibration, the active compensation is that cancel the vibration influence by the FSM in the fine-tracking subsystem, so the key of active compensation is that obtain the vibration compensation quantity of the FSM in fine-tracking subsystem.
     This paper introduce a new low frequency vibration compensation algorithm,adopt adaptive filter, which based the LMS algorithm, to gain the vibration compensation quantity of FSM. The accelerometer provide The reference signal of adaptive filter, the weight of w is adjusted by error signal from CCD, that make the vibration compensation of FSM optimum, so that the vibration can be effectively compensated .This method hold strong self adapting adjustment ability, it can automatically adjust self parameter to adopt exterior change.
     This paper systematically analyse the principle of error feedback vibration compensation algorithm of the satellite optical communication ,and crate the system function simulation model ,and emulate the algorithm function by the MATLAB. The contents of emulation mainly include four aspects. the effect of vibration amplitude of the satellite on algorithm function; the effect of terminal vibration frequency on algorithm function; the effect of detector’s sampling frequency on algorithm function; the effect of system time delay on algorithm function and so on. In order to reduce the effect of system time delay, this paper employ the vibration forecasting to improve algorithm function. Through the analyzing of emulation result, we can see that the error feedback vibration compensation of satellite optical communication own superiority function ,it is a good vibration compensation algorithm.
     The research of this paper extend the field of vision of vibration compensation algorithm of the satellite optical communication, it provide credibility principle and emulation basis for employing error feedback compensation algorithm to specific hardware system.
引文
1孙兆伟,吴国强,孔宪仁,赵丹.国内外空间光通信技术发展及趋势研究.无线光通信.2005,9:61~63
    2马晶,韩琦琦,王骐.卫星光通信技术发展及其影响因素分析.光通信技术.2004,28(10): 45~47
    3 Begley D L. Proposed near 1 Gbps space laser communication system. SPIE.1996,2699: 24~37
    4 Oppenhau G.The European SILEX project:concept,performances, status and planning.SPIE.1990,1218: 27~37
    5潘文,胡渝.美国激光通信研究发展概况及现状.电子科技大学学报. 1988, 27:541~545
    6 D. M. Boroson, A. Biswas, B. L. Edwards. MLCD: Overview of NASA‘s Mars Laser Communications Demonstration System.SPIE.2004,5338: 17~24
    7 Mecherle G.S, et al. Homodyne PSK receivers with laserdiode source.Proc. SPIE.1991,1417: 99~108
    8 Toni To1kerNie1sen, Gotthard Oppenhaeuser. In Orbit test result of an Operational Optical Intersatellite Linkbetween ARTEMIS and SPOT4, SILEX. SPIE.2002, 4635:2~3
    9 Fujise M. Free-space simulator for laser transmission.Ibid.1992,4 (1):1~27
    10 J.A. Takashi, T. A. Yoshibisa, K. Nobuhiro.OICETS on-orbit laser communica- tion experiments.SPIE.2006,6105:1~11
    11 Takashi Jono,Yoshihi Takayama.Overviewoftheinter-orbit and orbit-to-ground laser communication demonstration by OICETS.SPIE.2007,6457:1~3
    12马东堂,魏急波等.空间激光通信及应用.半导体光电.2003,24:139~144
    13 Philip W Young, Law rence M Germann, Roy N elson. Pointing, acquisition and tracking subsystem for space-based laser communications Optical Technologies for Communication Satellite Applications. Proc of SPIE. 1986,616:118~128
    14 Guy C Baister, Paul V Gatenby, Jeffrey L ew is, Bernard Lau- rent. Small optical terminal designs with a softmount interface. SPIE.1997, 2990:172~182
    15 Held K J ,Barry J D. Precision pointing and tracking between satellite-borne optical systems.Optical Engineering.1988,27(4) : 325~333
    16 Mark A. McEver,Daniel G. Cole,Robert L. Clark. Adaptive feedback control of optical jitter using Q-parameterization. Optical Engineering. 2004,43(4): 904~910
    17于思源,谭立英,马晶,王俊.激光星间链路中振动补偿技术研究.光电子激光.2004,15(4):472~475
    18马晶,韩琦琦,于思源,谭立英,关文成.卫星平台振动对星间激光链路的影响和解决方案.激光技术.2005,29(3):228
    19 Gerardo G. Ortiz, Angel Portillo, Shinhak Lee and Juan Ceniceros. Functional demonstration of accelerometer-assisted beacon tracking. Proc of SPIE. 2001, 4272:110~116
    20 Shinhak Lee, James W. Alexander, and Gerry G. Ortiz. Sub-microradian Pointing System Design for Deep-Space Optical Communications. Proc of SPIE.2001,4272:104~110
    21马晶,徐科华,谭立英,王健.美国火星激光通信系统分析.空间科学报.2006,26 (5):364~369
    22刘涛,庄茂录,赵尚宏.自由空间光通信中振动抑制控制研究.无线电光通信.2004,1:16~18
    23 Lopez J M,Yong K.Acqulsltlon tracking and fine pointing control of spacebased laser communication systems. SPIE.1981,.295:100~125
    24张秉华,熊金涛,胡渝.光通信中光束瞄准的误差分析.电子科技大学学报.1998,l.275:478~479
    25 T.T.Hyde,L.Porter,Davis.Vibration Reduction for Commercial Optical Inter- satellite Communication Links.SPIE Internation Symposition on Smart Structures and Materials.1998,235:202~210
    26李贤,曾广荣,徐铭.空间光通信收发端机性能分析与设计.电子科技大学学报.1998, 27(5)502~505
    27 SCOTT PW, YOUNG PW. Impact of temporal fluctuations of signa-to-noise ratio on free-space laser communication system design [ J ].Proc SPIE. 1986,616: 174~181
    28 S. Arnon, N. S. Koleika. Laser Satellite Communication Network-Vibration effect and Possible Solutions.Proceedings of theIEEE.1997,85(10):1646~1661
    29罗彤,李贤.星间光通信中振动抑制研究.宇航学报.2002,23(3): 77~80
    30 M.Wittig,L.Holtz,D.E.L.Tunbridge.In-Orbit Measurements of Microacceleratio-ons of ESA's Communication Satellite OLYMPUS. Proceedings of SPIE. 1990,1218:205~214
    31 Morio Toyoshima, Kenichi Araki. In-Orbit Measurements of Short Term Attitude and Vibrational Environment on the Engineering Test Satellite VI using Laser Communication Equipment. Optical Eng. 2001, 40 (5): 827~832
    32 Si-yuan Yu,Jing MA ,Li-ying Tan.Detection of pointing errors with CMOS-based camera in intersatellite optical communications.Proc. of SPIE 2004,5633:288~292
    33王富,于思源,马晶.卫星光通信实时跟踪瞄准算法研究.哈尔滨工业大学学报. 2006,38(1):1~2
    34 Nielsen T T. Pointing, Acauisition and Tracking System for the Free Space Laser communication System,SILEX[A].SPIE[C].1995,2381:194~245
    35宋家慧.图像跟踪系统的研制及算法的研究.东南大学硕士论文.2005:35~40
    36闻路红,童卫旗,陈桂林.用DSP实现重心算法确定CCD像点位置.电子技术.2003,10:4
    37李智勇,沈振康,杨卫平,湛海新.动态图像分析.第1版.国防工业出版社.1999,81:166~187
    38李在铭.数字图像处理、压缩与识别技术.电子科技大学出版社.2000:264~269
    39王春平,朱元昌,黄允华.电视跟踪系统中图像日标的预测跟踪算法研究.测控技术.1999,1(3):45~47
    40马晶,韩琦琦,于思源,谭立英,关文成.卫星平台振动对星间激光链路的影响和解决方案.激光技术.2005,29(3):228
    41 Widrow B,Glover J R,McCool J M.Adaptive noise cancellation: principle and applications,Proceeding of IEEE.63(12),1692~1716
    42陈克安.有源噪声控制.国防工业出版社.2003,1:69~73
    43 Win B.Glover S D.Adaptive signal processing Prentice-Englewood Cliffs, NJ 1985:104~125
    44 [美]B.维德罗,S. D.史蒂恩斯.自适应信号处理.成都:四川大学出版社.1991: 30~38
    45 Kim I S, Na H S, Kin K,J. Constraint filtered-x and filtered-u least mean square algorithms for the active noise control in ducts[J].Journal of the Acoustical Society of America.1994,95(3):379-389
    46刘志刚.柴油机振动自适应有源隔振技术研究.哈尔滨工程大学博士2002: 35~50
    47 D.R.Morgan. An Analysis of Multiple Correlation Cancellation Loops with a Filter in the Auxiliary Path. IEEE Trans.Acoust.,Speech ,Signal Processing . 1980,28. 454-467
    48 Scott Sommerfeldt,Jiri Ticky.Adaptive Vbration Control of Vibration Isolation Mounts. Using and LMS-based Control Algorithm, Technical Report No.TR
    89-007, November 1989,AD-A 214 ~384
    49 B.Widrow,D.Shur ,and S.Shaffer. On Adaptive Inverse Control. In Proc.l5th Asilomar Conf.1981:185~189
    50 J.C.Burgess. Active Adaptive Sound Control in a Duct: A Computer Simulation. J.Acoust.Soc.Amer. 1981,70:715~726
    51 Morgan D R.A note on”a secondary path modeling technique for active noise control systems”.IEEE Trans.on Speech and Audio Processing.1999,7(5) :601 ~602
    52 Kensaku Fujii,Juro Ohga .Method to update the coefficients of the secondary path filter under active noise control,Signal Processing.2001,81:381~387
    53刘旭明.基于误差通道在线辨识的振动主动控制方法研究.哈尔滨工程大学硕士论文.2005:20~35
    54于思源、谭立英、马晶、王俊.激光星间链路中振动补偿技术研究.光电子激光.2004,15(4):472~476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700