基于磁共振成像的脑连接方法学及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类大脑由约1011个神经元组成,包含1015个的神经突触连接,是目前所知宇宙间最为复杂的体系之一。虽然如此,却可以从两个基本法则去理解大脑的运行规律:功能分离(functional segregation)及功能整合(functional integration)。前者指大脑每一个神经集合(脑区)对应负责一个具体的行为功能,是功能定位的假说基础;而后者则指每一个具体的行为是由多个神经集合共同协调完成,则可以理解成是脑连接、脑网络的理论基础。这两个法则表面上看似相悖,却相辅相成。对大脑的功能整合研究,通常基于功能连接(functional connectivity)、效应连接(effective connectivity)及结构连接(structural connectivity)的概念。本文主要以静息态功能磁共振成像(functional magnetic resonance imaging, fMRI)为载体,以脑连接方法学发展为主线,并在不同程度上对这些方法加以发展和创新以及临床应用,以更准确地对人类脑连接进行表达和分析。其主要内容包括以下三个部分:
     第一部分,效应连接网络研究,也即方法学发展部分。提出了非线性Granger预测分析(Granger causality analysis, GCA)脑网络方法,更有效地揭示了脑功能活动的效应连接。
     首先,发展核函数Granger预测模型于运动想象任务,以适应信号的线性和非线性特点,从而扩展线性GCA模型,他忽略了脑区生理特点是非线性特点,将很好的解决人脑内非线性效应连接探测问题,用以揭示脑功能区域间脑功能活动信息的线性和非线性效应连接。
     其次,提出中尺度脑功能网络间的空间独立成分分析(independent component analysis, ICA)—GCA(ICA—GCA)模型,实现了静息态脑功能模块空间模式和对应时间特征信号分离,揭示了脑功能模块之间加工过程的信息转换和整合关系。
     最后,首次提出了全脑大尺度效应连接预测分析模型,实现全脑90个解剖感兴趣区域之间脑功能活动的有效连接,拓展了传统的相关方法得到的脑功能活动的功能连接。本文对静息状态下脑功能区域间信息整合的效应连接进行研究,探索是否一些扮演了信息转换角色的重要脑区;整个大脑效应连接网络是否具有相对独立而又相互联系的模块;人脑的效应连接网络是否具有“小世界”特性,本文方法及结果为理解人脑效应连接网络及其网络拓扑性质提供了全新的思路。
     第二部分,多模态癫痫脑网络研究,也即神经疾病应用部分。提出了癫痫脑网络多模态分析方法,全面地揭示癫痫脑网络机制;发现癫痫脑功能连接及结构连接网络拓扑性质异常,且发现功能—结构耦合性反映该疾患进展程度。
     首先,对于内侧颞叶癫痫(mesial temporal lobe epilepsy, mTLE)患者,采用全脑大尺度静息态功能连接网络分析方法,探测其脑功能网络拓扑性质异常;该方法所示的脑局部连接及全脑大尺度网络拓扑性质可能成为甄别内侧颞叶癫痫的生物标记。
     其次,针对内侧颞叶癫痫患者默认网络功能连接异常,我们组合功能磁共振成像和弥散张量成像数据,融合功能连接—结构连接方法发现内侧颞叶癫痫患者默认网络功能连接和结构连接异常。本文中,以内侧颞叶癫痫病人磁共振数据为载体,从另一个方面证实了将功能连接和结构连接分析方法结合起来并作为一种新的研究手段的重要意义。同时这种方法也会越来越广泛地被应用到其它磁共振研究领域。
     最后,针对特发性全面性癫痫(idiopathic generalized epilepsy, IGE)的全局病理特性,我们在全脑大尺度网络层面上,利用功能连接网络—结构连接网络,并结合网络图论分析方法,探测全面性癫痫的全局网络拓扑属性。更为重要的是,我们利用功能—结构连接网络耦合性这一指标发现患者的功能—结构连接网络耦合性显著降低,并且和病程负相关,这样结果显示功能—结构连接网络耦合反映了该疾患的进展程度。这种指标也许能用来作为特发性全面性癫痫的生物学标记,有助于影像学诊断及其机制理解。
     第三部分,多模态社交焦虑障碍(social anxiety disorder, SAD)脑网络研究,也即精神疾病应用部分。提出了社交焦虑障碍多模态分析方法,发现社交焦虑障碍脑功能—结构异常变化特征,及杏仁核效应连接环路异常。
     首先采用空间独立成分分析和利用发展的脑网络分析方法探究社交焦虑障碍患者的听觉网络、视觉网络、感觉运动网络、背侧注意网络、中央执行网络、自我参照网络、核心网络、默认网络,然后将这些网络模式和正常对照进行比较,以确定社交焦虑障碍引起的网络连接异常。本文也从功能体系的角度提供了一种研究社交焦虑障碍的神经、病理生理机制的新途径。
     其次,采用GCA方法探测社交焦虑障碍患者杏仁核环路的静息态效应连接异常,寻找特异的异常效应连接,使其能够区分和理解社交焦虑障碍患者的病理机制。
     最后,首次融合基于体素的形态学测量,静息态功能连接及白质纤维束结构连接这三种模态,发现社交焦虑障碍引起脑形态、功能连接及结构连接体系异常。该研究提供了一种利用形态学体积、静息态功能连接及白质纤维束追踪的串行多模态影像学融合方法,为全面地理解该疾患的生理病理机制夯实了基础。
Joint together 100 billion neurons—with 100 trillion connections—the human brain is known as one of the complex system. Nevertheless, functional segregation and functional integration are related to the dialectic between localizationism and connectionism, which dominates ideas about brain’s functional architecture and operational principles. The functional segregation refers that a cortical area is specialized for some aspects of perceptual or motor processing, and this specialization is anatomically segregated within the cortex. However, the functional integration suggests that many neuronal or distributed brain areas collaborate with each other to complete specific behavioral function, which underlies the brain connectivity. These two distinct principles supplement each other. Various approaches to characterizing the functional integration are in terms of functional connectivity, effective connectivity and structural connectivity.
     Following methodological development, the current work investigated the human brain network on functional magnetic resonance imaging (fMRI) in detail. We aim to develop these methods and translate then into clinical applications for comprehensively and exactly understanding the human brain connectivity network. Three aspects of this dissertation have been put forward:
     The first part is investigation of effective connectivity network, which is an also methodological development. In this part, we addressed a kernel Granger causality analysis (GCA) to describe nonlinear effective connectivity of the human brain, for availably describing brain dynamics.
     First, although it is accepted that linear GCA can reveal effective connectivity, the issue of detecting nonlinear connectivity has hitherto not been considered. In the present work, we addressed kernel GCA to describe effective connectivity in real fMRI data of a motor imagery task. Kernel GCA performs linear Granger causality in the feature space of suitable kernel functions, assuming an arbitrary degree of nonlinearity. Our aim is to demonstrate that kernel GCA captures effective couplings not revealed by the linear case.
     Additionally, for the first time, we combined ICA, a data-driven approach, to characterize resting state networks (RSNs), and conditional GCA to gain information about the causal influences among these RSNs. We focused on evaluating and understanding the possible effective connectivity within RSNs at meso-scale.
     Thirdly, we aimed to reveal network architectures of effective connectivity brain network at maro-scale. We proposed a multivariate GCA and graph theoretical analysis on large-scale resting-state fMRI recordings. We aimed to found that some brain regions acted as pivotal hubs, either being influenced by or influencing other regions, and thus could be considered as information convergence regions. Furthermore, we also aim to examine that this effective connectivity network has a modular structure and a prominent small-world topological property.
     In the second part, we devolved a combination of functional and structural connectivity networks to investigate the patients with epilepsy, which is an also neurological disease application. We found that the functional and structural brain network of epilepsy showed aberrant topological attributes, and the functional-structural coupling negatively correlated with duration may associated with the progress of epilepsy.
     First, little is known about the changes in functional connectivity and in topological properties of functional networks, associated with patients with mesial temporal lobe epilepsy (mTLE). To this end, we constructed large-scale undirected brain networks derived from functional connectivity among brain regions that was measured by temporal correlation. We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers.
     Secondly, according to disrupted functional connectivity in the default mode network (DMN) in mTLE patients as previously suggested, we combined functional and structural connectivity to study the DMN of those patients. We found that functional and structural connectivity between posterior cingulate cortex and bilateral hippocampus were both decreased. Moreover, combining these two modalities is effective and reliable in MRI data processing, and thus provides us a new way in brain research.
     Finally, as a global feature of the pathophysiology that widespread brain regions and extensive networks are involved in idiopathic generalized epilepsy (IGE), complex brain network investigation derived from functional and structural connectivity networks based on graph theoretical analysis might be more valuable than local connectional investigations to understand the mechanism of IGE. Importantly, we found deceased functional–structural connectivity network coupling in IGE, and this decoupling was related to duration of the disorder, suggesting that the functional–structural connectivity network coupling may reflect the progress of IGE. Overall, the present study demonstrates for the first time that the IGE is associated with a disrupted topological organization in large-scale brain structural and functional network, opening up new avenues to a better understanding of this disorder.
     In the third part of this dissertation, we devolved a combination of functional and structural connectivity to investigate alterations on the patients with social anxiety disorder (SAD), which is an also psychiatric disorder application. We found that the SAD showed an aberrant functional and structural brain network, and abnormal effective connectivity network associated with the amygdale.
     First of all, comparing to patients with SAD and healthy controls, combining spatial independent component analysis (ICA) and brain network analysis, we identified and investigated statistical differences on eight RSNs, such as auditory, visual, somato-motor, dorsal attention, central executive, self-referential, core and default mode networks. Our findings might supply a novel way to look into neuro-pathophysiological mechanisms in SAD patients.
     In addition, the amygdala is often found to be abnormally recruited in SAD patients. To address this issue, we investigated a network of effective connectivity associated with the amygdala using GCA on resting-state fMRI data at mrico-scale. Our results lend neurobiological support towards SAD.
     Finally, we integrated voxel-based morphometry, resting-state functional connectivity analysis, and diffusion tensor imaging tractography to investigate brain morphometric, functional, and structural architecture of SAD. For the first time, this work and findings may provide a valuable basis for future studies combining morphometric, functional and anatomical data in the search for a comprehensive understanding of the neural circuitry underlying SAD.
引文
[1]周晓林,高定国.认知神经科学:关于心智的生物学.北京:中国轻工业出版社, 2011
    [2] K. J. Friston. Functional and effective connectivity: A review. Brain Connectivity, 2011, 1(1):13-36
    [3] R. S. Frackowiak, J. Ashburner, W. Penny, et al. Human Brain Function. 2nd ed.Elsevier Inc, 2004
    [4]唐孝威.脑功能成像.合肥:中国科学技术大学出版社, 1999
    [5] S. A. Huettel, A. W. Song, G. McCarthy. Functional Magnetic Resonance Imaging. Sunderland:Sinauer Associates Inc, 2004
    [6] T. R. Knosche, M. Tittgemeyer. The role of long-range connectivity for the characterization of the functional-anatomical organization of the cortex. Front Syst Neurosci, 2011, 5:58
    [7] H. P. Op de Beeck, J. Haushofer, N. G. Kanwisher. Interpreting fMRI data: maps, modules and dimensions. Nat Rev Neurosci, 2008, 9(2):123-135
    [8] K. J. Friston. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp, 1994, 2(1-2):56-78
    [9] W. Penny, K. J. Friston, J. Ashburner, et al. Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, 2006
    [10] T. Yarkoni, R. A. Poldrack, D. C. Van Essen, et al. Cognitive neuroscience 2.0: building a cumulative science of human brain function. Trends Cogn Sci, 2010, 14(11):489-496
    [11] F. Varela, J. P. Lachaux, E. Rodriguez, et al. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci, 2001, 2(4):229-239
    [12] K. J. Friston, C. D. Frith, R. S. J. Frackowiak. Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp, 1993, 1:69-80
    [13]邸新,绕恒毅.人脑功能连通性研究进展.生物化学与生物物理进展, 2007, 34(1):5-12
    [14] D. Le Bihan. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci, 2003, 4(6):469-480
    [15]梁夏,王金辉,贺永.人脑连接组研究:脑结构网络和脑功能网络.科学通报, 2010, 55(16):1565-1583
    [16] A. Mechelli, K. J. Friston, R. S. Frackowiak, et al. Structural covariance in the human cortex. J Neurosci, 2005, 25(36):8303-8310
    [17] J. DeFelipe. From the connectome to the synaptome: an epic love story. Science, 2010, 330(6008):1198-1201
    [18] J. Lehrer. Neuroscience: Making connections. Nature, 2009, 457(7229):524-527
    [19] O. Sporns, G. Tononi, R. Kotter. The human connectome: A structural description of the human brain. PLoS Comput Biol, 2005, 1(4):e42
    [20] B. Horwitz. The elusive concept of brain connectivity. Neuroimage, 2003, 19(2 Pt 1):466-470
    [21] A. A. Fingelkurts, S. Kahkonen. Functional connectivity in the brain--is it an elusive concept? Neurosci Biobehav Rev, 2005, 28(8):827-836
    [22] S. Ogawa, T. M. Lee, A. R. Kay, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990, 87(24):9868-9872
    [23]廖伟.基于神经网络的脑功能活动探测: [硕士学位论文].成都:电子科技大学, 2008
    [24] M. J. McKeown, T. P. Jung, S. Makeig, et al. Spatially independent activity patterns in functional MRI data during the stroop color-naming task. Proc Natl Acad Sci U S A, 1998, 95(3):803-810
    [25] M. J. McKeown, S. Makeig, G. G. Brown, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp, 1998, 6(3):160-188
    [26] A. Meyer-Baese, A. Wismueller, O. Lange. Comparison of two exploratory data analysis methods for fMRI: unsupervised clustering versus independent component analysis. IEEE Trans Inf Technol Biomed, 2004, 8(3):387-398
    [27] W. Liao, H. Chen, Q. Yang, et al. Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering. IEEE Trans Med Imaging, 2008, 27(10):1472-1483
    [28] Y. Zang, T. Jiang, Y. Lu, et al. Regional homogeneity approach to fMRI data analysis. Neuroimage, 2004, 22(1):394-400
    [29] Y. F. Zang, Y. He, C. Z. Zhu, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev, 2007, 29(2):83-91
    [30] T. E. Behrens, H. Johansen-Berg, M. W. Woolrich, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci, 2003, 6(7):750-757
    [31]潘正勇.基于磁共振的大脑网络分析方法研究及其应用: [硕士学位论文].成都:电子科技大学, 2010
    [32] H. Johansen-Berg, M. F. Rushworth. Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci, 2009, 32:75-94
    [33] M. D. Fox, A. Z. Snyder, J. L. Vincent, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A, 2005, 102(27):9673-9678
    [34] M. E. Raichle. Two views of brain function. Trends Cogn Sci, 2010, 14(4):180-190
    [35] M. E. Raichle. The restless brain. Brain Connectivity, 2011, 1(1):3-12
    [36] M. E. Raichle. The brain's dark energy. Sci Am, 2010, 302(3):44-49
    [37] D. Zhang, M. E. Raichle. Disease and the brain's dark energy. Nat Rev Neurol, 2010, 6(1):15-28
    [38] D. A. Gusnard, E. Akbudak, G. L. Shulman, et al. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A, 2001, 98(7):4259-4264
    [39] D. A. Gusnard, M. E. Raichle. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci, 2001, 2(10):685-694
    [40] M. E. Raichle, A. M. MacLeod, A. Z. Snyder, et al. A default mode of brain function. Proc Natl Acad Sci U S A, 2001, 98(2):676-682
    [41] B. Biswal, F. Z. Yetkin, V. M. Haughton, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 1995, 34(4):537-541
    [42] B. B. Biswal, M. Mennes, X. N. Zuo, et al. Toward discovery science of human brain function. Proc Natl Acad Sci U S A, 2010, 107(10):4734-4739
    [43] D. Cordes, V. M. Haughton, K. Arfanakis, et al. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol, 2001, 22(7):1326-1333
    [44] J. L. Vincent, G. H. Patel, M. D. Fox, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 2007, 447(7140):83-86
    [45] M. Boly, C. Phillips, L. Tshibanda, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci, 2008, 1129:119-129
    [46] M. D. Fox, D. Zhang, A. Z. Snyder, et al. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol, 2009, 101(6):3270-3283
    [47] K. Murphy, R. M. Birn, D. A. Handwerker, et al. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage, 2009, 44(3):893-905
    [48] A. Weissenbacher, C. Kasess, F. Gerstl, et al. Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies. Neuroimage, 2009, 47(4):1408-1416
    [49] D. Cordes, V. M. Haughton, K. Arfanakis, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol, 2000, 21(9):1636-1644
    [50] M. J. Lowe, B. J. Mock, J. A. Sorenson. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage, 1998, 7(2):119-132
    [51] M. Hampson, B. S. Peterson, P. Skudlarski, et al. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp, 2002, 15(4):247-262
    [52] M. D. Greicius, B. Krasnow, A. L. Reiss, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A, 2003, 100(1):253-258
    [53] M. D. Fox, M. Corbetta, A. Z. Snyder, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A, 2006, 103(26):10046-10051
    [54] D. Zhang, A. Z. Snyder, M. D. Fox, et al. Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol, 2008, 100(4):1740-1748
    [55] D. Zhang, A. Z. Snyder, J. S. Shimony, et al. Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cereb Cortex, 2010, 20(5):1187-1194
    [56] K. S. Taylor, D. A. Seminowicz, K. D. Davis. Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp, 2009, 30(9):2731-2745
    [57] A. Di Martino, A. Scheres, D. S. Margulies, et al. Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex, 2008, 18(12):2735-2747
    [58] D. S. Margulies, A. M. Kelly, L. Q. Uddin, et al. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage, 2007, 37(2):579-588
    [59] F. Cauda, G. Geminiani, F. D'Agata, et al. Functional connectivity of the posteromedial cortex. PLoS One, 2010, 5(9):e13107
    [60] C. Nioche, E. A. Cabanis, C. Habas. Functional connectivity of the human red nucleus in thebrain resting state at 3T. AJNR Am J Neuroradiol, 2009, 30(2):396-403
    [61] C. Habas, N. Kamdar, D. Nguyen, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci, 2009, 29(26):8586-8594
    [62] A. Etkin, K. E. Keller, A. F. Schatzberg, et al. Disrupted amygdalar subregion functional connectivity and evidence for a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry, 2009, 66(12):1361-1372
    [63] A. K. Roy, Z. Shehzad, D. S. Margulies, et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage, 2009, 45(2):614-626
    [64] C. Habas, R. Guillevin, A. Abanou. Functional connectivity of the superior human temporal sulcus in the brain resting state at 3T. Neuroradiology, 2011, 53(2):129-140
    [65] C. Habas. Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T. Neuroradiology, 2010, 52(1):47-59
    [66] D. M. Cole, S. M. Smith, C. F. Beckmann. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci, 2010, 4:8
    [67] W. W. Seeley, R. K. Crawford, J. Zhou, et al. Neurodegenerative diseases target large-scale human brain networks. Neuron, 2009, 62(1):42-52
    [68] W. W. Seeley, V. Menon, A. F. Schatzberg, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci, 2007, 27(9):2349-2356
    [69] C. F. Beckmann, M. DeLuca, J. T. Devlin, et al. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1457):1001-1013
    [70] C. F. Beckmann, S. M. Smith. Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage, 2005, 25(1):294-311
    [71] J. S. Damoiseaux, C. F. Beckmann, E. J. Arigita, et al. Reduced resting-state brain activity in the "default network" in normal aging. Cereb Cortex, 2008, 18(8):1856-1864
    [72] J. S. Damoiseaux, S. A. Rombouts, F. Barkhof, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A, 2006, 103(37):13848-13853
    [73] M. De Luca, C. F. Beckmann, N. De Stefano, et al. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage, 2006, 29(4):1359-1367
    [74] K. Jann, M. Kottlow, T. Dierks, et al. Topographic electrophysiological signatures of FMRI resting state networks. PLoS One, 2010, 5(9):e12945
    [75] D. Mantini, M. Corbetta, M. G. Perrucci, et al. Large-scale brain networks account forsustained and transient activity during target detection. Neuroimage, 2009, 44(1):265-274
    [76] D. Mantini, M. G. Perrucci, C. Del Gratta, et al. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A, 2007, 104(32):13170-13175
    [77] S. M. Smith, P. T. Fox, K. L. Miller, et al. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A, 2009, 106(31):13040-13045
    [78] S. L. Bressler, V. Menon. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci, 2010, 14(6):277-290
    [79] K. Li, L. Guo, J. Nie, et al. Review of methods for functional brain connectivity detection using fMRI. Comput Med Imaging Graph, 2009, 33(2):131-139
    [80] L. Ma, B. Wang, X. Chen, et al. Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn Reson Imaging, 2007, 25(1):47-56
    [81] G. Doucet, M. Naveau, L. Petit, et al. Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol, 2011, 105(6):2753-2763
    [82] L. Ferrarini, I. M. Veer, E. Baerends, et al. Hierarchical functional modularity in the resting-state human brain. Hum Brain Mapp, 2009, 30(7):2220-2231
    [83] M. van den Heuvel, R. Mandl, H. Hulshoff Pol. Normalized cut group clustering of resting-state FMRI data. PLoS ONE, 2008, 3(4):e2001
    [84]尧德中,罗程,雷旭,等.脑成像与脑连接.中国生物医学工程学报, 2011, 30(1):6-10
    [85] E. Bullmore, O. Sporns. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 2009, 10(3):186-198
    [86] R. Salvador, J. Suckling, M. R. Coleman, et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex, 2005, 15(9):1332-1342
    [87] R. Salvador, J. Suckling, C. Schwarzbauer, et al. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1457):937-946
    [88] M. E. J. Newman. The structure and function of complex networks. SIAM Review, 2003, 45(2):167-256
    [89] C. J. Stam, J. C. Reijneveld. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys, 2007, 1(1):3
    [90] D. S. Bassett, E. Bullmore. Small-world brain networks. Neuroscientist, 2006, 12(6):512-523
    [91] O. Sporns, J. D. Zwi. The small world of the cerebral cortex. Neuroinformatics, 2004, 2(2):145-162
    [92] F. Crick, E. Jones. Backwardness of human neuroanatomy. Nature, 1993, 361(6408):109-110
    [93] E. T. Bullmore, D. S. Bassett. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol, 2011, 7:113-140
    [94] Y. He, A. Evans. Graph theoretical modeling of brain connectivity. Curr Opin Neurol, 2010, 23(4):341-350
    [95] O. Sporns. Networks of the Brain. Cambridge:MA:MIT Press, 2010
    [96] O. Sporns. The human connectome: a complex network. Ann N Y Acad Sci, 2011, 1224(1):109-125
    [97] O. Sporns. The non-random brain: efficiency, economy, and complex dynamics. Front Comput Neurosci, 2011, 5:5
    [98] M. P. van den Heuvel, H. E. Hulshoff Pol. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol, 2010, 20(8):519-534
    [99] J. Wang, X. Zuo, Y. He. Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci, 2010, 4:16
    [100] G. S. Wig, B. L. Schlaggar, S. E. Petersen. Concepts and principles in the analysis of brain networks. Ann N Y Acad Sci, 2011, 1224(1):126-146
    [101] A. Fornito, A. Zalesky, E. T. Bullmore. Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci, 2010, 4:22
    [102] A. Zalesky, A. Fornito, I. H. Harding, et al. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage, 2010, 50(3):970-983
    [103] J. Wang, L. Wang, Y. Zang, et al. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp, 2009, 30(5):1511-1523
    [104] J. H. Wang, X. N. Zuo, S. Gohel, et al. Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data. PLoS One, 2011, 6(7):e21976
    [105] S. Hayasaka, P. J. Laurienti. Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. Neuroimage, 2010, 50(2):499-508
    [106] M. P. van den Heuvel, C. J. Stam, M. Boersma, et al. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage, 2008, 43(3):528-539
    [107] W. R. Shirer, S. Ryali, E. Rykhlevskaia, et al. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex, 2011:doi:10.1093/cercor/bhr1099
    [108] S. Achard, R. Salvador, B. Whitcher, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci, 2006, 26(1):63-72
    [109] S. Achard, E. Bullmore. Efficiency and cost of economical brain functional networks. PLoS Comput Biol, 2007, 3(2):e17
    [110] D. Meunier, S. Achard, A. Morcom, et al. Age-related changes in modular organization of human brain functional networks. Neuroimage, 2009, 44(3):715-723
    [111] K. Supekar, L. Q. Uddin, K. Prater, et al. Development of functional and structural connectivity within the default mode network in young children. Neuroimage, 2010, 52(1):290-301
    [112] L. Tian, J. Wang, C. Yan, et al. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study. Neuroimage, 2011, 54(1):191-202
    [113] M. P. van den Heuvel, C. J. Stam, R. S. Kahn, et al. Efficiency of functional brain networks and intellectual performance. J Neurosci, 2009, 29(23):7619-7624
    [114] A. Fornito, A. Zalesky, D. S. Bassett, et al. Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci, 2011, 31(9):3261-3270
    [115] D. S. Bassett, N. F. Wymbs, M. A. Porter, et al. Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci U S A, 2011, 108(18):7641-7646
    [116] V. M. Eguiluz, D. R. Chialvo, G. A. Cecchi, et al. Scale-free brain functional networks. Phys Rev Lett, 2005, 94(1):018102
    [117] D. S. Bassett, E. T. Bullmore. Human brain networks in health and disease. Curr Opin Neurol, 2009, 22(4):340-347
    [118] M. D. Fox, M. Greicius. Clinical applications of resting state functional connectivity. Front Syst Neurosci, 2010, 4:19
    [119]蒋田仔,刘勇,李永辉.脑网络:从脑结构到脑功能.生命科学, 2009, 21(2):181-188
    [120] C. T. Whitlow, R. Casanova, J. A. Maldjian. Effect of resting-state functional MR imaging duration on stability of graph theory metrics of brain network connectivity. Radiology, 2011, 259(2):516-524
    [121] K. J. Friston. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol, 2009, 7(2):e33
    [122] R. Goebel, A. Roebroeck, D. S. Kim, et al. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping.Magn Reson Imaging, 2003, 21(10):1251-1261
    [123] A. Roebroeck, E. Formisano, R. Goebel. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage, 2005, 25(1):230-242
    [124] A. Roebroeck, E. Formisano, R. Goebel. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage, 2011, 58(2):296-302
    [125] G. Deshpande, P. Santhanam, X. Hu. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. Neuroimage, 2011, 54(2):1043-1052
    [126] Q. Jiao, G. Lu, Z. Zhang, et al. Granger causal influence predicts BOLD activity levels in the default mode network. Hum Brain Mapp, 2011, 32(1):154-161
    [127] W. Liao, J. Ding, D. Marinazzo, et al. Small-world directed networks in the human brain: Multivariate Granger causality analysis of resting-state fMRI. Neuroimage, 2011, 54(4):2683-2694
    [128] W. Liao, C. Qiu, C. Gentili, et al. Altered effective connectivity network of the amygdala in social anxiety disorder: a resting-state FMRI study. PLoS One, 2010, 5(12):e15238
    [129] J. P. Hamilton, G. Chen, M. E. Thomason, et al. Investigating neural primacy in major depressive disorder: multivariate Granger causality analysis of resting-state fMRI time-series data. Mol Psychiatry, 2011, 16(7):763-772
    [130] A. B. Protzner, A. R. McIntosh. Testing effective connectivity changes with structural equation modeling: what does a bad model tell us? Hum Brain Mapp, 2006, 27(12):935-947
    [131] N. Ramnani, T. E. Behrens, W. Penny, et al. New approaches for exploring anatomical and functional connectivity in the human brain. Biol Psychiatry, 2004, 56(9):613-619
    [132] K. J. Friston, L. Harrison, W. Penny. Dynamic causal modelling. Neuroimage, 2003, 19(4):1273-1302
    [133] K. E. Stephan, L. M. Harrison, W. D. Penny, et al. Biophysical models of fMRI responses. Curr Opin Neurobiol, 2004, 14(5):629-635
    [134] J. Kang, L. Wang, C. Yan, et al. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches. Neuroimage, 2011, 56(3):1222-1234
    [135] W. Liao, D. Mantini, Z. Zhang, et al. Evaluating the effective connectivity of resting state networks using conditional Granger causality. Biol Cybern, 2010, 102:57-69
    [136] C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969, 37:424-438
    [137] C. W. J. Granger. Testing for causality: a personal viewpoint. J Econ Dyn Control, 1980, 2:1477-1491
    [138] S. L. Bressler, A. K. Seth. Wiener-Granger Causality: A well established methodology. Neuroimage, 2011, 58(2):323-329
    [139] L. Harrison, W. D. Penny, K. Friston. Multivariate autoregressive modeling of fMRI time series. Neuroimage, 2003, 19(4):1477-1491
    [140] H. Chen, Q. Yang, W. Liao, et al. Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping. Neuroimage, 2009, 47:1844-1853
    [141] Q. Gao, H. Chen, Q. Gong. Evaluation of the effective connectivity of the dominant primary motor cortex during bimanual movement using Granger causality. Neurosci Lett, 2008, 443(1):1-6
    [142] Q. Gao, X. Duan, H. Chen. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Neuroimage, 2011, 54(2):1280-1288
    [143] P. A. Valdes-Sosa, A. Roebroeck, J. Daunizeau, et al. Effective connectivity: Influence, causality and biophysical modeling. Neuroimage, 2011, 58(2):339-361
    [144] J. F. Geweke. Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc, 1982, 77:304-324
    [145] J. F. Geweke. Measures of conditional linear dependence and feedback between time series. J Am Stat Assoc, 1984, 79(388):709-715
    [146] M. Ding, G. Chen, S. L. Bressler, "Granger causality: Basic theory and application to Neuroscience," in Handbook of time series analysis, B. Schelter, et al., Eds., ed, 2006.
    [147] W. Liao, D. Marinazzo, Z. Pan, et al. Kernel Granger causality mapping effective connectivity on fMRI data. IEEE Trans Med Imaging, 2009, 28(11):1825-1835
    [148] D. Marinazzo, W. Liao, H. Chen, et al. Nonlinear connectivity by Granger causality. Neuroimage, 2011, 58(2):330-338
    [149] D. Marinazzo, M. Pellicoro, S. Stramaglia. Kernel-Granger causality and the analysis of dynamical networks. Phys Rev E Stat Nonlin Soft Matter Phys, 2008, 77(5 Pt 2):056215
    [150] D. Marinazzo, M. Pellicoro, S. Stramaglia. Kernel method for nonlinear granger causality. Phys Rev Lett, 2008, 100(14):144103
    [151] G. Wu, X. Duan, W. Liao, et al. Kernel canonical-correlation Granger causality for multipletime series. Phys Rev E Stat Nonlin Soft Matter Phys, 2011, 83(4 Pt 1):041921
    [152] Y. Chen, S. L. Bressler, M. Ding. Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods, 2006, 150(2):228-237
    [153] M. D. Greicius, K. Supekar, V. Menon, et al. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex, 2009, 19(1):72-78
    [154] M. van den Heuvel, R. Mandl, J. Luigjes, et al. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci, 2008, 28(43):10844-10851
    [155] M. P. van den Heuvel, R. C. Mandl, R. S. Kahn, et al. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp, 2009, 30(10):3127-3141
    [156] D. S. Bassett, E. Bullmore, B. A. Verchinski, et al. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci, 2008, 28(37):9239-9248
    [157] Y. He, Z. J. Chen, A. C. Evans. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 2007, 17(10):2407-2419
    [158] G. Gong, Y. He, L. Concha, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex, 2009, 19(3):524-536
    [159] G. Gong, P. Rosa-Neto, F. Carbonell, et al. Age- and gender-related differences in the cortical anatomical network. J Neurosci, 2009, 29(50):15684-15693
    [160] P. Hagmann, L. Cammoun, X. Gigandet, et al. Mapping the structural core of human cerebral cortex. PLoS Biol, 2008, 6(7):e159
    [161] P. Hagmann, M. Kurant, X. Gigandet, et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS One, 2007, 2(7):e597
    [162] Y. Iturria-Medina, E. J. Canales-Rodriguez, L. Melie-Garcia, et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage, 2007, 36(3):645-660
    [163] Y. Iturria-Medina, R. C. Sotero, E. J. Canales-Rodriguez, et al. Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage, 2008, 40(3):1064-1076
    [164] Y. He, Z. Chen, A. Evans. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J Neurosci, 2008, 28(18):4756-4766
    [165] Z. Yao, Y. Zhang, L. Lin, et al. Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease. PLoS Comput Biol, 2010, 6(11):e1001006
    [166] Y. He, A. Dagher, Z. Chen, et al. Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain, 2009, 132(Pt 12):3366-3379
    [167] B. C. Bernhardt, Z. Chen, Y. He, et al. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb Cortex, 2011, 21(9):2147-2157
    [168] K. Wu, Y. Taki, K. Sato, et al. The overlapping community structure of structural brain network in young healthy individuals. PLoS One, 2011, 6(5):e19608
    [169] B. A. Zielinski, E. D. Gennatas, J. Zhou, et al. Network-level structural covariance in the developing brain. Proc Natl Acad Sci U S A, 2010, 107(42):18191-18196
    [170] S. Mori, P. C. van Zijl. Fiber tracking: principles and strategies - a technical review. NMR Biomed, 2002, 15(7-8):468-480
    [171] P. Hagmann, O. Sporns, N. Madan, et al. White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci U S A, 2010, 107(44):19067-19072
    [172] C. Yan, G. Gong, J. Wang, et al. Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex, 2011, 21(2):449-458
    [173] Y. Li, Y. Liu, J. Li, et al. Brain anatomical network and intelligence. PLoS Comput Biol, 2009, 5(5):e1000395
    [174] W. Wen, W. Zhu, Y. He, et al. Discrete neuroanatomical networks are associated with specific cognitive abilities in old age. J Neurosci, 2011, 31(4):1204-1212
    [175] C. Y. Lo, P. N. Wang, K. H. Chou, et al. Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer's disease. J Neurosci, 2010, 30(50):16876-16885
    [176] N. Shu, Y. Liu, J. Li, et al. Altered anatomical network in early blindness revealed by diffusion tensor tractography. PLoS One, 2009, 4(9):e7228
    [177] N. Shu, Y. Liu, K. Li, et al. Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb Cortex, 2011, 21(11):2565-2577
    [178] M. P. van den Heuvel, R. C. Mandl, C. J. Stam, et al. Aberrant frontal and temporal complexnetwork structure in schizophrenia: a graph theoretical analysis. J Neurosci, 2010, 30(47):15915-15926
    [179] A. Zalesky, A. Fornito, M. L. Seal, et al. Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry, 2011, 69(1):80-89
    [180] D. K. Jones, M. Cercignani. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed, 2010, 23(7):803-820
    [181] K. J. Friston. Modalities, modes, and models in functional neuroimaging. Science, 2009, 326(5951):399-403
    [182]尧德中.脑功能探测的电学理论与方法.北京:科学出版社, 2003
    [183] X. Lei, P. Xu, C. Luo, et al. fMRI functional networks for EEG source imaging. Hum Brain Mapp, 2011, 32(7):1141-1160
    [184]雷旭.基于贝叶斯理论的EEG-fMRI融合技术研究: [博士学位论文].成都:电子科技大学, 2011
    [185] J. S. Damoiseaux, M. D. Greicius. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct, 2009, 213(6):525-533
    [186] M. Guye, G. Bettus, F. Bartolomei, et al. Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. MAGMA, 2010, 23(5-6):409-421
    [187] C. J. Honey, R. Kotter, M. Breakspear, et al. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci U S A, 2007, 104(24):10240-10245
    [188] C. J. Honey, O. Sporns, L. Cammoun, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A, 2009, 106(6):2035-2040
    [189] C. J. Honey, J. P. Thivierge, O. Sporns. Can structure predict function in the human brain? Neuroimage, 2010, 52(3):766-776
    [190] M. A. Koch, D. G. Norris, M. Hund-Georgiadis. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage, 2002, 16(1):241-250
    [191] M. Rubinov, O. Sporns, C. van Leeuwen, et al. Symbiotic relationship between brain structure and dynamics. BMC Neurosci, 2009, 10:55
    [192] P. Skudlarski, K. Jagannathan, K. Anderson, et al. Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biol Psychiatry,2010, 68(1):61-69
    [193] M. Greicius. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol, 2008, 21(4):424-430
    [194] J. Ding, H. Chen, C. Qiu, et al. Disrupted functional connectivity in social anxiety disorder: a resting-state fMRI study. Magn Reson Imaging, 2011, 29(5):701-711
    [195] W. Liao, Z. Zhang, Z. Pan, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One, 2010, 5(1):e8525
    [196] Y. Liu, M. Liang, Y. Zhou, et al. Disrupted small-world networks in schizophrenia. Brain, 2008, 131(Pt 4):945-961
    [197] M. E. Lynall, D. S. Bassett, R. Kerwin, et al. Functional connectivity and brain networks in schizophrenia. J Neurosci, 2010, 30(28):9477-9487
    [198] L. Wang, C. Yu, H. Chen, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain, 2010, 133(Pt 4):1224-1238
    [199] J. Zhang, J. Wang, Q. Wu, et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry, 2011, 70(4):334-342
    [200] M. B. Stein, D. J. Stein. Social anxiety disorder. Lancet, 2008, 371(9618):1115-1125
    [201] P. R. Goldin, T. Manber, S. Hakimi, et al. Neural bases of social anxiety disorder: emotional reactivity and cognitive regulation during social and physical threat. Arch Gen Psychiatry, 2009, 66(2):170-180
    [202] C. Damsa, M. Kosel, J. Moussally. Current status of brain imaging in anxiety disorders. Curr Opin Psychiatry, 2009, 22(1):96-110
    [203] K. Engel, B. Bandelow, O. Gruber, et al. Neuroimaging in anxiety disorders. J Neural Transm, 2009, 116(6):703-716
    [204]张志强.内侧颞叶癫痫的静息态功能磁共振成像研究: [博士学位论文].南京:南京大学, 2010
    [205] A. D. Norden, H. Blumenfeld. The role of subcortical structures in human epilepsy. Epilepsy Behav, 2002, 3(3):219-231
    [206] S. S. Spencer. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia, 2002, 43(3):219-227
    [207] G. Deshpande, X. Hu, R. Stilla, et al. Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data. Neuroimage, 2008, 40(4):1807-1814
    [208] G. Deshpande, S. LaConte, S. Peltier, et al. Connectivity analysis of human functional MRI data: From linear to nonlinear and static to dynamic Lecture Notes Comput Sci, 2006, 4091:17-24
    [209] N. K. Logothetis, J. Pauls, M. Augath, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412(6843):150-157
    [210] N. K. Logothetis, B. A. Wandell. Interpreting the BOLD signal. Annu Rev Physiol, 2004, 66:735-769
    [211] L. A. Johnston, E. Duff, I. Mareels, et al. Nonlinear estimation of the BOLD signal. Neuroimage, 2008, 40(2):504-514
    [212] R. B. Buxton, K. Uludag, D. J. Dubowitz, et al. Modeling the hemodynamic response to brain activation. Neuroimage, 2004, 23 Suppl 1:S220-233
    [213]杨勤.运动想象的脑功能分析: [硕士学位论文].成都:电子科技大学, 2009
    [214] E. Gerardin, A. Sirigu, S. Lehericy, et al. Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex, 2000, 10(11):1093-1104
    [215] T. Hanakawa, I. Immisch, K. Toma, et al. Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol, 2003, 89(2):989-1002
    [216] G. Rizzolatti, G. Luppino, M. Matelli. The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol, 1998, 106(4):283-296
    [217] A. Solodkin, P. Hlustik, E. E. Chen, et al. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex, 2004, 14(11):1246-1255
    [218] B. P. Rogers, J. D. Carew, M. E. Meyerand. Hemispheric asymmetry in supplementary motor area connectivity during unilateral finger movements. Neuroimage, 2004, 22(2):855-859
    [219] R. Matsumoto, D. R. Nair, E. LaPresto, et al. Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain, 2007, 130(Pt 1):181-197
    [220] A. Floyer-Lea, P. M. Matthews. Changing brain networks for visuomotor control with increased movement automaticity. J Neurophysiol, 2004, 92(4):2405-2412
    [221] W. Klonowski. From conformons to human brains: an informal overview of nonlinear dynamics and its applications in biomedicine. Nonlinear Biomed Phys, 2007, 1(1):5
    [222] A. M. Kelly, L. Q. Uddin, B. B. Biswal, et al. Competition between functional brain networks mediates behavioral variability. Neuroimage, 2008, 39(1):527-537
    [223] L. Tian, T. Jiang, M. Liang, et al. Stabilities of negative correlations between blood oxygen level-dependent signals associated with sensory and motor cortices. Hum Brain Mapp, 2007,28(7):681-690
    [224] P. Fransson. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp, 2005, 26(1):15-29
    [225] P. Fransson. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 2006, 44(14):2836-2845
    [226] D. Sridharan, D. J. Levitin, V. Menon. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A, 2008, 105(34):12569-12574
    [227] L. Q. Uddin, A. M. Clare Kelly, B. B. Biswal, et al. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp, 2009, 30(2):625-637
    [228] G. Northoff, A. Heinzel, M. de Greck, et al. Self-referential processing in our brain--a meta-analysis of imaging studies on the self. Neuroimage, 2006, 31(1):440-457
    [229] M. M. Mesulam. From sensation to cognition. Brain, 1998, 121 ( Pt 6):1013-1052
    [230] A. K. Seth. Causal connectivity of evolved neural networks during behavior. Network, 2005, 16(1):35-54
    [231] A. D'Argembeau, F. Collette, M. Van der Linden, et al. Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage, 2005, 25(2):616-624
    [232] C. N. Macrae, J. M. Moran, T. F. Heatherton, et al. Medial prefrontal activity predicts memory for self. Cereb Cortex, 2004, 14(6):647-654
    [233] G. Northoff, F. Bermpohl. Cortical midline structures and the self. Trends Cogn Sci, 2004, 8(3):102-107
    [234] D. M. Amodio, C. D. Frith. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci, 2006, 7(4):268-277
    [235] S. J. Broyd, C. Demanuele, S. Debener, et al. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev, 2009, 33(3):279-296
    [236] J. R. Andrews-Hanna. The brain's default network and its adaptive role in internal mentation. Neuroscientist, 2011:doi: 10.1177/1073858411403316
    [237] R. L. Buckner, J. R. Andrews-Hanna, D. L. Schacter. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci, 2008, 1124:1-38
    [238] A. A. Ioannides. Dynamic functional connectivity. Curr Opin Neurobiol, 2007, 17(2):161-170
    [239] O. Sporns, D. R. Chialvo, M. Kaiser, et al. Organization, development and function of complex brain networks. Trends Cogn Sci, 2004, 8(9):418-425
    [240] M. Rubinov, O. Sporns. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 2010, 52(3):1059-1069
    [241] O. Sporns. Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems, 2006, 85(1):55-64
    [242] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002, 15(1):273-289
    [243] E. A. Leicht, M. E. Newman. Community structure in directed networks. Phys Rev Lett, 2008, 100(11):118703
    [244] M. E. Newman. Modularity and community structure in networks. Proc Natl Acad Sci U S A, 2006, 103(23):8577-8582
    [245] G. Fagiolo. Clustering in complex directed networks. Phys Rev E Stat Nonlin Soft Matter Phys, 2007, 76(2 Pt 2):026107
    [246] O. Sporns, G. Tononi, G. M. Edelman. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw, 2000, 13(8-9):909-922
    [247] O. Sporns, G. Tononi, G. M. Edelman. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex, 2000, 10(2):127-141
    [248] D. S. Bassett, A. Meyer-Lindenberg, S. Achard, et al. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A, 2006, 103(51):19518-19523
    [249] D. J. Watts, S. H. Strogatz. Collective dynamics of 'small-world' networks. Nature, 1998, 393(6684):440-442
    [250] M. C. Stevens, G. D. Pearlson, V. D. Calhoun. Changes in the interaction of resting-state neural networks from adolescence to adulthood. Hum Brain Mapp, 2009, 30(8):2356-2366
    [251] Y. He, J. Wang, L. Wang, et al. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One, 2009, 4(4):e5226
    [252] K. E. Joyce, P. J. Laurienti, J. H. Burdette, et al. A new measure of centrality for brain networks. PLoS One, 2010, 5(8):e12200
    [253] D. Meunier, R. Lambiotte, A. Fornito, et al. Hierarchical modularity in human brain functionalnetworks. Front Neuroinformatics, 2009, 3:37
    [254] J. R. Andrews-Hanna, J. S. Reidler, J. Sepulcre, et al. Functional-anatomic fractionation of the brain's default network. Neuron, 2010, 65(4):550-562
    [255] M. D. Greicius, G. Srivastava, A. L. Reiss, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A, 2004, 101(13):4637-4642
    [256] G. Bettus, E. Guedj, F. Joyeux, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp, 2009, 30(5):1580-1591
    [257] G. Bettus, J. P. Ranjeva, F. Wendling, et al. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations. PLoS One, 2011, 6(5):e20071
    [258] A. B. Waites, R. S. Briellmann, M. M. Saling, et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol, 2006, 59(2):335-343
    [259] Z. Zhang, G. Lu, Y. Zhong, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp, 2010, 31(12):1851-1861
    [260] Z. Zhang, G. Lu, Y. Zhong, et al. Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J Neurol, 2009, 256(10):1705-1713
    [261] Z. Zhang, G. Lu, Y. Zhong, et al. Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res, 2010, 1323:152-160
    [262] Z. Zhang, G. Lu, Y. Zhong, et al. Impaired attention network in temporal lobe epilepsy: a resting FMRI study. Neurosci Lett, 2009, 458(3):97-101
    [263] J. Engel, Jr. Introduction to temporal lobe epilepsy. Epilepsy Res, 1996, 26(1):141-150
    [264] J. Engel, Jr. Mesial temporal lobe epilepsy: what have we learned? Neuroscientist, 2001, 7(4):340-352
    [265] F. Bartolomei, F. Wendling, J. J. Bellanger, et al. Neural networks involving the medial temporal structures in temporal lobe epilepsy. Clin Neurophysiol, 2001, 112(9):1746-1760
    [266] J. Gotman, C. Grova, A. Bagshaw, et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A, 2005, 102(42):15236-15240
    [267] H. Laufs, K. Hamandi, A. Salek-Haddadi, et al. Temporal lobe interictal epileptic discharges affect cerebral activity in "default mode" brain regions. Hum Brain Mapp, 2007,28(10):1023-1032
    [268] J. Wu, Z. Song, J. Chen, et al. Volumetric measurement of hippocampal formation using MRI in the normal Chinese adults. Chin J Radiol, 1998, 32:220-223
    [269] J. Wu, Z. Song, J. Chen, et al. Volumetric measurement of hippocampal formation using MRI in patients with epilepsy. Chin J Radiol, 1998:224-227
    [270] M. D. Humphries, K. Gurney, T. J. Prescott. The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci, 2006, 273(1585):503-511
    [271] E. Kobayashi, A. P. Bagshaw, C. G. Benar, et al. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia, 2006, 47(2):343-354
    [272] P. J. Uhlhaas, W. Singer. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 2006, 52(1):155-168
    [273] F. Wendling, F. Bartolomei, J. J. Bellanger, et al. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain, 2003, 126(Pt 6):1449-1459
    [274] H. Blumenfeld, J. Taylor. Why do seizures cause loss of consciousness? Neuroscientist, 2003, 9(5):301-310
    [275] H. Blumenfeld. From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia, 2003, 44 Suppl 2:7-15
    [276] H. Blumenfeld. Cellular and network mechanisms of spike-wave seizures. Epilepsia, 2005, 46 Suppl 9:21-33
    [277] F. Moeller, H. R. Siebner, S. Wolff, et al. Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. Neuroimage, 2008, 39(4):1839-1849
    [278] Y. Aghakhani, A. P. Bagshaw, C. G. Benar, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain, 2004, 127(Pt 5):1127-1144
    [279] B. C. Bernhardt, D. A. Rozen, K. J. Worsley, et al. Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage, 2009, 46(2):373-381
    [280] A. E. Cavanna, F. Monaco. Brain mechanisms of altered conscious states during epileptic seizures. Nat Rev Neurol, 2009, 5(5):267-276
    [281] Y. Li, H. Du, B. Xie, et al. Cerebellum abnormalities in idiopathic generalized epilepsy with generalized tonic-clonic seizures revealed by diffusion tensor imaging. PLoS One, 2010, 5(12):e15219
    [282] C. Luo, Q. Li, Y. Lai, et al. Altered functional connectivity in default mode network in absenceepilepsy: A resting-state fMRI study. Hum Brain Mapp, 2011, 32(3):438-449
    [283] C. Luo, Q. Li, Y. Xia, et al. Resting state basal ganglia network in idiopathic generalized epilepsy. Human brain mapping, 2011:DOI: 10.1002/hbm.21286
    [284] Z. Wang, G. Lu, Z. Zhang, et al. Altered resting state networks in epileptic patients with generalized tonic-clonic seizures. Brain Res, 2011, 1374:134-141
    [285]罗程.多模态神经成像技术在特发性全面性癫痫中的应用研究: [博士学位论文].成都:电子科技大学, 2011
    [286] G. Tononi, O. Sporns, G. M. Edelman. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A, 1994, 91(11):5033-5037
    [287] M. Kaiser, C. C. Hilgetag. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput Biol, 2006, 2(7):e95
    [288] S. C. Ponten, F. Bartolomei, C. J. Stam. Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol, 2007, 118(4):918-927
    [289] S. C. Ponten, L. Douw, F. Bartolomei, et al. Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses. Exp Neurol, 2009, 217(1):197-204
    [290] M. A. Kramer, U. T. Eden, E. D. Kolaczyk, et al. Coalescence and fragmentation of cortical networks during focal seizures. J Neurosci, 2010, 30(30):10076-10085
    [291] M. A. Kramer, E. D. Kolaczyk, H. E. Kirsch. Emergent network topology at seizure onset in humans. Epilepsy Res, 2008, 79(2-3):173-186
    [292] K. A. Schindler, S. Bialonski, M. T. Horstmann, et al. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos, 2008, 18(3):033119
    [293] M. Chavez, M. Valencia, V. Navarro, et al. Functional modularity of background activities in normal and epileptic brain networks. Phys Rev Lett, 2010, 104(11):118701
    [294] M. T. Horstmann, S. Bialonski, N. Noennig, et al. State dependent properties of epileptic brain networks: comparative graph-theoretical analyses of simultaneously recorded EEG and MEG. Clin Neurophysiol, 2010, 121(2):172-185
    [295] M. Song, H. Du, N. Wu, et al. Impaired resting-state functional integrations within default mode network of generalized tonic-clonic seizures epilepsy. PLoS One, 2011, 6(2):e17294
    [296] C. Park, S. Y. Kim, Y. H. Kim, et al. Comparison of the small-world topology betweenanatomical and functional connectivity in the human brain. Physica A: Statistical Mechanics and its Applications, 2008, 387(23):5958-5962
    [297] J. S. Archer, D. F. Abbott, A. B. Waites, et al. fMRI "deactivation" of the posterior cingulate during generalized spike and wave. Neuroimage, 2003, 20(4):1915-1922
    [298] L. Tyvaert, S. Chassagnon, A. Sadikot, et al. Thalamic nuclei activity in idiopathic generalized epilepsy: an EEG-fMRI study. Neurology, 2009, 73(23):2018-2022
    [299] M. G. Frei, H. P. Zaveri, S. Arthurs, et al. Controversies in epilepsy: debates held during the Fourth International Workshop on Seizure Prediction. Epilepsy Behav, 2010, 19(1):4-16
    [300] R. L. Buckner, J. Sepulcre, T. Talukdar, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci, 2009, 29(6):1860-1873
    [301] J. Isnard, M. Guenot, M. Sindou, et al. Clinical manifestations of insular lobe seizures: a stereo-electroencephalographic study. Epilepsia, 2004, 45(9):1079-1090
    [302] H. Stefan, A. Paulini-Ruf, R. Hopfengartner, et al. Network characteristics of idiopathic generalized epilepsies in combined MEG/EEG. Epilepsy Res, 2009, 85(2-3):187-198
    [303] M. Yogarajah, H. W. Powell, G. J. Parker, et al. Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy. Neuroimage, 2008, 40(4):1755-1764
    [304] S. B. Bonelli, R. Powell, M. Yogarajah, et al. Preoperative amygdala fMRI in temporal lobe epilepsy. Epilepsia, 2009, 50(2):217-227
    [305] T. Mitsueda-Ono, A. Ikeda, M. Inouchi, et al. Amygdalar enlargement in patients with temporal lobe epilepsy. J Neurol Neurosurg Psychiatry, 2011, 82(6):652-657
    [306] G. A. Shehata, A. Bateh Ael. Cognitive function, mood, behavioral aspects, and personality traits of adult males with idiopathic epilepsy. Epilepsy Behav, 2009, 14(1):121-124
    [307] A. Etkin, T. D. Wager. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry, 2007, 164(10):1476-1488
    [308] K. L. Phan, D. A. Fitzgerald, P. J. Nathan, et al. Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia. Biol Psychiatry, 2006, 59(5):424-429
    [309] M. B. Stein, P. R. Goldin, J. Sareen, et al. Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Arch Gen Psychiatry, 2002,59(11):1027-1034
    [310] M. Tillfors, T. Furmark, I. Marteinsdottir, et al. Cerebral blood flow in subjects with social phobia during stressful speaking tasks: a PET study. Am J Psychiatry, 2001, 158(8):1220-1226
    [311] M. J. Jafri, G. D. Pearlson, M. Stevens, et al. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage, 2008, 39(4):1666-1681
    [312] P. Fransson, G. Marrelec. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage, 2008, 42(3):1178-1184
    [313] X. H. Zhao, P. J. Wang, C. B. Li, et al. Altered default mode network activity in patient with anxiety disorders: an fMRI study. Eur J Radiol, 2007, 63(3):373-378
    [314] C. Gentili, E. Ricciardi, M. I. Gobbini, et al. Beyond amygdala: Default Mode Network activity differs between patients with social phobia and healthy controls. Brain Res Bull, 2009, 79(6):409-413
    [315] J. M. Warwick, P. Carey, G. P. Jordaan, et al. Resting brain perfusion in social anxiety disorder: a voxel-wise whole brain comparison with healthy control subjects. Prog Neuropsychopharmacol Biol Psychiatry, 2008, 32(5):1251-1256
    [316] V. D. Calhoun, T. Adali, G. D. Pearlson, et al. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp, 2001, 14(3):140-151
    [317] M. D. Greicius, B. H. Flores, V. Menon, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry, 2007, 62(5):429-437
    [318] M. Corbetta, G. L. Shulman. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 2002, 3(3):201-215
    [319] E. Koechlin, C. Summerfield. An information theoretical approach to prefrontal executive function. Trends Cogn Sci, 2007, 11(6):229-235
    [320] N. U. Dosenbach, D. A. Fair, F. M. Miezin, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A, 2007, 104(26):11073-11078
    [321] N. U. Dosenbach, K. M. Visscher, E. D. Palmer, et al. A core system for the implementation of task sets. Neuron, 2006, 50(5):799-812
    [322] D. M. Clark, A. Wells, "A cognitive model of social phobia," in Social phobia: Diagnosis,assessment and treatment, R. G. Heimberg, et al., Eds., ed New York: Guildford, 1995, pp. 69-93.
    [323] C. Gentili, M. I. Gobbini, E. Ricciardi, et al. Differential modulation of neural activity throughout the distributed neural system for face perception in patients with Social Phobia and healthy subjects. Brain Res Bull, 2008, 77(5):286-292
    [324] S. G. Hofmann. Cognitive mediation of treatment change in social phobia. J Consult Clin Psychol, 2004, 72(3):393-399
    [325] D. M. Clark, F. McManus. Information processing in social phobia. Biol Psychiatry, 2002, 51(1):92-100
    [326] J. Duncan, A. M. Owen. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci, 2000, 23(10):475-483
    [327] K. N. Ochsner, J. J. Gross. The cognitive control of emotion. Trends Cogn Sci, 2005, 9(5):242-249
    [328] J. P. Lorberbaum, S. Kose, M. R. Johnson, et al. Neural correlates of speech anticipatory anxiety in generalized social phobia. Neuroreport, 2004, 15(18):2701-2705
    [329] N. Amir, H. Klumpp, J. Elias, et al. Increased activation of the anterior cingulate cortex during processing of disgust faces in individuals with social phobia. Biol Psychiatry, 2005, 57(9):975-981
    [330] J. LeDoux. Fear and the brain: where have we been, and where are we going? Biol Psychiatry, 1998, 44(12):1229-1238
    [331] R. M. Rapee, R. G. Heimberg. A cognitive-behavioral model of anxiety in social phobia. Behav Res Ther, 1997, 35(8):741-756
    [332] P. D. Carey, J. Warwick, D. J. Niehaus, et al. Single photon emission computed tomography (SPECT) of anxiety disorders before and after treatment with citalopram. BMC Psychiatry, 2004, 4:30
    [333] M. C. Freitas-Ferrari, J. E. Hallak, C. Trzesniak, et al. Neuroimaging in social anxiety disorder: a systematic review of the literature. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(4):565-580
    [334] M. C. Ferrari, G. F. Busatto, P. K. McGuire, et al. Structural magnetic resonance imaging in anxiety disorders: an update of research findings. Rev Bras Psiquiatr, 2008, 30(3):251-264
    [335] K. L. Phan, D. A. Fitzgerald, B. M. Cortese, et al. Anterior cingulate neurochemistry in social
    [336] A. Simmons, S. C. Matthews, J. S. Feinstein, et al. Anxiety vulnerability is associated with altered anterior cingulate response to an affective appraisal task. Neuroreport, 2008, 19(10):1033-1037
    [337] A. E. Guyer, J. Y. Lau, E. B. McClure-Tone, et al. Amygdala and ventrolateral prefrontal cortex function during anticipated peer evaluation in pediatric social anxiety. Arch Gen Psychiatry, 2008, 65(11):1303-1312
    [338] T. Straube, I. T. Kolassa, M. Glauer, et al. Effect of task conditions on brain responses to threatening faces in social phobics: an event-related functional magnetic resonance imaging study. Biol Psychiatry, 2004, 56(12):921-930
    [339] R. E. Cooney, L. Y. Atlas, J. Joormann, et al. Amygdala activation in the processing of neutral faces in social anxiety disorder: is neutral really neutral? Psychiatry Res, 2006, 148(1):55-59
    [340] F. Schneider, U. Weiss, C. Kessler, et al. Subcortical correlates of differential classical conditioning of aversive emotional reactions in social phobia. Biol Psychiatry, 1999, 45(7):863-871
    [341] N. Birbaumer, W. Grodd, O. Diedrich, et al. fMRI reveals amygdala activation to human faces in social phobics. Neuroreport, 1998, 9(6):1223-1226
    [342] I. Akirav, M. Maroun. The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plast, 2007, 2007:30873
    [343] R. J. Davidson, W. Irwin. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci, 1999, 3(1):11-21
    [344] J. Pujol, B. J. Harrison, H. Ortiz, et al. Influence of the fusiform gyrus on amygdala response to emotional faces in the non-clinical range of social anxiety. Psychol Med, 2009, 39(7):1177-1187
    [345] M. R. Milad, G. J. Quirk. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002, 420(6911):70-74
    [346] H. T. Ghashghaei, C. C. Hilgetag, H. Barbas. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage, 2007, 34(3):905-923
    [347] L. Brothers, B. Ring, A. Kling. Response of neurons in the macaque amygdala to complex social stimuli. Behav Brain Res, 1990, 41(3):199-213
    [348] S. J. Bishop. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci, 2007, 11(7):307-316
    [349] D. H. Skuse, L. Gallagher. Dopaminergic-neuropeptide interactions in the social brain. Trends Cogn Sci, 2009, 13(1):27-35
    [350] R. J. Dolan. The human amygdala and orbital prefrontal cortex in behavioural regulation. Philos Trans R Soc Lond B Biol Sci, 2007, 362(1481):787-799
    [351] D. Skuse. Genetic influences on the neural basis of social cognition. Philos Trans R Soc Lond B Biol Sci, 2006, 361(1476):2129-2141
    [352] M. E. Coles, R. G. Heimberg. Patterns of anxious arousal during exposure to feared situations in individuals with social phobia. Behav Res Ther, 2000, 38(4):405-424
    [353] R. Baddeley, L. F. Abbott, M. C. Booth, et al. Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc Biol Sci, 1997, 264(1389):1775-1783
    [354] T. Iidaka, M. Omori, T. Murata, et al. Neural interaction of the amygdala with the prefrontal and temporal cortices in the processing of facial expressions as revealed by fMRI. J Cogn Neurosci, 2001, 13(8):1035-1047
    [355] S. Baron-Cohen, H. Ring, J. Moriarty, et al. Recognition of mental state terms. Clinical findings in children with autism and a functional neuroimaging study of normal adults. Br J Psychiatry, 1994, 165(5):640-649
    [356] T. Straube, H. J. Mentzel, M. Glauer, et al. Brain activation to phobia-related words in phobic subjects. Neurosci Lett, 2004, 372(3):204-208
    [357] K. Blair, M. Geraci, J. Devido, et al. Neural response to self- and other referential praise and criticism in generalized social phobia. Arch Gen Psychiatry, 2008, 65(10):1176-1184
    [358] K. Blair, J. Shaywitz, B. W. Smith, et al. Response to emotional expressions in generalized social phobia and generalized anxiety disorder: evidence for separate disorders. Am J Psychiatry, 2008, 165(9):1193-1202
    [359] N. L. Potts, J. R. Davidson, K. R. Krishnan, et al. Magnetic resonance imaging in social phobia. Psychiatry Res, 1994, 52(1):35-42
    [360] E. Irle, M. Ruhleder, C. Lange, et al. Reduced amygdalar and hippocampal size in adults with generalized social phobia. J Psychiatry Neurosci, 2010, 35(2):126-131
    [361] W. Liao, H. Chen, Y. Feng, et al. Selective aberrant functional connectivity of resting state networks in social anxiety disorder. Neuroimage, 2010, 52(4):1549-1558
    [362] M. Catani, R. J. Howard, S. Pajevic, et al. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage, 2002, 17(1):77-94
    [363] K. L. Phan, A. Orlichenko, E. Boyd, et al. Preliminary evidence of white matter abnormality inthe uncinate fasciculus in generalized social anxiety disorder. Biol Psychiatry, 2009, 66(7):691-694
    [364] J. Ashburner. A fast diffeomorphic image registration algorithm. Neuroimage, 2007, 38(1):95-113
    [365] I. Kahn, J. R. Andrews-Hanna, J. L. Vincent, et al. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol, 2008, 100(1):129-139
    [366] A. Ishai, L. G. Ungerleider, A. Martin, et al. Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci U S A, 1999, 96(16):9379-9384
    [367] K. C. Arrais, J. P. Machado-de-Sousa, C. Trzesniak, et al. Social anxiety disorder women easily recognize fearfull, sad and happy faces: the influence of gender. J Psychiatr Res, 2010, 44(8):535-540
    [368] J. P. Machado-de-Sousa, K. C. Arrais, N. T. Alves, et al. Facial affect processing in social anxiety: tasks and stimuli. J Neurosci Methods, 2010, 193(1):1-6
    [369] P. R. Goldin, T. Manber-Ball, K. Werner, et al. Neural mechanisms of cognitive reappraisal of negative self-beliefs in social anxiety disorder. Biol Psychiatry, 2009, 66(12):1091-1099
    [370] C. D. Kilts, J. E. Kelsey, B. Knight, et al. The neural correlates of social anxiety disorder and response to pharmacotherapy. Neuropsychopharmacology, 2006, 31(10):2243-2253
    [371] A. Etkin, T. Egner, D. M. Peraza, et al. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 2006, 51(6):871-882
    [372] M. Tillfors, T. Furmark, I. Marteinsdottir, et al. Cerebral blood flow during anticipation of public speaking in social phobia: a PET study. Biol Psychiatry, 2002, 52(11):1113-1119
    [373] H. Critchley. Emotion and its disorders. Br Med Bull, 2003, 65:35-47
    [374] K. A. Smith, J. S. Morris, K. J. Friston, et al. Brain mechanisms associated with depressive relapse and associated cognitive impairment following acute tryptophan depletion. Br J Psychiatry, 1999, 174:525-529
    [375] R. J. Blair, J. S. Morris, C. D. Frith, et al. Dissociable neural responses to facial expressions of sadness and anger. Brain, 1999, 122 ( Pt 5):883-893
    [376] L. M. Shin, I. Liberzon. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology, 2010, 35(1):169-191
    [377] J. G. Kerns, J. D. Cohen, A. W. MacDonald, 3rd, et al. Anterior cingulate conflict monitoring and adjustments in control. Science, 2004, 303(5660):1023-1026
    [378] P. Bandettini. Functional MRI today. Int J Psychophysiol, 2007, 63(2):138-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700