过渡金属配合物激发态和光谱性质的量子理论研究:d~6、d~8和d~(10)配合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Quantum Theoretical Studies on the Excited State and Spectroscopic Properties of Transition Metal Complexes: d~6, d~8, and d~(10) Complexes
  • 作者:刘涛
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2009
  • 导师:张红星
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2009-04-01
摘要
过渡金属配合物的电子吸收和发射是极其复杂的微观过程,涉及到基态与激发态的电子结构性质、金属间弱相互作用、相对论效应等量子理论的基础问题,所以该类配合物发光性质的理论研究不仅对金属有机新型光学材料的探索和设计具有前瞻性的重要指导意义,而且本身就是极其重要的理论课题。本文采用DFT、MP2、CIS、和TD-DFT等量子化学理论计算方法对一系列具有d6以及d8电子结构的金属铱配合物的基态和激发态的平衡几何结构、电子结构、吸收光谱和发射光谱性质等进行了系统地研究,主要内容如下:
     1.研究了三个系列具有苯吡啶配体的铱配合物Ir(C^N)2L、[trans-Ir(C^N)2(PH3)2]+以及Ir(Mebib)(ppy)X基态以及激发态性质,讨论了这三类配合物在溶液中的光谱性质,并总结出配合物的最低能吸收和发射均具有MLCT/ILCT跃迁性质,辅助配体L(acac、dbm)并不参与最低能吸收发射的跃迁,配体C^N、L(CN、NCS、NCO)的π电子共轭效应以及X配体的π电子接受能力能够有效地影响发射光谱的颜色,前线轨道中金属轨道成分越多,量子效率就越高。
     2.研究了Ir(ppy)2(N^N)+作为F-、CF3COOH、CH3COO-光学传感器的发光机理。研究结果表明,在磷光产生的过程中3MLCT性质起了决定性的作用,当引入F-、CH3COO-基团后,由于最低激发态没有3MLCT属性,磷光发生了猝灭。在F-、CF3COOH、CH3COO-基团中,F-与N5-H键上的H原子有最强的作用,所以配合物Ir(ppy)2(N^N)+适合做F-的传感器。
     3.研究了异双核Ir(I)-Au(I)配合物[Ir(CO)ClAu(μ-dpm)2]-、[Ir(CNCH3)2Au(μ-dpm)2]2-、[Ir(CNCH3)3Au(μ-dpm)2]2-的基态以及激发态状态下核间相互作用与光谱性质的关系。研究结果表明,Ir、Au之间的弱相互作用是存在的,增加基态的Ir、Au之间距离会使吸收光谱发生红移,增加激发态Ir、Au之间距离会使磷光发射蓝移。
     4.研究了五种具有卡宾配体的铱配合物fac-Ir(pmb)3、mer-Ir(pmb)3、(pmb)2Ir(acac)、mer-Ir(pypi)3以及fac-Ir(pypi)3的基态以及激发态性质。研究结果表明最低能吸收以及发射都来自于具有MLcarbeneCT性质的跃迁。苯环及卡宾环在跃迁中是相对独立的配体。卡宾环3′-4′位也就是靠近Ccarbene的位置增加共轭基团更有利于增加有效共轭效应。我们预测了(pmb)2Ir(acac)会有比较低的发光效率,不适合用于OLED的制备。
     5.研究了两个系列寡聚物的基态以及激发态结构、IPs、EAs、HEP、EEP、H-L能隙、吸收以及荧光发射的性质,并利用倒推法得到了高聚物的各种性质。研究结果表明,P、DP聚合物有相似的能隙,所以也是具有潜力的电子传输材料,DP型高聚物的电子传输能力比P型高聚物更强。随着有效共轭链长的增加,吸收发射光谱都有红移的趋势。PCPP的289nm的额外吸收被指认为包含有额外C=C键的π→π*的跃迁,计算结果表明PCPP适合作为蓝光LED。
Functional materials have excellent characteristics and function such as electricity, light, sound, magnetism, chemistry, heat, and biomedicine, their special physical, chemical, and biological effect can transform each other successfully. They have been used in various functional devices fabrication for various types of high-tech fields such as electronic, laser, communication, energy sources, and bioengineering. The achievement in designing and developing functional material not only has greatly promoted the revolution of scientific technology last century, but also will be the foundation of the development of the advanced scientific technology in future. As one of the most important parts of the functional materials, the optical material has also been focused on by physicists, chemists and material scientists all the time. The phosphorescent materials have potential application as the emitting layer of OLED (organic light emitting devices) because of their high quantum efficiency, and they attract much more attention of the material researchers. Recently, the phosphorescence materials research has a rapid development, the luminescent properties of the transition metal complexes such as Iridium, Ruthenium, Platinum, Gold, Osmium, Rhenium etc. have been investigated extensively. These transition metal complexes has excellent luminescent properties, thus they are potential luminescent materials. A great deal of experimental work on the electronic absorption and emission of transition metal complexes has been performed to seek inorganic optical material that exhibits intensive luminescence in the visible region. The absorption and emission of transition metal complexes usually are related to the charge transfer between d orbitals of metal andπorbitals of ligand. Because such an electronic absorption in the ultraviolet region usually and the corresponding emission in the visible region, transition metal complexes are one of the most excellent candidates to serve as visible-region optical material.
     Recently, the electronic excited state properties of molecules have attracted much more attentions. The electronic excited states of molecules are the state in which the electrons are excited to the orbitals with higher energy by absorbing energy, but have not ionized. The electronic excited states of molecules have higher energy and unsteady characteristics, which easily emit the energy to recur the steady ground state in a short time. So it is difficult to obtain reliable information about the excited states of molecules on experiment. Theoretical chemists attempt various electronic structure theories of excited states to seek the method that can accurately predict excited-state electronic structures and be applied in the calculations of relatively large molecules without consuming excess computational resources. So far, CIS (single excitation configuration interaction), UDFT (unrestricted density functional theory) or UMP2 (unrestricted second-order M?ller-Plesset perturbation) and TD-DFT (time-dependent DFT) methods have been widely used to treat the electronic excited states of large molecular systems. We optimized the geometry structure of the excited state by using CIS or UDFT/UMP2 methods, and calculated the vertical transition energy by TD-DFT method.
     It has been established that the solvents have some effect to the luminescence of complexes. Many theoretical methods were employed to treat properties of complexes in solution last century. The first strategy puts the attention on the microscopic interactions of the solute with a limited number of solvent molecules; the whole system (the“supermolecule”) is studied with quantum mechanical methods usually employed for single molecules, and the effects of specific solute-solvent interactions are brought in evidence. An increasing number of solvent molecules can be added to this model, thus gaining supplementary (and detailed) information about solvent effects. The second strategy tries to directly introduce statistically averaged information on the solvent effect by replacing the microscopic description of the solvent with a macroscopic continuum medium with suitable properties such as dielectric constant, thermal expansion coefficient etc.. Recently, QM/MM (Quantum mechanical and molecular mechanical) method has been developed to account for the solvent effects.
     Transition metal atoms have various electronic structures and bonding characters and many ligands have been synthesized in experiments, resulting in the occurrence of thousands of transition metal complexes. It is very difficult to fully understand the properties of such abundant complexes. So, it is an ideal method to investigate a kind or several kinds of complexes with simple coordination geometry. So far, a number of Iridium complexes have been synthesized, and their X-ray geometry structures and spectral properties have been investigated in detail. It was found that many Iridium complexes have high stability, emission color tenability, and strong spin-orbital coupling, as a result, Iridium complexes exhibit intensive luminescence and can be applied in the optical materials; their long lifetime of phosphoresce makes them be used as photo-sensitizer, photochemical catalysis and optical sensor; their interaction with DNA leads to the application in the molecular pharmacy. The abundant experimental studies show potential applications of the Iridium complexes in many fields. Lack of theoretical support, the insight into the luminescent process and microscopic mechanism is only empirical, which results in no exact direction on experiment. Thus, systematic studies on the Iridium complexes in theory to rationalize and predict experimental phenomena are of practical significance.
     The rapid development of the advanced science and technique greatly promotes the progress of modern computational chemistry. On one hand, the comparison between calculation and experiment can test the reliability and accuracy of electronic structure theory, showing the dependence of theory on experiment; On the other hand, to develop the electronic structure theory is to strong support and supplement the known experimental results; Furthermore, to predict the potential properties of the complexes which has not been synthesized on experiment, theoretical studies have demonstrated the independence and forward-looking characteristic. Electronic absorption and emission processes of the transition metal complexes are extremely complicate micro-process, involving several the basic problem of quantum theory, such as the electronic structure properties in ground and excited state, interaction between transition metals, relativistic effect, as a result, the theoretical studies on the luminescent properties of the transition metal complexes not only have important guiding significance on exploration and design of the organometallics new optical materials, but also itself is a very important theoretical issues. In this paper, combining the various theoretical approaches and the computational experience, considering the solvent effects, adopting several quantum chemistry methods such as DFT, MP2, CIS, and TD-DFT, we investigated many properties of a series of Iridium complexes with d6 and d8 electronic structures, such as the geometry structures in ground and excited states, electronic structures, absorption and emission spectra properties, and obtain the following main results。
     1. The geometries of Ir(C^N)2L, [trans-Ir(C^N)2(PH3)2]+ and Ir(Mebib)(ppy)X in the ground and excited states were optimized by B3LYP and CIS method, respectively. The calculation results showed that the lowest-lying absorption and phosphorescence have MLCT (metal-to-ligand charge transfer), ILCT (intra-ligand charge transfer) transition properties, auxiliary ligand L(acac) didn’t participate in the transition processes. The lowest-lying absorption and emission can be red-shifted by increasing theπconjugation effect of C^N、L(CN、NCS、NCO) and X ligand can effectively affect the lowest-lying absorption and emission. Moreover, the large metal compositions in the HOMO, namely, the large component of MLCT, can bring the high quantum efficiency.
     2. The geometries, electronic structures, and spectroscopic properties of Ir(ppy)2(N^N)+ (N^N = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline, ppy = 2?phenylpyridine) was investigated by B3LYP, UB3LYP, and TD-DFT methods, moreover, the luminescent mechanism of Ir(ppy)2(N^N)+ as sensor for F-、CF3COOH、CH3COOˉhas been revealed. The calculated results showed that the adding of F-、CF3COOH、CH3COO- can not affect the composition of HOMO, but LUMO. The phosphorescence was red shifted by adding CF3COOH, but quenched by adding F-、CH3COO- anions. 3MLCT excited state properties play an important role in the phosphorescence generation process. Among F-, CF3COOH, CH3COO-, the strongest interaction exists between F- and H of N5-H bond, as a result, Ir(ppy)2(N^N)+ can be the sensor of F-.
     3. The geometries, metal-metal (Ir-Au) attractive interaction, electronic structures, absorptions, and phosphorescence of three d8-d10 Ir(I)-Au(I) complexes [Ir(CO)ClAu(μ-dpm)2]- (1), [Ir(CNCH3)2Au(μ-dpm)2]2- (2), and [Ir(CNCH3)3Au(μ-dpm)2]2- (3) [dpm = bis(diphosphino)methane] were investigated by MP2, UMP2, and TD-DFT methods, and the relations between the Au-Ir interaction and the absorption/emission spectra were revealed. The calculated results showed that the interaction between Ir and Au really do exist. The calculated results showed that the phosphorescence of complexes 1-3 come fromσ[pz(Ir)+p(PH2)]→σ*[d(Ir)],σ[pz(Ir/Au)+p(PH2)]→σ*[d(Ir/Au)],π[pz(Au)+pz(PH2)]→σ[d(Ir/Au)] charge transfer, respectively. In the ground state, the absorption can be red shifted by increasing the Ir-Au distance, in contrast, in the excited state, the phosphorescence can be blue shifted by increasing the Ir-Au distance in the triplet excited state.
     4. The ground and excited states properties of five iridium fac-Ir(pmb)3 (1), mer-Ir(pmb)3 (2), (pmb)2Ir(acac) (3), mer-Ir(pypi)3 (4), and fac-Ir(pypi)3 (5) were investigated by PBE0 and UPBE0 methods, respectively. The calculated results show that the lowest-lying absorption bands of 1-3 have MLcarbeneCT/ILphenyl→carbeneCT transition characters, while those of 4 and 5 are attributed to MLcarbeneCT/ILcarbeneCT transitions. The calculated phosphorescence of 1 and 2 originate from 3MLcarbeneCT/3ILphenyl←carbeneCT excited states, but those of 4 and 5 come from 3MLcarbeneCT/3ILcarbeneCT excited states. The phenyl and the carbene groups in the C^C: ligand act as independent parts in the excitation. The effective strengthening of theπ-conjugation effect of C^C: ligand can be achieved at 3′-4′position near the Ccarbene atoms. We predicate that (pmb)2Ir(acac) should has low quantum efficiency, so that it is not suitable for OLED fabrication.
     5. The ground and excited states properties including IPs, EAs, HEP, EEP, H-L gap, absorption and emission were investigated theoretically, and the properties of polymers were obtained by extrapolation method. The calculated results shows that D and DP-polymer have similar H-L gap, they are suitable for fabricating electron transfer materials, moreover, the electron transfer ability of DP-polymer is stronger than P-polymer. The absorption and emission spectra are red-shifted with the increase of the conjugation chain. The additional absorption band at 289nm of PCPP is assigned toπ→π* transition occurred on C=C bond. The calculated results shows that PCPP is suitable for blue LED fabrication.
引文
[1]唐小真,杨宏秀,丁马太.材料化学导论[M].北京:高等教育出版社,1997:7–12.
    [2] Rao C N R,Gopalakrishnan J.著,刘新生译,固体化学的新方向-结构、合成、性质、反应性材料设计[M].长春:吉林大学出版社,1990:388–430.
    [3]赵成大编著.固体量子化学-材料化学的理论基础[M].北京:高等教育出版社, 1997:228–240.
    [4] Pope M,Kallmann H P,Magnante P. Electroluminescence in organic crystals [J].J Chem Phys, 1963, 38:2042-204
    [5] Tang C W,Vanslyke S A. Organic electroluminescent diodes [J].Appl. Phys. Lett., 1987, 51:913-915.
    [6] Burroughes J H, Bradley D D C, Brown, A R, et al. The first polymer LEDs. Light-emitting-diodes based on conjugated polymers. [J].Nature, 1990, 347:539-541.
    [7] Kido J, Hongawa K, Okuyama K, et al. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes [J].Appl. Phys. Lett., 1994, 64:815-817.
    [8] Baldo M A, O’Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J].Nature, 1998 , 395:151-154
    [9] Lyu Y Y, Kwak J, Jeon W S, et al. Highly Efficient Red Phosphorescent OLEDs based on Non-Conjugated Silicon-Cored Spirobifluorene Derivative Doped with Ir-Complexes [J]. Adv. Funct. Mater., 2009, 19:420–427
    [10] (a) Smothers W K, Wrighton M S. Raman spectroscopy of electronic excited organometallic complexes: a comparison of the metal to 2,2'-bipyridine charge-transfer state of fac-(2,2'-bipyridine)tricarbonylhalorhenium and tris(2,2'-bipyridine)ruthenium(II) [J].J. Am. Chem. Soc., 1983, 105:1067-1069. (b) Wang Y S, Liu S X, Pinto M R, et al. Excited-State Structure and Delocalization in Ruthenium(II)?Bipyridine Complexes That Contain Phenyleneethynylene Substituents [J].J. Phys. Chem. A, 2001, 105:11118-111127.
    [11] (a) Yersin H. Energy transfer from linear stacks of tetracyanoplatinates(II) to rare earth ions [J].J. Chem. Phys., 1978, 68:4707-4713. (b) van Slageren J, Klein A, Záli? S. Ligand-to-ligand charge transfer states and photochemical bond homolysis in metal---carbon bonded platinum complexes [J].Coord. Chem. Rev., 2002, 230:193-211. (c) Klein A, van Slageren J, Záli?, S. Spectroscopy and photochemical reactivity of cyclooctadiene platinum complexes [J].J. Organomet. Chem., 2001, 620:202-210. (d) Emmert L A, Choi W, Marshall J A, et al. The Excited-State Symmetry Characteristics of Platinum Phenylacetylene Compounds [J].J. Phys. Chem. A, 2003, 107:11340-11346. (f) Schindler J W, Fukuda R C, Adamson A W. Photophysics of aqueous tetracyanoplatinate2- [J].J. Am. Chem. Soc., 1982, 104:3596-3600.
    [12] a) Yam V W W, Choi S W K, Lai T F, Lee W K. Syntheses, crystal structures and photophysics of organogold(III) diimine complexes [J].J. Chem. Soc. Dalton Trans., 1993, 1001-1002; b) Chan C W, Wong W T, Che C M. Gold(III) Photooxidants. Photophysical, Photochemical Properties, and Crystal Structure of a Luminescent Cyclometalated Gold(III) Complex of 2,9-Diphenyl-1,10-Phenanthroline [J].Inorg. Chem., 1994, 33:1266-1272. j) Kishimura A, Yamashita T, Aida T. Phosphorescent Organogels via“Metallophilic”Interactions for Reversible RGB?Color Switching [J].J. Am. Chem. Soc., 2005, 127:179183. (b) Bouhelier A, Bachelot R, Lerondel G, et al. Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods [J].Phys. Rev. Lett., 2005, 95:267405/1-4. (c) Chen J, Mohamed A A, Abdou H E, Novel metallamacrocyclic gold(I) thiolate cluster complex: structure and luminescence of [Au9(μ-dppm)4(μ-p-tc)6](PF6)3 [J].Chem. Commun., 2005, 1575-1577.
    [13] Tung Y L, Wu P C, Liu C S, et al. Highly Efficient Red Phosphorescent Osmium(II) Complexes for OLED Applications [J].Organometallics, 2004, 23:3745-3748.
    [14] (a) Dominey R N, Hauser B, Hubbard J, et al. Structural, spectral, and charge-transfer properties of ClRe(CO)3(2-PP) [2-PP = N-(2-pyridinylmethylene)phenylamine] and ClRe(CO)3(2-PC) [2-PC = N-(2-pyridinylmethylene)cyclohexylamine] [J].Inorg. Chem., 1991, 30:4754-4758.(b) Sacksteder L, Lee M, Demas J N, et al. Long-lived, highly luminescent rhenium(I) complexes as molecular probes: intra- and intermolecular excited-state interactions [J].J. Am. Chem. Soc., 1993, 115:8230-8238.
    [15] Ley K D, Whittle C E, Bartverger M D, et al. Photophysics ofπ-Conjugated Polymers That Incorporate Metal to Ligand Charge Transfer Chromophores [J].J. Am. Chem. Soc., 1997, 119:3423-3424.
    [16] Ley K D, Li Y T, Johnson J V, et al. Synthesis and characterization of -conjugated oligomers that contain metal-to-ligand charge transfer chromophores [J].Chem. Commun., 1999, 1749-1750.
    [17] Walters K A, Ley K D, Cavalaheiro C S P, et al. Photophysics ofπ-Conjugated Metal?Organic Oligomers: Aryleneethynylenes that Contain the (bpy)Re(CO)3Cl Chromophore [J].J. Am. Chem. Soc., 2001, 123:8329-8342.
    [18] Lamansky S, Djurovich P, Murphy D, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J].J. Am. Chem. Soc., 2001, 123:4304-4312.
    [19] Lamansky S, Djurovich P, Murphy D, et al. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J].Inorg. Chem., 2001, 40:1704-1711.
    [20] Rausch A F, Thompson M E, Yersin H. Matrix Effects on the Triplet State of the OLED Emitter Ir(4,6-dFppy)2(pic) (FIrpic): Investigations by High-Resolution Optical Spectroscopy [J].Inorg. Chem., 2009, 48:1928-1937.
    [21] Lamansky S, Djurovich P, Abdel-Razzaq F, et al. Cyclometalated Ir complexes in polymer organic light-emitting devices [J].J. Appl. Phys., 2002, 92:1570-1575.
    [22] Chen F C, Yang Y, Thompson M E, et al. High-performance polymer light-emitting diodes doped with a red phosphorescent iridium complex [J].Appl. Phys. Lett., 2002, 80:2308-2310.
    [23] (a) Collin J P, Dixon I M, Sauvage J P, et al. Synthesis and Photophysical Properties of Iridium(III) Bisterpyridine and Its Homologues: a Family of Complexes with a Long-Lived Excited State [J].J. Am. Chem. Soc., 1999, 121:5009-5016. (b) Dixon I M, Collin J P, Sauvage J P, et al. Porphyrinic Dyads andTriads Assembled around Iridium(III) Bis-terpyridine: Photoinduced Electron Transfer Processes [J].Inorg. Chem., 2001, 40:5507-5517.
    [24] Nazeeruddin Md K, HumphryBaker R, Berner D, et al. Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices [J]. J. Am. Chem. Soc., 2003, 125:8790-8797.
    [25] (a) Liang B, Wang L, Xu Y H, et al. High-Efficiency Red Phosphorescent Iridium Dendrimers with Charge- Transporting Dendrons: Synthesis and Electroluminescent Properties [J].Adv. Funct. Mater., 2007, 17:3580-3589 (b) Zhen H Y, Luo J, Yang W, et al. Novel light-emitting electrophosphorescent copolymers based on carbazole with an Ir complex on the backbone [J].J. Mater. Chem., 2007, 17:2824-2831 (c) Guan R, Xu Y H, Ying L, et al. Novel green-light-emitting hyperbranched polymers with iridium complex as core and 3,6-carbazole-co-2,6-pyridine unit as branch [J].J. Mater. Chem., 2009, 19:531–537 (d) Zhang K, Chen Z, Yang C L, et al. Iridium complexes embedded into and end-capped onto phosphorescent polymers: optimizing PLED performance and structure–property relationships [J].J. Mater. Chem., 2008, 18:3366–3375
    [26] (a) Chang, C F, Cheng Y M, Chi, Y, et al. Highly Efficient Blue-Emitting Iridium(III) Carbene Complexes and Phosphorescent OLEDs [J].Angew. Chem. Int. Ed., 2008, 47:4542–4545 (b) Yang C H, Cheng Y M, Chi Y, et al. Blue-Emitting Heteroleptic Iridium(III) Complexes Suitable for High-Efficiency Phosphorescent OLEDs [J].Angew. Chem. Int. Ed., 2007, 46:2418–2421
    [27] Obara S, Itabashi M, Okuda F, et al. Highly Phosphorescent Iridium Complexes Containing Both Tridentate Bis(benzimidazolyl)-benzene or -pyridine and Bidentate Phenylpyridine: Synthesis, Photophysical Properties, and Theoretical Study of Ir-Bis(benzimidazolyl)benzene Complex [J].Inorg. Chem., 2006, 45:8907-8921.
    [28] (a)Di Marco G, Lanza M, Mamo A, et al. Luminescent Mononuclear and Dinuclear Iridium(III) Cyclometalated Complexes Immobilized in a Polymeric Matrix as Solid-State Oxygen Sensors [J].Anal. Chem., 1998, 70:5019-5023. (b) Huynh L, Wang Z, Yang J, et al. Evaluation of Phosphorescent Rhenium and Iridium Complexes in Polythionylphosphazene Films for Oxygen Sensor Applications [J].Chem. Mater., 2005, 17:4765-4773. (c) Gao R, Ho D G, HernandezB, et al. Bis-cyclometalated Ir(III) Complexes as Efficient Singlet Oxygen Sensitizers [J].J. Am. Chem. Soc., 2002, 124:14828-14829. (d) Borisov S M, Klimant I. Ultrabright Oxygen Optodes Based on Cyclometalated Iridium(III) Coumarin Complexes [J].Anal. Chem., 2007, 79:7501-7509.
    [29] Chen H L, Zhao Q, Wu Y B, et al. Selective Phosphorescence Chemosensor for Homocysteine Based on an Iridium(III) Complex [J].Inorg. Chem., 2007, 46:11075-11081.
    30. (a) Zhao Q, Cao T Y, Li F Y, et al. A Highly Selective and Multisignaling Optical?Electrochemical Sensor for Hg2+ Based on a Phosphorescent Iridium(III) Complex [J].Organometallics, 2007, 26:2077-2081. (b) Schmittel M, Lin H W. Luminescent Iridium Phenanthroline Crown Ether Complex for the Detection of Silver(I) Ions in Aqueous Media [J]. Inorg. Chem., 2007, 46:9139-9145. (c) Goodall W, Williams J A G. Iridium(III) bis-terpyridine complexes incorporating pendent N-methylpyridinium groups: luminescent sensors for chloride ions [J].J. Chem. Soc., Dalton Trans., 2000, 2893-2895. (c) Zhao Q, Liu S J, Shi M, et al. Tuning Photophysical and Electrochemical Properties of Cationic Iridium(III) Complex Salts with Imidazolyl Substituents by Proton and Anions [J].Organometallics, 2007, 26:5922-5930
    [31] (a) Lo K K W, Chan J S W, Lui L H, et al. Novel Luminescent Cyclometalated Iridium(III) Diimine Complexes That Contain a Biotin Moiety [J].Organometallics, 2004, 23:3108-3116 (b) Lo K K W, Hui W K, Chung C K, et al. Biological labelling reagents and probes derived from luminescent transition metal polypyridine complexes [J].Coord. Chem. Rev., 2005, 249:1434-1450 (c) Lo K K W, Hui W K, Chung C K, et al. Luminescent transition metal complex biotin conjugates [J].Coord. Chem. Rev., 2006, 250:1724-1736 (d) Lo K K W, Lau J S Y. Cyclometalated Iridium(III) Diimine Bis(biotin) Complexes as the First Luminescent Biotin-Based Cross-Linkers for Avidin [J].Inorg. Chem., 2007, 46:700-709
    [32] (a) Fang Y Q, Taylor N J, Hanan G S, et al. A Strategy for Improving the Room-Temperature Luminescence Properties of Ru(II) Complexes with Tridentate Ligands [J].J. Am. Chem. Soc., 2002, 124:7912-7913. (b) Yam V W W, Wong K M C, Chong S H F, et al. Synthesis, electrochemistry and structural characterization ofluminescent rhenium(I) monoynyl complexes and their homo- and hetero-metallic binuclear complexes [J].J. organomet. Chem., 2003, 670:205-220. (c) Ma Y G, Zhang H Y, Shen J C, et al. Electroluminescence from triplet metal—ligand charge-transfer excited state of transition metal complexes [J].Synthetic Metals, 1998, 94:245-248.
    [33] (a) Solar J M, Ozkan M A, Isci H, et al. Electronic absorption and magnetic circular dichroism spectra of some planar platinum(II), palladium(II), and nickel(II) complexes with phosphorus-donor ligands [J].Inorg. Chem., 1984, 23:758-764. (b) Solar J M, Rogers R D, Mason W R. Synthesis of some alkyl phosphite complexes of platinum and their structural and spectral characterization [J].Inorg. Chem., 1984, 23;373-377. (c) Roberts D A, Mason W R, Geoffroy G L. Metal-to-ligand charge-transfer spectra of some cis- and trans- [Pt(PEt3)2(X)(Y)] complexes [J].Inorg. Chem., 1981, 20:789-796. (d) Isci H, Mason W R. Electronic structure and spectra of square-planar cyano and cyanoamine complexes of platinum(II) [J].Inorg. Chem., 1975, 14:905-912.
    [34] Hay P J. Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory [J].J. Phys. Chem. A, 2002, 106:1634-1641.
    [35] (a) Hirani B, Li J, Djurovich P I, et al. Cyclometallated Iridium and Platinum Complexes with Noninnocent Ligands [J].Inorg. Chem., 2007, 46:3865-3875 (b) Tamayo A B, Alleyne B D, Djurovich P I, et al. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes [J].J. Am. Chem. Soc., 2003, 125:7377-7387.
    [36] (a) Velusamy M, Thomas K R J, Chen C H, et al. Synthesis, structure and electroluminescent properties of cyclometalated iridium complexes possessing sterically hindered ligands [J].Dalton Trans., 2007, 3025–3034. (b) Chen K, Cheng Y M, Chi Y, et al. Osmium Complexes with Tridentate 6-Pyrazol-3-yl 2,2-Bipyridine Ligands: Coarse Tuning of Phosphorescence from the Red to the Near-Infrared Region [J].Chem. Asian J., 2007, 2:155–163. (c) Song Y H, Chiu Y C, Chi Y, et al. Phosphorescent Iridium(III) Complexes with Nonconjugated Cyclometalated Ligands [J].Chem. Eur. J., 2008, 14:5423–5434.
    [37] (a) Minaev B, Minaeva V, Agren H. Theoretical Study of the Cyclometalated Iridium(III) Complexes Used as Chromophores for Organic Light-Emitting Diodes [J].J. Phys. Chem. A, 2009, 113:726-735. (b) Jansson E, Minaev B, Schrader S, et al. Time-dependent density functional calculations of phosphorescence parameters for fac-tris(2-phenylpyridine) iridium [J].Chemical Physics, 2007, 333:157–167.
    [38] (a) De Angelis F, Santoro F, Nazeruddin Md K et al. Ab Initio Prediction of the Emission Color in Phosphorescent Iridium(III) Complexes for OLEDs [J].J. Phys. Chem. B, 2008, 112:13181–13183 (b) Di Censo D, Fantacci S, De Angelis F, et al. Synthesis, Characterization, and DFT/TD-DFT Calculations of Highly Phosphorescent Blue Light-Emitting Anionic Iridium Complexes [J].Inorg. Chem., 2008, 47:980-989.
    [39] (a) Kim Y S, Kim H L. Theoretical study of Ir(III) complexes with cyclometalated alkenylquinoline ligands [J].Curr. Appl. Phys., 2007, 7:504-508. (b) Kim Y S, Young H L. Theoretical study of a new phosphorescent iridium(III) quinazoline complex [J].Thin Solid Films, 2007, 515:5079-5083.
    [40] a) Raghavachari K, Pople J A. Calculation of one-electron properties using limited configuration interaction techniques [J].Int. J. Quant. Chem., 1981, 20:1067-1071. b) Foresman J B, Head-Gordon M, Pople J A. Toward a systematic molecular orbital theory for excited states [J].J. Phys. Chem., 1992, 96:135-149.
    [41] (a) Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J].Chem. Phys. Lett., 1996, 256:454-464. (b) Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J].J. Chem. Phys., 1998, 108:4439-4449. (c) Statmann R E, Scuseria G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J].J. Chem. Phys., 1998, 109:8218-8224.
    [42] (a) Halls M D, Schlegel H B. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III) [J].Chem. Mater., 2001, 13:2632-2640. (b) Pan Q J, Zhang H X. Ab Initio Study on LuminescentProperties and Aurophilic Attraction of [Au2(dpm)(i-mnt)] and Its Related Au(I) Complexes (dpm = bis(diphosphino)methane and i-mnt = i-malononitriledithiolate) [J].Organometallics, 2004, 23:5198-5209.
    [43] (a) Liu T, Xia B H, Zhou X, et al. Theoretical Studies on Structures and Spectroscopic Properties of Bis-Cyclometalated Iridium Complexes [J].Organometallics, 2007, 26:143-149. (b) Wang J F, Feng J K, Ren A M, et at. Theoretical Studies of the Absorption and Emission Properties of the Fluorene-Based Conjugated Polymers [J].Macromolecules, 2004, 37:3451-3458. (b) Liao Y, Feng J K, Yang L, et al. Theoretical Study on the Electronic Structure and Optical Properties of Mercury-Containing Diethynylfluorene Monomer, Oligomer, and Polymer [J].Organometallics, 2005, 24:385-394.
    [44] M?ller C, Plesset M S. Note on an Approximation Treatment for Many-Electron Systems [J].Phys. Rev., 1934, 46:618-622
    [45] (a) Condon E U. Nuclear Motions Associated with Electron Transitions in Diatomic Molecules [J].Phys. Rev., 1928, 32:858-872. (b) Franck J. Elementary processes of photochemical reactions [J].Trans. Faraday Soc., 1925, 21:536-542.
    [46] Zhang X, Cote A P, Matzger A J. Synthesis and Structure of Fused α-Oligothiophenes with up to Seven Rings [J].J. Am. Chem. Soc., 2005, 127:10502-10503.
    [47] Jorgensen M, Krebs F C. Stepwise and Directional Synthesis of End-Functionalized Single-Oligomer OPVs and Their Application in Organic Solar Cells [J].J. Org. Chem., 2004, 69:6688-6696.
    [48] Tand C W, VanSlyke S A. Organic electroluminescent diodes [J].Appl. Phys. Lett., 1988, 51:913-915. (b) Garnier F, Yassar A, Hajlaoui R, et al. Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers [J].J. Am. Chem. Soc., 1993, 115:8716-8721.
    [49] (a) Babel A, Jenekhe S A. n-Channel Field-Effect Transistors from Blends of Conjugated Polymers [J].J. Phys. Chem. B, 2002, 106:6129-6132. (b) Katz H E, Bao Z. The Physical Chemistry of Organic Field-Effect Transistors [J].J. Phys. Chem. B, 2000, 104:671-678.
    [50] Lahti P M, Obrzut J, Karasz F E. Use of the Pariser-Parr-Pople approximationto obtain practically useful predictions for electronic spectral properties of conducting polymers [J].Macromolecules, 1987, 20 2023-2026.
    [50] Kozaki M, Yonezawa Y, Igarashi H, et al. Novel cyclopentadithiophene dimers with small HOMO-LUMO gaps [J].Synthetic Metals, 2003, 135:107-108.
    [52] Wang J F, Feng J K. Theoretical Studies of the Absorption and Emission Properties of the Fluorene-Based Conjugated Polymers [J].Macromolecules, 2004, 37:3451-3458. (b) Yang L, Ren A M, Feng J K, et al. Theoretical Investigation of Optical and Electronic Property Modulations ofπ-Conjugated Polymers Based on the Electron-Rich 3,6-Dimethoxy-fluorene Unit [J].J. Org. Chem., 2005, 70:3009-3020.
    [1] Pauling L, Wilson E B, Introduction to Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1935), pp. 340–380.
    [2] (a) Mulliken R S. The Assignment of Quantum Numbers for Electrons in Molecules [J]Phys. Rev., 1928, 32:186-222. (b) Mulliken R S. The Assignment of Quantum Numbers for Electrons in Molecules. II. Correlation of Molecular and Atomic Electron States [J]Phys. Rev., 1928, 32:761-772. (c) Mulliken R S. Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations [J]Phys. Rev., 1932, 41:49-71.
    [3] (a)唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982. (b)徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社, 1985.
    [4] Born M, Oppenheimer R. [J]Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84:457.
    [5] Hartree D. Calculations of Atomic Structure[M]. Wiley, 1957.
    [6] (a) Slater J C. [J]Phys. Rev., 1930, 210:35.
    [7] Roothaan C C J. New Developments in Molecular Orbital Theory [J]Rev. Mod. Phys., 1951, 23:69-89.
    [8] Lowdin P O. Correlation Problem in Many-Eleetron Quantum Mechanies. I. Review of Different Approaches and Discussion of Some Current Ideas [J]Adv. Chem. Phys., 1959, 2:207-322.
    [9] (a) Raghavachari K, Pople J A. Calculation of one-electron properties using limited configuration interaction techniques [J]Int. J. Quant. Chem., 1981, 20:1067-1071. (b) Foresman J B, Head-Gordon M, Pople J A. Toward a systematic molecular orbital theory for excited states [J]J. Phys. Chem., 1992, 96:135-149.
    [10] Krishnan R, Schlegel H B, Pople J A, Derivative studies in configuration–interaction theory [J]J. Chem. Phys., 1980, 72:4654-4656.
    [11] Brooks B R, Laidig W D, Saxe P, et al. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J]J.Chem. Phys., 1980, 72:4652-4653.
    [12] Salter E A, Trucks G W, Bartlett R J. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J]J. Chem. Phys., 1989, 90:17521755.
    [13] Raghavachari K, Pople J A. The electrostatic potential of a model phospholipid monolayer [J]Int. J. Quant. Chem., 1981, 20:167-170.
    [14] Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies [J]J. Chem. Phys., 1987, 87:5968.
    [15] (a) Frisch M J, Head-Gordon M, Pople J A. A direct MP2 gradient method [J].Chem. Phys. Lett., 1990, 166:275-280
    [16] M?ller C, Plesset M S. Note on an Approximation Treatment for Many-Electron Systems [J]Phys. Rev., 1934, 46:618-622.
    [17] Head-Gordon M, Pople J A, Frisch M J. MP2 energy evaluation by direct methods [J].Chem. Phys. Lett., 1988, 153:503-506.
    [18] Pople J A, Binkley J S, Seeger R. Theoretical models incorporating electron correlation. [J]Int. J. Quant. Chem. Symp., 1976, 10:1-19.
    [19] Krishnan R, Pople J A. Approximate fourth-order perturbation theory of the electron correlation energy [J].Int. J. Quant. Chem., 1978, 14:91-100.
    [20] Raghavachari K , Pople J A, Replogle E S, et al. Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order [J].J. Phys. Chem., 1990, 94:5579-5586.
    [21] Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J].Phys. Rev., 1964, 136:B864-B871.
    [22] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J].Phys. Rev., 1965, 140:A1133-A1138.
    [23] Slater J C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids [M]. McGraw-Hill New York:1974.
    [24] Salahub D E, Zerner M C. The Challenge of d and f Electrons ACS[M] Washington, D.C.:1989.
    [25] Parr R G, Yang W. Density-functional theory of atoms and molecules[M].Oxford Univ. Press:Oxford, 1989.
    [26] Pople J A, Gill P W M, Johnson B G. Kohn—Sham density-functional theory within a finite basis set An implementation of analytic second derivatives of the gradient-corrected density functional energy [J].Chem. Phys. Lett., 1992, 199:557-560.
    [27] Johnson B G, Frisch M J. [J]J. Chem. Phys., 1994, 100:7429.
    [28] Labanowski J K, Andzelm J W. Density Functional Methods in Chemistry[M] Springer-Verlag: New York, 1991.
    [29] (a) Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J].Chem. Phys. Lett., 1996, 256:454-464. (b) Casida M E, Jamorski C, Casida K C, et al Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J].J. Chem. Phys., 1998, 108:4439-4449. (c) Statmann R E, Scuseria G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J].J. Chem. Phys., 1998, 109:8218-8224.
    [30] Matsuzawa N N, Ishitani A, Dixon D A, et al Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region [J].J. Phys. Chem. A., 2001, 105:4953-4962.
    [31] Boulet P, Chermette H, Daul C, et al Absorption Spectra of Several Metal Complexes Revisited by the Time-Dependent Density-Functional Theory-Response Theory Formalism [J].J. Phys. Chem. A, 2001, 105:885-984.
    [32] Jamorski C, Casida M E, Salahub D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study [J].J. Chem. Phys., 1996, 104:5134-5147.
    [33] van Gisbergen S J A, Kootstra F, Schipper P R T, et al. Density-functional-theory response-property calculations with accurate exchange-correlation potentials [J].Phys. Rev. A., 1998, 57:2556-2571.
    [34] (a) Del Bene J, Ditchfield R, Pople J A. Self-Consistent Molecular Orbital Methods. X. Molecular Orbital Studies of Excited States with Minimal andExtended Basis Sets [J].J. Chem. Phys., 1971, 55:2236-2241. (b) Ditchfield R, Del Bene J, Pople J A. Molecular oribital theory of the electronic structure of organic compounds. IX. n→π* Transition energies in small molecules [J].J. Am. Chem. Soc., 1972, 94:703-707.
    [35] (a) Zhang H X, Che C M. Aurophilic Attraction and Luminescence of Binuclear Gold(I) Complexes with Bridging Phosphine Ligands: ab initio Study [J].Chem. Eur. J., 2001, 7:4887-4893. (b) Liu T, Xia B H, Zhou X, et al. Theoretical Studies on Structures and Spectroscopic Properties of Bis-Cyclometalated Iridium Complexes [J].Organometallics, 2007, 26:143-149. (c). Pan Q J, Zhang H X. Ab Initio Studies on Metal?Metal Interaction and 3[σ*(d)σ(s)] Excited State of the Binuclear Au(I) Complexes Formed by Phosphine and/or Thioether Ligands [J].J. Phys. Chem. A. 2004, 108, 3650-3661.
    [36] (a) Wang J F, Feng J K. Theoretical Studies of the Absorption and Emission Properties of the Fluorene-Based Conjugated Polymers [J].Macromolecules, 2004, 37:3451-3458. (b) Liao Y, Feng J K, Yang L, et al. Theoretical Study on the Electronic Structure and Optical Properties of Mercury-Containing Diethynylfluorene Monomer, Oligomer, and Polymer [J].Organometallics, 2005, 24:385-394.
    [37] van Gisbergen S J A, Groeneveld J A, Rosa A, et al. Excitation Energies for Transition Metal Compounds from Time-Dependent Density Functional Theory. Applications to MnO4-, Ni(CO)4, and Mn2(CO)10 [J].J. Phys. Chem. A, 1999, 103:6835-6844.
    [38] Halls M D, Schlegel H B. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III) [J].Chem. Mater., 2001, 13:2632-2640.
    [39] Foresman J B, Frisch ?. Exploring Chemistry with Electronic Structure Methods[M], 2nd edition, Gaussian, Inc., Pittsburgh, PA, 1996.
    [40] Frank I. Excited State Molecular Dynamics[M]. Invited Review, SIMU Newsletter, 2001, 3:63-77.
    [41]王志中.现代量子化学计算方法[M].长春:吉林大学出版社,1998.
    [42] Pyykk? P. Relativistic effects in structural chemistry [J].Chem. Rev., 1988,88:563-594.
    [43] (a) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys., 1985, 82:299-310. (b) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J].J. Chem. Phys., 1985, 82:270-283. (c) Wadt W R, Hay P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi [J].J. Chem. Phys., 1985, 82: 284-298.
    [44]赫兹堡G.著,王鼎昌译.分子光谱与分子结构-双原子分子光谱[M].科学出版社, 1983.
    [45]周公度,段连运编著.结构化学基础[M].北京大学出版社, 1995.
    [46] Condon E U. Nuclear Motions Associated with Electron Transitions in Diatomic Molecules [J].Phys. Rev., 1928, 32:858-872.
    [47] Franck J. Elementary processes of photochemical reactions [J].Trans. Faraday Soc., 1925, 21:536-542.
    [48] Rohatgi-Makherjee K K.著,丁革非,孙万林,盛六四等译.光化学基础[M],北京:科学出版社,1991.
    [49] Cossi M, Barone V, Cammi R, et al. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model [J].Chem. Phys. Lett., 1996, 255:327-335.
    [50] Cossi M, Barone V, Mennucci B. Ab initio study of ionic solutions by a polarizable continuum dielectric model [J].Chem. Phys. Lett., 1998, 286:253-260.
    [51] Cancès E, Mennucci B, Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics [J].J. Chem. Phys., 1997, 107:3032-3041.
    [52] Barone V, Cossi M, Tomasi J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]J. Chem. Phys., 1997, 107:3210-3221.
    [53] Tunon I, Silla E, Tomasi J. Methylamines basicity calculations: in vacuo and in solution comparative analysis [J].J. Phys. Chem., 1992, 96:9043-9048.
    [1] (a) Wand Y, Herron N, Grushin V V, et al. Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds [J].Appl. Phys. Lett., 2001, 79:449-451. (b) Xin H, Li F Y, Shi M, et al. Efficient Electroluminescence from a New Terbium Complex [J].J. Am. Chem. Soc., 2003, 125:7166-7167. (c) Tsuboyama A, Iwawaki H, Furugori M, et al. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode [J]. J. Am. Chem. Soc., 2003, 125: 12971-12979.
    [2] Adachi C, Baldo M A, Forrest S R, et al. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials [J].Appl.Phys. Lett., 2000, 77:904-906.
    [3] (a) Smothers W K, Wrighton M S. Raman spectroscopy of electronic excited organometallic complexes: a comparison of the metal to 2,2'-bipyridine charge-transfer state of fac-(2,2'-bipyridine)tricarbonylhalorhenium and tris(2,2'-bipyridine)ruthenium(II) [J].J. Am. Chem. Soc., 1983, 105:1067-1069. (b) Wang Y S, Liu S X, Pinto M R, et al. Excited-State Structure and Delocalization in Ruthenium(II)?Bipyridine Complexes That Contain Phenyleneethynylene Substituents [J].J. Phys. Chem. A, 2001, 105:11118-111127.
    [4] Tung Y L, Wu P C, Liu C S, et al. Highly Efficient Red Phosphorescent Osmium(II) Complexes for OLED Applications [J].Organometallics, 2004, 23:3745-3748.
    [5] Dominey R N, Hauser B, Hubbard J, et al. Structural, spectral, and charge-transfer properties of ClRe(CO)3(2-PP) [2-PP = N-(2-pyridinylmethylene)phenylamine] and ClRe(CO)3(2-PC) [2-PC = N-(2-pyridinylmethylene)cyclohexylamine] [J].Inorg. Chem., 1991, 30:4754-4758.
    [6] Sacksteder L, Lee M, Demas J N, et al. Long-lived, highly luminescent rhenium(I) complexes as molecular probes: intra- and intermolecular excited-state interactions [J].J. Am. Chem. Soc., 1993, 115:8230-8238.
    [7] Shinozaki K, Takahashi N. Molecular Orbital Calculation and SpectroscopicStudy of the Photochemical Generation of Bis(2,2‘-bipyridine)rhodium(I) from Bis(2,2‘-bipyridine)(oxalato)rhodium(III) [J]. Inorg. Chem., 1996, 35:3917-3924.
    [8] Lamansky S, Djurovich P, Murphy D, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J].J. Am. Chem. Soc., 2001, 123:4304-4312.
    [9] (a) Lo K K W, Chung C K, Lee T K M, et al. New Luminescent Cyclometalated Iridium(III) Diimine Complexes as Biological Labeling Reagents [J].Inorg. Chem., 2003, 42:6886-6897. (b) Lo K K W, Ng D C M, Chung C K. First Examples of Luminescent Cyclometalated Iridium(III) Complexes as Labeling Reagents for Biological Substrates [J].Oranometallics, 2001, 20:4999-5001.
    [10] (a) Silaware N D, Goldman A S, Ritter R, et al. Reduction of carbon dioxide and other substrates using photochemical reactions of the decacarbonylditungstate2- complex [J].Inorg. Chem., 1989, 28:1231-1236. (b) Belmore K A, Vanderpool R A, Tsai J C, et al. Transition-metal-mediated photochemical disproportionation of carbon dioxide [J].J. Am. Chem. Soc., 1988, 110:2004-2005.
    [11] Gao R, Ho D G, Hernandez B, et al. Bis-cyclometalated Ir(III) Complexes as Efficient Singlet Oxygen Sensitizers [J].J. Am. Chem. Soc., 2002, 124:14828-14829.
    [12] Fang Y Q, Taylor N J, Hanan G S, et al. A Strategy for Improving the Room-Temperature Luminescence Properties of Ru(II) Complexes with Tridentate Ligands [J].J. Am. Chem. Soc., 2002, 124:7912-7913.
    [13] Yam V W W, Wong K M C, Chong S H F, et al. Synthesis, electrochemistry and structural characterization of luminescent rhenium(I) monoynyl complexes and their homo- and hetero-metallic binuclear complexes [J].J. organomet. Chem., 2003, 670:205-220
    [14] Ma Y G, Zhang H Y, Shen J C, et al. Electroluminescence from triplet metal—ligand charge-transfer excited state of transition metal complexes [J].Synthetic Metals, 1998, 94:245-248.
    [15] Lamansky S, Djurovich P, Murphy D, et al. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J].Inorg. Chem., 2001,40:1704-1711.
    [16] Hay P J. Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory [J].J. Phys. Chem. A, 2002, 106:1634-1641.
    [17] (a) Markham J P J, Lo S C, Magennis S W, et al. High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes [J].Appl. Phys. Lett., 2002, 80:2645-2647. (b) Adachi C, Baldo M A, Forrest S R. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials [J].Appl. Phys. Lett., 2000, 77:904-906. (c) Colombo M G, Gudel H U. Synthesis and high-resolution optical spectroscopy of bis[2-(2-thienyl)pyridinato-C3,N'](2,2'-bipyridine)iridium(III) [J].Inorg. Chem., 1993, 32:3081-3087. (d) Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].Appl. Phys. Lett., 1999, 75:4-6.
    [18] Ostrowski J C, Robinson M R, Heeger A J, et al. Amorphous iridium complexes for electrophosphorescent light emitting devices [J].Chem. Commun., 2002, 784-785.
    [19] King K A, Spellane P J, Watts R J. Excited-state properties of a triply ortho-metalated iridium(III) complex [J].J. Am. Chem. Soc., 1985, 107:1431-1432.
    [20] (a) Wilde A P, King K A, Watts R J. Resolution and analysis of the components in dual emission of mixed-chelate/ortho-metalate complexes of iridium(III) [J].J. Phys. Chem., 1991, 95:629-634. (b) Ohsawa Y, Sprouse S, King K A, et al. Electrochemistry and spectroscopy of ortho-metalated complexes of iridium(III) and rhodium(III) [J].J. Phys. Chem., 1987, 91:1047-1054. (c) Dedeian K, Djurovich P I, Garces F O, et al. A new synthetic route to the preparation of a series of strong photoreducing agents: fac-tris-ortho-metalated complexes of iridium(III) with substituted 2-phenylpyridines [J].J. Inorg. Chem., 1991, 30:1685-1687. (d) Colombo M G, Brunold T C, Riedener T, Güdel H U. Facial tris cyclometalated rhodium(3+) and iridium(3+) complexes: their synthesis, structure, and optical spectroscopic properties [J].Inorg. Chem., 1994, 33:545-550.
    [21] Nazeeruddin Md K, HumphryBaker R, Berner D, et al. Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices [J]. J. Am. Chem. Soc., 2003, 125:8790-8797.
    [22] (a) Chassot L, Müller E, von Zelewsky A. cis-Bis(2-phenylpyridine)platinum(II) (CBPPP): a simple molecular platinum compound [J]. Inorg. Chem. 1984, 23, 4249-4253. b) Maestri M, Sandrini D, Balzani V, et al. Luminescence of ortho-metallated platinum(II) complexes [J].Chem. Phys. Lett. 1985, 122, 375-379. (c) Chassot L, von Zelewsky A. Cyclometalated complexes of platinum(II): homoleptic compounds with aromatic C,N ligands [J].Inorg. Chem. 1987, 26, 2814-2818. (d) Jolliet P, Gianini M, von Zelewsky A, et al. Cyclometalated Complexes of Palladium(II) and Platinum(II): cis-Configured Homoleptic and Heteroleptic Compounds with Aromatic CN Ligands [J].Inorg. Chem. 1996, 35, 4883-4888.
    [23] Chin C S, Eum M S, Kim S, et al. New Type of Photoluminescent Iridium Complex: Novel Synthetic Route for Cationic trans-Bis(2-phenylpyridinato)iridium(III) Complex [J].Eur. J. Inorg. Chem., 2006, 4979-4982.
    [24] Obara S, Itabashi M, Okuda F, et al. Highly Phosphorescent Iridium Complexes Containing Both Tridentate Bis(benzimidazolyl)-benzene or -pyridine and Bidentate Phenylpyridine: Synthesis, Photophysical Properties, and Theoretical Study of Ir-Bis(benzimidazolyl)benzene Complex [J].Inorg. Chem., 2006, 45, 8907-8921.
    [25] (a) Hwang F M, Chen H Y, Chen P S, et al. Iridium(III) Complexes with Orthometalated Quinoxaline Ligands: Subtle Tuning of Emission to the Saturated Red Color [J].Inorg. Chem., 2005, 44:1344-1353. (b) Namdas E B, Ruseckas A, Samuel I D W, et al. Photophysics of Fac-Tris(2-Phenylpyridine) Iridium(III) Cored Electroluminescent Dendrimers in Solution and Films [J].J. Phys. Chem. B, 2004, 108:1570-1577 (c) Laskar I R, Chen T M. Tuning of Wavelengths: Synthesis and Photophysical Studies of Iridium Complexes and Their Applications in Organic Light Emitting Devices [J].Chem. Mater., 2004, 16:111-117. (d) Bhalla G, Oxgaard J, GoddardIII W A, et al. Anti-Markovnikov Hydroarylation of Unactivated Olefins Catalyzed by a Bis-tropolonato Iridium(III) Organometallic Complex[J].Organometallics, 2005, 24:3229-3232.
    [26] Frisch M J, Trucks G W, Pople J A, et al. Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford, CT, 2004.
    [27] Runge E, Gross E K U. Density-Functional Theory for Time-Dependent Systems [J].Phys. Rev. Lett., 1984, 52:997-1000.
    [28] (a) Stanton J F, Gauss J, Ishikawa N, et al. A comparison of single reference methods for characterizing stationary points of excited state potential energy surfaces [J].J. Chem. Phys., 1995, 103:4160-4174. (b) Foreman J B, Head-Gordon M, et al. Toward a systematic molecular orbital theory for excited states [J].J. Phys. Chem., 1992, 96:135-149. (c) Waiters V A, Hadad C M, Thiel Y, et al. Assignment of the ~A state in bicyclobutane. The multiphoton ionization spectrum and calculations of transition energies [J].J. Am. Chem. Soc., 1991, 113:4782-4791.
    [29] (a) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys., 1985, 82:299-310. (b) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J].J. Chem. Phys., 1985, 82:270-283.
    [30] (a) Statmann R E, Scuseria G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J].J. Chem. Phys., 1998, 109:8218-8224. (b) Matsuzawa N N, Ishitani A. [J].J. Phys. Chem. A, 2001, 105:4953. (c) Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J].J. Chem. Phys., 1998, 108:4439-4449.
    [31] Becke A D. Density-functional thermochemistry. III. The role of exact exchange [J].J. Chem. Phys. 1993, 98:5648-5652.
    [32] (a) Cossi M, Scalmani G, Regar N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution [J].J. Chem. Phys., 2002, 117:43-54. (b) Barone V, Cossi M. A new definition of cavities for the computation of solvation free energies by thepolarizable continuum model [J].J. Chem. Phys., 1997, 107:3210-3221.
    [33] Monat J E, Rodriguez J H, McCusker J K. Ground- and Excited-State Electronic Structures of the Solar Cell Sensitizer Bis(4,4‘-dicarboxylato-2,2‘-bipyridine)bis(isothiocyanato)ruthenium(II) [J].J. Phys. Chem. A, 2002, 106:7399-7406.
    [34] Yang L, Feng J K, Ren A M. Theoretical studies of ground and excited electronic states of complexes M(CO)4(phen) (M = Cr, Mo, W; phen = 1,10-phenanthroline) [J].Synthetic Metals, 2005, 152:265-268.
    [35] (a) Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J].Chem. Phys. Lett., 1996, 256:454-464. (b) Rosa A, Baerends E J, van Gisbergen S J A V, et al. Electronic Spectra of M(CO)6 (M = Cr, Mo, W) Revisited by a Relativistic TDDFT Approach [J].J. Am. Chem. Soc., 1999, 121:10356-10365
    [36] (a) Nakatsuji H. Cluster expansion of the wavefunction. Excited states [J].Chem. Phys. Lett., 1978, 59:362-364 (b) Nakatsuji H, Hirao K. Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory [J].J. Chem. Phys., 1978, 68:2053-2065
    [37] Zhang Y H, Xia B H, Pan Q J, Zhang H X. Electronic structures and spectroscopic properties of nitrido-osmium(VI) complexes with acetylide ligands [OsN(CCR)4]– R=H, CH3, and Ph by density functional theory calculation [J].J. Chem. Phys., 2004,124:144309/1-8.
    [38] (a) Feliz M, Ferraudi G. Charge-Transfer Processes in (4-Nitrobenzoate)Re(CO)3(azine)2 Complexes. Competitive Reductions of 4-Nitrobenzoate and Azine in Thermally and Photochemically Induced Redox Processes [J].Inorg. Chem., 1998, 37:2806-2810. (b) Chanda N, Sarkar B, Kar S, et al. Mixed Valence Aspects of Diruthenium Complexes [{(L)ClRu}2(μ-tppz)]n+ Incorporating 2-(2-Pyridyl)azoles (L) as Ancillary Functions and 2,3,5,6-Tetrakis(2-pyridyl)pyrazine (Tppz) as Bis-Tridentate Bridging Ligand [J].Inorg. Chem., 2004, 43:5128-5133. (c) Lewis J D, Perutz R N, Moore J N. Light-Controlled Ion Switching: Direct Observation of the Complete Nanosecond Release and Microsecond Recapture Cycle of an Azacrown-Substituted[(bpy)Re(CO)3L]+ Complex [J].J. Phys. Chem. A, 2004, 108:9037-9047.
    
    [1] (a) Balzani V, Juris A, Venturi M, et al. Luminescent and Redox-Active Polynuclear Transition Metal Complexes [J].Chem. Rev., 1996, 96:759-834. (b) Vl?ek Jr. A. Mechanistic roles of metal-to-ligand charge-transfer excited states in organometallic photochemistry [J].Coord. Chem. Rev., 1998, 177:219-256. (c) Demadis K D, Hartshorn, C M, Meyer T J. The Localized-to-Delocalized Transition in Mixed-Valence Chemistry [J].Chem. Rev., 2001, 101:2655-2686. (d) Carlson B, Phelan G D, Kaminsky W, et al. Divalent Osmium Complexes: Synthesis, Characterization, Strong Red Phosphorescence, and Electrophosphorescence [J].J. Am. Chem. Soc., 2002, 124:14162-14172. (e) Amarante D, Cherian C, Catapano, A, et al. Synthesis and Electronic Characterization of Bipyridine Dithiolate Rhodium(III) Complexes [J].Inorg. Chem., 2005, 44:8804-8809. (f) Tung Y L, Chen L S, Chi Y, et al. [J].Adv. Funct. Mater., 2006, 16:1615. (g) Wong C Y, Chan M C W, Zhu N Y, et al. Ruthenium(II)σ-Acetylide and Carbene Complexes Supported by the Terpyridine?Bipyridine Ligand Set: Structural, Spectroscopic, and Photochemical Studies [J].Organometallics, 2004, 23:2263-2272. (h) Lai S W, Lam H W Lu W, et al. Observation of Low-Energy Metal?Metal-to-Ligand Charge Transfer Absorption and Emission: Electronic Spectroscopy of Cyclometalated Platinum(II) Complexes with Isocyanide Ligands [J].Organometallics, 2002, 21:226-234. (i) Tocher D A, Pal P K, Datta D. Observation of 3MC Emission in a Mixed 1,10-Phenanthroline Complex of Ruthenium(II) Having a RuIIN6 Core at Room Temperature in Solution [J].J. Phys. Chem. A, 2003, 42:7704-7706.
    [2] (a) Wand Y, Herron N, Grushin V V, et al. Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds [J].Appl. Phys. Lett., 2001, 79:449-451. (b) Xin H, Li F Y, Shi M, et al. Efficient Electroluminescence from a New Terbium Complex [J].J. Am. Chem. Soc., 2003, 125:7166-7167. (c) Tsuboyama A, Iwawaki H, Furugori M, et al. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode [J]. J. Am. Chem. Soc., 2003, 125: 12971-12979.
    [3] (a) Lo K K W, Chung C K, Lee T K M, et al. New Luminescent Cyclometalated Iridium(III) Diimine Complexes as Biological Labeling Reagents [J].Inorg. Chem., 2003, 42:6886-6897. (b) Lo K K W, Ng D C M, Chung C K. First Examples of Luminescent Cyclometalated Iridium(III) Complexes as Labeling Reagents for Biological Substrates [J].Oranometallics, 2001, 20:4999-5001.
    [4] (a) Haynes A, Maitlis P M, Morris G E, et al. Promotion of Iridium-Catalyzed Methanol Carbonylation: Mechanistic Studies of the Cativa Process [J].J. Am. Chem. Soc., 2004, 126:2847-2861. (b) Oxgaard J, Bhalla G, Periana R A, et al. Mechanistic Investigation of Iridium-Catalyzed Hydrovinylation of Olefins [J].Organometallics, 2006, 25:1618-1625.
    [5] (a) Bondy C R, Loeb S, J. Amide based receptors for anions [J].Coord. Chem. Rev., 2003, 240:77-99. (b) Beer P D, Hayes E J. Transition metal and organometallic anion complexation agents [J].Coord. Chem. Rev., 2003, 240:167-189. (c) Xu G X, Tarr M A. A novel fluoride sensor based on fluorescence enhancement [J].Chem. Commun., 2004, 1050-1051. (d) Suksai C, Tuntulani T. Chromogenic anion sensors [J].Chem. Soc. Rev., 2003, 32:192-202. (e) Bühlmann P, Pretsch E, Bakker E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors [J].Chem. Rev. 1998, 98:1593-1688.
    [6] Carraway E R, Demas J N, DeGraff B A, et al. Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes [J].Anal. Chem., 1991, 63:337-342.
    [7] (a) de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling Recognition Events with Fluorescent Sensors and Switches [J].Chem. Rev., 1997, 97:1515-1566. (b) Demas J N, DeGraff B A. [J].Coord. Chem. Rev., 2001, 211:317.
    [8] Di Marco G, Lanza M, Mamo A, et al. Luminescent Mononuclear and Dinuclear Iridium(III) Cyclometalated Complexes Immobilized in a Polymeric Matrix as Solid-State Oxygen Sensors [J].Anal. Chem., 1998, 70:5019-5023.
    [9] Zhao Y G, Lin Z H, Ou S J, et al. A highly selective Ru-based chemosensor for fluoride ion [J].Inorg. Chem. Comm., 2006, 9:802-805
    [10] Ghosh A Ganguly B, Das A. Porphyrinic Dyads and Triads Assembled aroundIridium(III) Bis-terpyridine: Photoinduced Electron Transfer Processes [J].Inorg. Chem., 2001, 40:5507-5517.
    [11] McGee K A, Veltkamp D J, Marquardt B J et al. [J].J. Am. Chem. Soc., 2007, 129:15092.
    [12] Lam M H W, Lee D Y K, Man K W, et al. [J].J. Mater. Chem., 2000, 10:1825.
    [13] Huynh L, Wang Z, Yang J, et al. [J].Chem. Mater., 2005, 17:4765.
    [14] (a) Wong K M C, Tang W S, Lu X X, et al. [J].Inorg. Chem., 2005, 44:1492. (b) Tang W S, Lu X X, Wong K M C, et al. [J].J. Mater. Chem., 2005, 15:2714.
    [15] (a) Lamansky S, Djurovich P, Murphy D, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J].J. Am. Chem. Soc., 2001, 123:4304-4312. (b) Lamansky S, Djurovich P, Murphy D, et al. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J].Inorg. Chem., 2001, 40:1704-1711.
    [16] Hay P J. Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory [J].J. Phys. Chem. A, 2002, 106:1634-1641.
    [17] (a) Markham J P J, Lo S C, Magennis S W, et al. [J].Appl. Phys. Lett., 2002, 80:2645. (b) Colombo M G, Gudel H U. [J].Inorg. Chem., 1993, 32:3081. (c) Baldo M A, Lamansky S, Burrows P E, et al. [J].Appl. Phys. Lett., 1999, 75:4.
    [18] (a) Ostrowski J C, Robinson M R, Heeger A J, et al. [J].Chem. Commun., 2002, 784. (b) Yang C H, Cheng Y M, Chi Y, et al. [J].Angew. Chem. Int. Ed., 2007, 46:2418. (c) Yang C H, Tai C C, Sun I W. [J].J. Mater. Chem., 2004, 14:947. (d) Wong W Y, Ho C L, Gao Z Q, et al. [J].Angew. Chem. Int. Ed., 2006, 45:7800.
    [19] (a) Gao R, Ho D G, Hernandez B, et al. [J].J. Am. Chem. Soc., 2002, 124:14828. (b) Borisov S M, Klimant I. [J].Anal. Chem., 2007, 79:7501
    [20] Chen H L, Zhao Q, Wu Y B, et al. Selective Phosphorescence Chemosensor for Homocysteine Based on an Iridium(III) Complex [J].Inorg. Chem., 2007, 46:11075-11081.
    [21] Zhao Q, Cao T Y, Li F Y, et al. A Highly Selective and Multisignaling Optical?Electrochemical Sensor for Hg2+ Based on a Phosphorescent Iridium(III)Complex [J].Organometallics, 2007, 26:2077-2081.
    [22] Schmittel M, Lin H W. Luminescent Iridium Phenanthroline Crown Ether Complex for the Detection of Silver(I) Ions in Aqueous Media [J]. Inorg. Chem., 2007, 46:9139-9145.
    [23] Goodall W, Williams J A G. Iridium(III) bis-terpyridine complexes incorporating pendent N-methylpyridinium groups: luminescent sensors for chloride ions [J].J. Chem. Soc., Dalton Trans., 2000, 2893-2895.
    [24] (a) Lo K K W, Hui W K, Chung C K, et al. Biological labelling reagents and probes derived from luminescent transition metal polypyridine complexes [J].Coord. Chem. Rev., 2005, 249:1434-1450 (b) Lo K K W, Hui W K, Chung C K, et al. Luminescent transition metal complex biotin conjugates [J].Coord. Chem. Rev., 2006, 250:1724-1736
    [25] Zhao Q, Liu S J, Shi M, et al. Tuning Photophysical and Electrochemical Properties of Cationic Iridium(III) Complex Salts with Imidazolyl Substituents by Proton and Anions [J].Organometallics, 2007, 26:5922-5930
    [26] Frisch M J, Trucks G W, Pople J A. Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford, CT, 2004.
    [27] Runge E, Gross E K U. Density-Functional Theory for Time-Dependent Systems [J].Phys. Rev. Lett., 1984, 52:997-1000. [28) Becke A D. Density-functional thermochemistry. III. The role of exact exchange [J].J. Chem. Phys. 1993, 98:5648-5652..
    [29] (a) Statmann R E, Scuseria G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J].J. Chem. Phys., 1998, 109:8218-8224. (b) Matsuzawa N N, Ishitani A. [J].J. Phys. Chem. A, 2001, 105:4953. (c) Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J].J. Chem. Phys., 1998, 108:4439-4449.
    [30] (a) Cossi M, Scalmani G, Regar N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules insolution [J].J. Chem. Phys., 2002, 117:43-54. (b) Barone V, Cossi M. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].J. Chem. Phys., 1997, 107:3210-3221.
    [31] (a) Liu T, Zhang H X, Xia B H. Theoretical Studies on Structures and Spectroscopic Properties of a Series of Novel Cationic [trans-(C^N)2Ir(PH3)2]+ (C^N=ppy, bzq, ppz, dfppy) [J].J. Phys. Chem. A, 2007, 111:8724-8730. (b) Li J, Xu L C, Chen J C, et al. [J].J. Phys. Chem. A, 2006, 110:8174. (c) Zheng K C, Wang J P, Peng W L, et al. [J].J. Mol. Struct. (Theochem), 2005, 717:179. (d) Li J, Chen J C, Xu L C, et al. [J].J. Organomet. Chem., 2007, 692:831.
    [32] (a) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys., 1985, 82:299-310. (b) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J].J. Chem. Phys., 1985, 82:270-283.
    [33] (a) De Angelis F, Fantacci S, Evans N, et al. [J].Inorg. Chem., 2007, 46:5989. (b) Fantacci S, De Angelis F, Sgamellotti S, et al. [J].J. Am. Chem. Soc., 2005, 127:14144.
    [34] (a) Chou P T Chi Y. [J].Chem. Eur. J., 2007, 13:380. (b) Chi Y, Chou P T. Contemporary progresses on neutral, highly emissive Os(II) and Ru(II) complexes [J].Chem. Soc. Rev., 2007, 36:1421-1431. (c) Li E Y, Cheng Y M, Hsu C C, et al. Neutral RuII-Based Emitting Materials: A Prototypical Study on Factors Governing Radiationless Transition in Phosphorescent Metal Complexes [J].Inorg. Chem., 2006, 45:8041-8051.
    [35] (a) Kim Y S, Kim H L. Theoretical study of Ir(III) complexes with cyclometalated alkenylquinoline ligands [J].Curr. Appl. Phys., 2007, 7:504-508. (b) Kim Y S, Young H L. Theoretical study of a new phosphorescent iridium(III) quinazoline complex [J].Thin Solid Films, 2007, 515:5079-5083.
    [36] (a) Lo S C, Shipley C P, Bera R N, et al. Blue Phosphorescence from Iridium(III) Complexes at Room Temperature [J].Chem. Mater. 2006, 18, 5119-5129. (b) Yang C H, Li S W, Chi Y, et al. Heteroleptic Cyclometalated Iridium(III) Complexes Displaying Blue Phosphorescence in Solution and SolidState at Room Temperature [J].Inorg. Chem., 2005, 44:7770-7780.
    
    [1] Balch A L, Catalano V J, Olmstead M M. Chelate ring opening and metal ion relocation leading to the formation of a luminescent gold(I)-iridium(I)-gold(I) chain complex [J].J. Am. Chem. Soc., 1990, 112:2010-2011.
    [2] Tejel C, Ciriano M A, Villarroya B E, et al. A Hexanuclear Iridium Chain [J].Angew. Chem. 2003, 115:547.
    [3] Lamansky S, Djurovich P, Murphy D, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J].J. Am. Chem. Soc., 2001, 123:4304-4312
    [4] Lamansky S, Djurovich P, Murphy D, et al. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J].Inorg. Chem., 2001, 40:1704-1711.
    [4] Pan Q J, Zhang H X. Aurophilic attraction and excited-state properties of binuclear Au(I) complexes with bridging phosphine and/or thiolate ligands: An ab initio study [J].J. Chem. Phys., 2003, 119:4346-4352.
    [5] Hanna S D, Khan S I, Zink J I. Aurophilic attraction and excited-state properties of binuclear Au(I) complexes with bridging phosphine and/or thiolate ligands: An ab initio study [J].Inorg. Chem., 1996, 35:5813-5819.
    [7] Zhang H X, Che C M. Aurophilic Attraction and Luminescence of Binuclear Gold(I) Complexes with Bridging Phosphine Ligands: ab initio Study [J].Chem. Eur. J., 2001, 7:4887-4893.
    [8] Fan D M, Yang C T, Ranford J. D, et al. Chemical and biological studies of gold(III) complexes with uninegative bidentate N–N ligands [J].Dalton. Trans. 2003, 4749-4753.
    [9] Mendizabal F, Pyykk? P. Aurophilic attraction in binuclear complexes with Au(I) and Au(III). A theoretical study [J].Phys. Chem. Chem. Phys., 2004, 900-905.
    [10] Yang C H, Cheng Y M, Chi Y, et al. Blue-Emitting Heteroleptic Iridium(III) Complexes Suitable for High-Efficiency Phosphorescent OLEDs [J].Angew. Chem., 2007, 119:2470-2473.
    [11] Zhou G J, Wong W Y, Yao B, et al. Triphenylamine-Dendronized Pure Red Iridium Phosphors with Superior OLED Efficiency/Color Purity Trade-Offs [J].Angew. Chem., 2007, 119:1167-1169.
    [12] Chao H Y, Lu W, Li Y Q, et al. Organic Triplet Emissions of Arylacetylide Moieties Harnessed through Coordination to [Au(PCy3)]+. Effect of Molecular Structure upon Photoluminescent Properties [J].J. Am. Chem. Soc., 2002, 124:14696-14706.
    [13] Osawa M, Hoshino M, Akita M, et al. Synthesis and Characterization of Phenanthrylphosphine Gold Complex: Observation of Au-Induced Blue-Green Phosphorescence at Room Temperature [J].Inorg. Chem., 2005, 44:1157-1159.
    [14] Haynes A, Maitlis P M, Morris G E, et al. Promotion of Iridium-Catalyzed Methanol Carbonylation: Mechanistic Studies of the Cativa Process [J].J. Am. Chem. Soc., 2004, 126:2847-2861
    [15] Oxgaard J, Bhalla G, Periana R A, et al. Mechanistic Investigation of Iridium-Catalyzed Hydrovinylation of Olefins [J].Organometallics, 2006, 25:1618-1625.
    [16] Nussbaum S, Tettig S J, Stoor A, et al. Iridium(I) complexes containing bidentate pyrazolylgallate ligands. X-ray crystal structures of [Me2Gapz2]Ir(COD), [Ir(μ-pz)(CO)2]2, and [Ir(μ-3,5-Me2pz)(CO)2]2 [J]. Can. J. Chem. 1985, 63, 692-702.
    [17] Zhang Y, Donahue J P, Li C J. Gold(III)-Catalyzed Double Hydroamination of o-Alkynylaniline with Terminal Alkynes Leading to N-Vinylindoles [J].Org. Lett. 2007, 9:627-630.
    [18] Georgy M, Boucard V, Campagne J M. Gold(III)-Catalyzed Nucleophilic Substitution of Propargylic Alcohols [J].J. Am. Chem. Soc., 2005, 127:14180-14181.
    [19] Liu T, Xia B H, Zhou X, et al. Theoretical Studies on Structures and Spectroscopic Properties of Bis-Cyclometalated Iridium Complexes [J].Organometallics, 2007, 26:143-149.
    [20] Hay P J. Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory [J].J. Phys. Chem. A, 2002, 106:1634-1641.
    [21] Roundhill D M, Gray H B, Che C M. Pyrophosphito-bridged diplatinumchemistry [J].Acc. Chem. Res., 1989, 22:55-61.
    [22] Xia B H, Che C M, Philips D L, et al. Metal?Metal Interactions in Dinuclear d8 Metal Cyanide Complexes Supported by Phosphine Ligands. Spectroscopic Properties and ab Initio Calculations of [M2(μ-diphosphine)2(CN)4] and trans-[M(phosphine)2(CN)2] (M = Pt, Ni) [J].Inorg. Chem., 2002, 41:3866-3875.
    [23] (a) Spereline R P, Dickson M K, Roundhill D M. New route to the directed synthesis of mixed metal chain oligomers. Identification of a platinum complex having an intense emission in the visible spectrum in aqueous solution [J].J. Chem. Soc., Chem. Commun., 1977, 62-63. (b) Pan Q J, Fu H G, Yu H T, et al. Theoretical Insight into Electronic Structures and Spectroscopic Properties of [Pt2(pop)4]4-, [Pt2(pcp)4]4-, and Related Derivatives (pop = P2O5H22- and pcp = P2O4CH42-) [J].Inorg. Chem., 2006, 45:8729-8735; (c) King C, Auerbach R A, Fronczek F R, et al. Synthesis structure and spectroscopy of the diplatinum(II) complex Pt2(pcp)44-, a Pt2(pop)44- analog having methylenebisphosphinic acid bridges [J].J. Am. Chem. Soc., 1986, 108:5626-5627.
    [24] Sun Y H, Ye K Q, Zhang H Y, et al. Luminescent One-Dimensional Nanoscale Materials with PtII-PtII Interactions [J].Angew. Chem., 2006, 118:5738-5741
    [25] (a). King C, Wang J C, Khan Md N I, et al. Luminescence and metal-metal interactions in binuclear gold(I) compounds [J].Inorg. Chem., 1989, 28:2145-2149; (b). Che C M, Kwong H L, Poon C K, et al. Spectroscopy and redox properties of the luminescent excited state of [Au2(dppm)2]2+(dppm = Ph2PCH2PPh2) [J].J. Chem. Soc. Dalton Trans., 1990, 3215-3219.
    [26] Pan Q J and Zhang H X. Ab initio study on luminescence and aurophilicity of a dinuclear [(AuPH3)2(i-nmt)] complex (i-mnt = isomer-malononitriledithiolate) [J].Eur. J. Inorg. Chem., 2003, 4202-4210.
    [27] (a) Beveridge K A, Bushnell G W, Stobart S R, et al. Pyrazolyl-bridged iridium dimers. 4. Crystal and molecular structures of bis(cycloocta-1,5-diene)bis(μ-pyrazolyl)diiridium(I), its dirhodium(I) isomorph, and two bis(cycloocta-1,5-diene)diiridium(I) analogs incorporating 3,5-disubstitutedμ-pyrazolyl ligands [J].Organometallics, 1983, 2:1447-1451; (b) Bushnell G W, Decker M J, Eadie D T, et al. Pyrazolyl-bridged iridium dimers. 8. Two-center,electrophilic addition of activated acetylenes to bis(cycloocta-1,5-diene)bis(μ-pyrazolyl)diiridium(I) leading to a diiridacyclobutene configuration: regular, parallel coordination of methyl propiolate [J].Organometallics, 1985, 4:2106-2111.
    [28] (a) Lichtenberger D L, Copenhaver A S, Gray H B, et al. Valence electronic structure of bis(pyrazolyl)-bridged iridium dicarbonyl dimers. Electronic effects of 3,5-dimethylpyrazolyl substitution on metal-metal interactions [J].Inorg. Chem. 1988, 27:4488-4493; (b) Marshall J L, Hopkins M D, Miskowski V M, et al. Electronic spectra of pyrazolyl-bridged binuclear iridium(I) complexes [J].Inorg. Chem., 1992, 31:5034-5040.
    [29] Low P J. Organometallic chemistry of bi- and poly-nuclear complexes [J].Annu. Rep. Prog. Chem., Sect. A, 2002, 98:393-434.
    [30] Mann K R, Lewis N S, Williams R M, et al. Further studies of metal-metal bonded oligomers of rhodium(I) isocyanide complexes. Crystal structure analysis of octakis(phenyl isocyanide)dirhodium bis(tetraphenylborate) [J].Inorg. Chem., 1978, 17:828-834.
    [31] Pyykk? P, Li J, Runeberg N. Predicted ligand dependence of the Au(I)-Au(I) attraction in (XAuPH3)2 [J].Chem. Phys. Lett., 1994, 218:133-138.
    [32] (a) Xia B H, Zhang H X, Che C M, et al. Metal?Metal Interactions in Heterobimetallic d8?d10 Complexes. Structures and Spectroscopic Investigation of [M′M′′(μ-dcpm)2(CN)2]+ (M′= Pt, Pd; M′′= Cu, Ag, Au) and Related Complexes by UV?vis Absorption and Resonance Raman Spectroscopy and ab Initio Calculations [J].J. Am. Chem. Soc., 2003, 125:10362-10374. (b) Yip H K, Lin H M, Cheung K K, et al. Luminescent Heterobimetallic Complexes. Electronic Structure, Spectroscopy, and Photochemistry of [AuPt(dppm)2(CN)2]ClO4 and the X-ray Crystal Structure of [AgPt(dppm)2(CN)2(CF3SO3)] [J].Inorg. Chem., 1994, 33:1644-1651. (c) Chen Y D, Zhang L Y, Shi L X, et al. Syntheses, Characterization, and Luminescence of PtII?MI (M = Cu, Ag, Au) Heterometallic Complexes by Incorporating Pt(diimine)(dithiolate) with [M2(dppm)2]2+ (dppm = Bis(diphenylphosphino)methane) [J].Inorg. Chem., 2004, 43:7493-7501.
    [33] Forwark J M, Bohmann, Jr D, Fackler J P, et al. Luminescence Studies ofGold(I) Thiolate Complexes [J].Inorg. Chem., 1995, 34:6330-6336.
    [34] (a) Lee Y A, McGarrah J E, Lachicotte R J, et al. Multiple Emissions and Brilliant White Luminescence from Gold(I) O,O′-Di(alkyl)dithiophosphate Dimers [J].J. Am. Chem. Soc., 2002, 124:10662-10663. (b) Yam V W W, Li C K, Chan C L. Proof of Potassium Ions by Luminescence Signaling Based on Weak Gold-Gold Interactions in Dinuclear Gold(I) Complexes [J]. Angew. Chem. Int. Ed., 1998, 37:2857-2859. (c) Yam V W W, Cheng E C C, Zhou Z Y. A Highly Soluble Luminescent Decanuclear Gold(I) Complex with a Propeller-Shaped Structure [J].Angew. Chem. Int. Ed., 2000, 39:1683-1685.
    [35] (a) Balch A L, Catalano V J, Olmstead M M. Structure and photoluminescence of a heterodinuclear d10-d8 complex, bis[μ-bis(diphenylphosphino)methane]carbonylchlorogoldiridium1+ hexafluorophosphate [J].Inorg. Chem., 1990, 29:585-586. (b) Balch A L,Catalano V J. Ligation-induced changes in metal-metal bonding in luminescent binuclear complexes containing gold(I) and iridium(I) [J].Inorg. Chem., 1991, 30:1302-1308.
    [36] (a) Frisch M J, Head-Gordon M, Pople J A. A direct MP2 gradient method [J].Chem. Phys. Lett., 1990, 166:275-280. (b) M Frisch M J, Head-Gordon M, Pople J A. Semi-direct algorithms for the MP2 energy and gradient [J]Chem. Phys. Lett., 1990, 166:281-289.
    [37] (a) Statmann R E, Scuseria G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J].J. Chem. Phys., 1998, 109:8218-8224. (b) Matsuzawa N N, Ishitani A. [J].J. Phys. Chem. A, 2001, 105:4953. (c) Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J].J. Chem. Phys., 1998, 108:4439-4449.
    [38] Becke A D. Density-functional thermochemistry. III. The role of exact exchange [J].J. Chem. Phys. 1993, 98:5648-5652
    [39] (a) Cossi M, Scalmani G, Regar N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules insolution [J].J. Chem. Phys., 2002, 117:43-54. (b) Barone V, Cossi M. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].J. Chem. Phys., 1997, 107:3210-3221.
    [40] (a) Zhou X, Zhang H X, Pan Q J, et al. Electronic Structures and Spectroscopic Properties of [Pt(CNMe)2(CN)2]n (n = 1-4): A Theoretical Exploration of Promising Phosphorescent Materials [J].Eur. J. Inorg. Chem., 2007, 2181-2188; (b) Li M X, Zhang H X, Zhou X, et al. Theoretical Studies of the Electronic Structure and Spectroscopic Properties of [Ru(Htcterpy)(NCS)3]3- [J].Eur. J. Inorg. Chem., 2007, 2171-2180; (c) Monat J E, Rodriguez J H, McCusker J K. Ground- and Excited-State Electronic Structures of the Solar Cell Sensitizer Bis(4,4‘-dicarboxylato-2,2‘-bipyridine)bis(isothiocyanato)ruthenium(II) [J].J. Phys. Chem. A, 2002, 106:7399-7406.
    [41] H?berlen O D, R?sch N. Effect of phosphine substituents in gold(I) complexes: a theoretical study of MeAuPR3, R = H, Me, Ph [J].J. Phys. Chem., 1993, 37:4970-4973.
    [42] (a) Chin C S, Eum M S, Kim S, et al. New Type of Photoluminescent Iridium Complex: Novel Synthetic Route for Cationic trans-Bis(2-phenylpyridinato)iridium(III) Complex [J].Eur. J. Inorg. Chem., 2006, 4979-4982. (b) Bryce A B, Charnochk J M, Pattrichk R A D, et al. [J].J. Phys. Chem. A, 2003, 107:2516; (c) Naito K, Sakurai M, Egusa S. Molecular Design, Syntheses, and Physical Properties of Nonpolymeric Amorphous Dyes for Electron Transport [J].J. Phys. Chem. A, 1997, 101:2350-2357.
    [43] (a) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys., 1985, 82:299-310. (b) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J].J. Chem. Phys., 1985, 82:270-283.
    [44] (a) Pyykk? P, Runeberg N, Mendizabal F. Theory of the d10-d10 Closed-Shell Attraction: 1. Dimers Near Equilibrium [J].Chem. Eur. J., 1997, 3:1451-1457. (b) Pyykk? P, Mendizabal F. Theory of the d10-d10 Closed-Shell Attraction: 2. Long-Distance Behaviour and Nonadditive Effects in Dimers and Trimers of Type[(x-Au-L)n] (n = 2, 3; X = Cl, I, H; L = PH3, PMe3, -NCH) [J].Chem. Eur. J., 1997, 3:1458-1465; (c) Pyykk? P, Mendizabal F. Theory of d10?d10 Closed-Shell Attraction. III. Rings [J].Inorg. Chem., 1998, 37:3018-3025.
    [45] Frisch M J, Trucks, G W, Pople J A, et al. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
    [46] Dávila R M, Elduque A, Grant T, et al. Synthesis and characterization of dinuclear gold(I) ring and open-ring complexes containing saturated and unsaturated dithiol bridging ligands and phosphine or bis(diphosphine) donor ligands. Crystal structures of [Au2(μ.-S(CH2)3S) (μ-dppm)], [Au2(μ-MNT)(PPh3)2], [Au2(μ-S2C6H4) (PPh3)2], and [Au4(μ-S2C6H3CH3)2(PEt3)2] [J].Inorg. Chem., 1993, 32:1749-1755.
    [47] (a) Liu T, Zhang H X, Shu X, et al. Theoretical studies on structures and spectroscopic properties of a series of novel mixed-ligand Ir(III) complexes [Ir(Mebib)(ppy)X] [J].Dalton. Trans., 2007, 1922-1928. (b) Zhang Y H, Xia B H, Pan Q J, Zhang H X. Electronic structures and spectroscopic properties of nitrido-osmium(VI) complexes with acetylide ligands [OsN(CCR)4]– R=H, CH3, and Ph by density functional theory calculation [J].J. Chem. Phys., 2004,124:144309/1-8.
    [1] (a) Friend R F, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers [J].Nature, 1999, 397:121-128. (b) Bolink H J, Coronado E, Repetto D, et al. Inverted Solution Processable OLEDs Using a Metal Oxide as an Electron Injection Contact [J].Adv. Funct. Mater., 2008, 18:145-150. (c) Ge Z Y, Hayakawa T, Ando S, et al. Spin-Coated Highly Efficient Phosphorescent Organic Light-Emitting Diodes Based on Bipolar Triphenylamine-Benzimidazole Derivatives [J].Adv. Funct. Mater., 2008, 18:584-590 (d) Namai H, Ikeda H, Hoshi Y, et al. Thermoluminescence and a New Organic Light-Emitting Diode (OLED) Based on Triplet?Triplet Fluorescence of the Trimethylenemethane (TMM) Biradical [J].J. Am. Chem. Soc., 2007, 129:9032-9036.
    [2] Adachi C, Baldo M A, Forrest S R, et al. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials [J].Appl.Phys. Lett., 2000, 77:904-906.
    [3] (a) Chi Y, Chou P T. Contemporary progresses on neutral, highly emissive Os(II) and Ru(II) complexes [J].Chem. Soc. Rev., 2007, 36:1421-1431. (b) Yam V W W, Tang R P L, Wong K M C, et al. Syntheses, Electronic Absorption, Emission, and Ion-Binding Studies of Platinum(II) C^N^C and Terpyridyl Complexes Containing Crown Ether Pendants [J].Chem. Eur. J., 2008, 14:2644-2644. (c) Wong K M C, Yam V W W. Luminescence platinum(II) terpyridyl complexes—From fundamental studies to sensory functions [J].Coor. Chem. Rev., 2007, 251:2477-2488.
    [4] (a) Chang C J, Yang C H, Chen K, et al. Color tuning associated with heteroleptic cyclometalated Ir(III) complexes: influence of the ancillary ligand [J].Dalton. Trans., 2007, 1881-1890. (b) Wong W Y, Ho C L, Gao Z Q, et al. Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors [J].Angew. Chem. Int. Ed., 2006, 45:7800-7803. (c) Yu X M, Kwok H S, Wong W Y, et al. High-Efficiency White Organic Light-Emitting Devices Based on a Highly Amorphous Iridium(III) Orange Phosphor [J].Chem. Mater., 2006, 18:5097-5103. (d) Ho C L, Wong W L, Wang Q, et al. A Multifunctional Iridium-Carbazolyl Orange Phosphor for High-PerformanceTwo-Element WOLED Exploiting Exciton-Managed Fluorescence/Phosphorescence [J].Adv. Funct. Mater., 2008, 18:928-937.
    [5] (a) Lamansky S, Djurovich P, Murphy D, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J].J. Am. Chem. Soc., 2001, 123:4304-4312. (b) Lamansky S, Djurovich P, Murphy D, et al. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes [J].Inorg. Chem., 2001, 40:1704-1711.
    [6] Hay P J. Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory [J].J. Phys. Chem. A, 2002, 106:1634-1641.
    [7] (a) Markham J P J, Lo S C, Magennis S W, et al. High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes [J].Appl. Phys. Lett., 2002, 80:2645-2647. (b) Colombo M G, Gudel H U. Synthesis and high-resolution optical spectroscopy of bis[2-(2-thienyl)pyridinato-C3,N'](2,2'-bipyridine)iridium(III) [J].Inorg. Chem., 1993, 32:3081-3087. (c) Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J].Appl. Phys. Lett., 1999, 75:4-6.
    [8] (a) Ostrowski J C, Robinson M R, Heeger A J, et al. Amorphous iridium complexes for electrophosphorescent light emitting devices [J].Chem. Commun., 2002, 784-785. (b) Yutaka T, Obara S, Ogawa S, et al. Syntheses and Properties of Emissive Iridium(III) Complexes with Tridentate Benzimidazole Derivatives [J].Inorg. Chem., 2005, 44:4737-4746.
    [9] (a) King K A, Spellane P J, Watts R J. Excited-state properties of a triply ortho-metalated iridium(III) complex [J].J. Am. Chem. Soc., 1985, 107:1431-1432. (b) Nazeeruddin Md K, Humphry–Baker R, Berner D, et al. Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices [J].J. Am. Chem. Soc., 2003, 125:8790-8797.
    [10] (a) Lowry M S, Hudson W R, Pascal R A Jr., et al. Accelerated Luminophore Discovery through Combinatorial Synthesis [J].J. Am. Chem. Soc., 2004,126:14129-14135. (b) Slinker J D, Gorodetsky A A, Lowry M S, et al. Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex [J].J. Am. Chem. Soc., 2004, 126:2763-2767. (c) Coughlin F J, Westrol M S, Oyler K D, et al. Synthesis, Separation, and Circularly Polarized Luminescence Studies of Enantiomers of Iridium(III) Luminophores [J].Inorg. Chem., 2008, 47:2039-2048.
    [11] (a) Di Marco G, Lanza M, Mamo A, et al. Luminescent Mononuclear and Dinuclear Iridium(III) Cyclometalated Complexes Immobilized in a Polymeric Matrix as Solid-State Oxygen Sensors [J].Anal. Chem., 1998, 70:5019-5023 . (b) Borisov S M, Klimant I. Ultrabright Oxygen Optodes Based on Cyclometalated Iridium(III) Coumarin Complexes [J].Anal. Chem., 2007, 79:7501-7509. (c) Schmittel M, Lin H W. Luminescent Iridium Phenanthroline Crown Ether Complex for the Detection of Silver(I) Ions in Aqueous Media [J].Inorg. Chem., 2007, 46:9139-9145.
    [12] (a) Volpe M, Wu G, Iretskii A, et al. Photochemical and Time Resolved Spectroscopic Studies of Intermediates Relevant to Iridium-Catalyzed Methanol Carbonylation: Photoinduced CO Migratory Insertion [J].Inorg. Chem. 2006, 45:1861-1870. (b) Ozkar S, Finke R G. Iridium(0) Nanocluster, Acid-Assisted Catalysis of Neat Acetone Hydrogenation at Room Temperature: Exceptional Activity, Catalyst Lifetime, and Selectivity at Complete Conversion [J].J. Am. Chem. Soc., 2005, 127:4800-4808 (c) Gottker-Schnetmann I, White P, Brookhart M. Iridium Bis(phosphinite) p-XPCP Pincer Complexes: Highly Active Catalysts for the Transfer Dehydrogenation of Alkanes [J].J. Am. Chem. Soc., 2004, 126:1804-1811.
    [13] (a) Lo K K W, Chung C K, Lee T K M, et al. New Luminescent Cyclometalated Iridium(III) Diimine Complexes as Biological Labeling Reagents [J].Inorg. Chem., 2003, 42:6886-6897. (b) Lo K K W, Ng D C M, Chung C K. First Examples of Luminescent Cyclometalated Iridium(III) Complexes as Labeling Reagents for Biological Substrates [J].Oranometallics, 2001, 20:4999-5001.
    [14] Tamayo A B, Alleyne B D, Djurovich P I, et al. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes [J].J. Am.Chem. Soc., 2003, 125:7377-7387
    [15] (a) Collin J P, Dixon I M, Sauvage J P, et al. Synthesis and Photophysical Properties of Iridium(III) Bisterpyridine and Its Homologues: a Family of Complexes with a Long-Lived Excited State [J].J. Am. Chem. Soc., 1999, 121:5009-5016. (b) Dixon I M, Collin J P, Sauvage J P, et al. Porphyrinic Dyads and Triads Assembled around Iridium(III) Bis-terpyridine: Photoinduced Electron Transfer Processes [J].Inorg. Chem., 2001, 40:5507-5517.
    [16] Obara S, Itabashi M, Okuda F, et al. Highly Phosphorescent Iridium Complexes Containing Both Tridentate Bis(benzimidazolyl)-benzene or -pyridine and Bidentate Phenylpyridine: Synthesis, Photophysical Properties, and Theoretical Study of Ir-Bis(benzimidazolyl)benzene Complex [J].Inorg. Chem., 2006, 45:8907-8921.
    [17] (a) Lee H M, Zeng J Y, Hu C H, et al. A New Tridentate Pincer Phosphine/N-Heterocyclic Carbene Ligand: Palladium Complexes, Their Structures, and Catalytic Activities [J].Inorg. Chem., 2004, 43:6822-6829. (b) Kim S M, Park J H, Choi S Y, et al. (N-Heterocyclic Carbene)Gold(I)-Catalyzed Cycloisomerization of Cyclohexadienyl Alkynes to Tetracyclo[3.3.0.02,8.04,6]octanes [J].Angew. Chem. Int. Ed., 2007, 46:6172-6175.
    [18] Zhou Y B, Zhang X M, Chen W Z, et al. Synthesis, structural characterization, and luminescence properties of multinuclear silver complexes of pyrazole-functionalized NHC ligands containing Ag-Ag and Ag-pi interactions [J].J. Organomet. Chem., 2008, 693:205-215.
    [19] Catalano V J, Etogo A O. Luminescent coordination polymers with extended Au(I)-Ag(I) interactions supported by a pyridyl-substituted NHC ligand [J].J. Organomet. Chem., 2005, 690:6041-6050.
    [20] Sajoto T, Djurovich P I, Tamayo A, et al. Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands [J].Inorg. Chem., 2005, 44, 7992-8003.
    [21] Chien C H, Fujita S, Yamoto S, et al. Stepwise and one-pot syntheses of Ir(III) complexes with imidazolium-based carbene ligands [J].Dalton. Trans., 2008, 916-923.
    [22] Chang C F, Cheng Y M, Chi Y, et al. Highly Efficient Blue-Emitting Iridium(III)Carbene Complexes and Phosphorescent OLEDs [J].Angew. Chem. Int. Ed., 2008, 47:4542-4545.
    [23] (a) Di Censo D, Fantacci S, De Angelis F, et al. Synthesis, Characterization, and DFT/TD-DFT Calculations of Highly Phosphorescent Blue Light-Emitting Anionic Iridium Complexes [J].Inorg. Chem., 2008, 47:980-989. (b) Zhao Q, Liu S J, Shi M, et al. Series of New Cationic Iridium(III) Complexes with Tunable Emission Wavelength and Excited State Properties: Structures, Theoretical Calculations, and Photophysical and Electrochemical Properties [J].Inorg. Chem., 2006, 45:6152-6160.
    [24] (a) Liu T, Xia B H, Zhou X, et al. Theoretical Studies on Structures and Spectroscopic Properties of Bis-Cyclometalated Iridium Complexes [J].Organometallics, 2007, 26:143-149. (b) Lowry M S, Goldsmith J I, Slinker J D, et al. Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex [J].Chem. Mater., 2005, 17:5712-5719.
    [25] Runge E, Gross E K U. Density-Functional Theory for Time-Dependent Systems [J].Phys. Rev. Lett., 1984, 52:997-1000..
    [26] (a) Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J].Phys. Rev. Lett., 1996, 77:3865-3868. (b) Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple [J].Phys. Rev. Lett., 1997, 78, 1396-1396. (c) Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].J. Chem. Phys., 1999, 110:6158-6170.
    [27] (a) Ciofini I, LainéP P, Bedioui F, et al. Theoretical modelling of photoactive molecular systems: insights using the Density Functional Theory [J]. Comptes Rendus Chimie 2006, 9:226. (b) Ciofini I, LainéP P, Bedioui F, et al. Photoinduced Intramolecular Electron Transfer in Ruthenium and Osmium Polyads: Insights from Theory [J].J. Am. Chem. Soc., 2004, 126:10763-10777.
    [28] (a) Ciofini I, Zamboni M, LainéP P, et al. Intramolecular Spin Alignment in Photomagnetic Molecular Devices: A Theoretical Study [J].Chem. Eur. J., 2007, 13:5360-5377. (b) Jacquemin D, Perpète E A, Frisch M J, et al. Absorption andemission spectra in gas-phase and solution using TD-DFT: Formaldehyde and benzene as case studies [J].Chem. Phys. Lett., 2006, 421:272-276. (c) Jacquemin D, Perpète E A, Scalmani G, et al. Time-dependent density functional theory investigation of the absorption, fluorescence, and phosphorescence spectra of solvated coumarins [J].J. Chem. Phys., 2006, 125:164324/1-11.
    [29] (a) Statmann R E, Scuseria G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J].J. Chem. Phys., 1998, 109:8218-8224. (b) Matsuzawa N N, Ishitani A. Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region [J].J. Phys. Chem. A, 2001, 105:4953-4962. (c) Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J].J. Chem. Phys., 1998, 108:4439-4449.
    [30] (a) Cossi M, Scalmani G, Regar N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution [J].J. Chem. Phys., 2002, 117:43-54. (b) Barone V, Cossi M. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].J. Chem. Phys., 1997, 107:3210-3221.
    [31] (a) Yang L, Feng J K, Ren A M. Theoretical studies of ground and excited electronic states of complexes M(CO)4(phen) (M = Cr, Mo, W; phen = 1,10-phenanthroline) [J].Synthetic Metals, 2005, 152:265-268. (b) Monat J E, Rodriguez J H, McCusker J K. Ground- and Excited-State Electronic Structures of the Solar Cell Sensitizer Bis(4,4‘-dicarboxylato-2,2‘-bipyridine)bis(isothiocyanato)ruthenium(II) [J].J. Phys. Chem. A, 2002, 106:7399-7406. (c) Li M X, Zhou X, Xia B H, et al. [J]. Inorg. Chem., 2008, 47:2312.
    [32] (a) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys., 1985, 82:299-310. (b) Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc toHg [J].J. Chem. Phys., 1985, 82:270-283.
    [33] (a) Bryce A B, Charnochk J M, Pattrichk R A D, Hay P J, Wadt W R. EXAFS and Density Functional Study of Gold(I) Thiosulfate Complex in Aqueous Solution [J].J. Phys. Chem. A, 2003, 107:2516-2523. (b) Pan Q J, Zhang H X. Ab initio study on luminescence and aurophilicity of a dinuclear [(AuPH3)2(i-nmt)] complex (i-mnt = isomer-malononitriledithiolate) [J].Eur. J. Inorg. Chem., 2003, 4202-4210. (c) Naito K, Sakurai M, Egusa S. Molecular Design, Syntheses, and Physical Properties of Nonpolymeric Amorphous Dyes for Electron Transport [J].J. Phys. Chem. A, 1997, 101:2350-3257.
    [34] Frisch M J, Trucks G W, Pople J A, et al. Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford, CT, 2004.
    [1] Zhang X, Cote A P, Matzger A J. Synthesis and Structure of Fusedα-Oligothiophenes with up to Seven Rings [J].J. Am. Chem. Soc., 2005, 127:10502-10503.
    [2] Jorgensen M, Krebs F C. Stepwise and Directional Synthesis of End-Functionalized Single-Oligomer OPVs and Their Application in Organic Solar Cells [J].J. Org. Chem., 2004, 69:6688-6696.
    [3] Tand C W, VanSlyke S A. Organic electroluminescent diodes [J].Appl. Phys. Lett., 1988, 51:913-915. (b) Garnier F, Yassar A, Hajlaoui R, et al. Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers [J].J. Am. Chem. Soc., 1993, 115:8716-8721.
    [4] (a) Babel A, Jenekhe S A. n-Channel Field-Effect Transistors from Blends of Conjugated Polymers [J].J. Phys. Chem. B, 2002, 106:6129-6132. (b) Katz H E, Bao Z. The Physical Chemistry of Organic Field-Effect Transistors [J].J. Phys. Chem. B, 2000, 104:671-678.
    [5] Lahti P M, Obrzut J, Karasz F E. Use of the Pariser-Parr-Pople approximation to obtain practically useful predictions for electronic spectral properties of conducting polymers [J].Macromolecules, 1987, 20 2023-2026.
    [6] (a) Zhou X, Ren A M, Feng J K. Theoretical investigation on the ground- and excited-state properties of novel octupolar oligothiophene-functionalized truxenes and dipolar analogs [J].Polymer, 2004, 45:7747-7757. (b) Wang J F, Feng J K. Theoretical Studies of the Absorption and Emission Properties of the Fluorene-Based Conjugated Polymers [J].Macromolecules, 2004, 37:3451-3458. (c) Yang L, Ren A M, Feng J K, et al. Theoretical Investigation of Optical and Electronic Property Modulations ofπ-Conjugated Polymers Based on the Electron-Rich 3,6-Dimethoxy-fluorene Unit [J].J. Org. Chem., 2005, 70:3009-3020. (d) Liao Y, Feng J K, Yang L, et al. Theoretical Study on the Electronic Structure and Optical Properties of Mercury-Containing Diethynylfluorene Monomer, Oligomer, and Polymer [J].Organometallics, 2005, 24:385-394.
    [7] Burroughes J H, Bradley D D C, Brown A R, et al. The first polymer LEDs.Light-emitting-diodes based on conjugated polymers [J].Nature, 1990, 347:539-541. (b)Yamaguchi Y, Tanaka T, Kobayashi S, et al. Light-Emitting Efficiency Tuning of Rod-ShapedπConjugated Systems by Donor and Acceptor Groups [J].J. Am. Chem. Soc., 2005, 127:9332-9333.
    [8] (a) Belletete M, Bwaupre S, Bouchard J, et al. Theoretical and Experimental Investigations of the Spectroscopic and Photophysical Properties of Fluorene-Phenylene and Fluorene-Thiophene Derivatives: Precursors of Light-Emitting Polymers [J].J. Phys. Chem. B, 2000, 104:9118-9125. (b) Miyata Y, Nishinaga T, Komatsu K. Synthesis and Structural, Electronic, and Optical Properties of Oligo(thienylfuran)s in Comparison with Oligothiophenes and Oligofurans [J].J. Org. Chem., 2005, 70:1147-1153.
    [9] Fabiano E, Sala F D, Cingolani R, et al. Theoretical Study of Singlet and Triplet Excitation Energies in Oligothiophenes [J].J. Phys. Chem. A, 2005, 109:3078-3085.
    [10] (a) De Nicola A, Liu Y, Schanze K S, et al. One-pot synthesis of 2,5-diethynyl-3,4-dibutylthiophene substituted multitopic bipyridine ligands: redox and photophysical properties of their ruthenium(II) complexes [J].Chem. Commun., 2003, 288-289. (b) Goeb S, Nicola A D, Ziessel R. Oligomeric Ligands Incorporating Multiple 5,5‘-Diethynyl-2,2‘-bipyridine Moieties Bridged and End-Capped by 3,4-Dibutylthiophene Units [J].J. Org. Chem., 2005,70:1518-1529.
    [11] (a) Mo Y Q, Jiang X, Cao D R. Synthesis and Electroluminescent Properties of Soluble Poly(3,6-fluorene) and Its Copolymer [J].Org. Lett., 2007, 9:4371-4373. (b) Lee J I, Klaerner G, Miller R D. Oxidative Stability and Its Effect on the Photoluminescence of Poly(Fluorene) Derivatives: End Group Effects [J].Chem. Mater., 1999, 11:1083-1088. (c) Marsitzky D, Murray J, Campbell Scott J, et al. Amorphous Poly-2,7-fluorene Networks [J].Chem. Mater., 2001, 13:4285-4289. (d) Tapia M J, Burrows H D, Valente A J M, et al. Interaction between the Water Soluble Poly{1,4-phenylene-[9,9-bis(4-phenoxy butylsulfonate)]fluorene-2,7-diyl} Copolymer and Ionic Surfactants Followed by Spectroscopic and Conductivity Measurements [J].J Phys. Chem. B, 2005, 109:19108-19115. (e) Tapia M J, Burrows H D, Knaapila M, et al. Interaction between the Conjugated Polyelectrolyte Poly{1,4-phenylene[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl}Copolymer and the Lecithin Mimic 1-O-(l-Arginyl)-2,3-O-dilauroyl-sn-glycerol in Aqueous Solution [J].Langmuir, 2006, 22:10170-10174.
    [12] (a) List E J W, Guentner R, Freitas P S, et al. The Effect of Keto Defect Sites on the Emission Properties of Polyfluorene-Type Materials [J].Adv. Mater., 2002, 14:374-378. (b) Zojer E, Pogantsch A, Beljonne D, et al. Green emission from poly(fluorene)s: The role of oxidation [J].J. Chem. Phys., 2002, 117:6794-6802. (c) Romaner L, Piok T, Gadermaier C, et al. The influence of keto defects on photoexcitation dynamics in polyfluorene [J].Synth. Met., 2003, 139:851-854.
    [13] (a) Park S H, Jin Y, Kim J Y, et al. A blue-light-emitting polymer with a rigid backbone for enhanced color stability [J].Adv. Funct. Mater., 2007, 17:3063-3068. (b) Suh H, Jin Y, Park S H, et al. Stabilized Blue Emission from Organic Light-Emitting Diodes Using Poly(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[def]phenanthrene)) [J].Macromolecules, 2005, 38:6285-6289.
    [14] Bryce A B, Charnochk J M, Pattrichk R A D, et al. EXAFS and Density Functional Study of Gold(I) Thiosulfate Complex in Aqueous Solution [J].J. Phys. Chem. A, 2003, 107:2516-2523.
    [15] Pan Q J and Zhang H X. Ab initio study on luminescence and aurophilicity of a dinuclear [(AuPH3)2(i-nmt)] complex (i-mnt = isomer-malononitriledithiolate) [J].Eur. J. Inorg. Chem., 2003, 4202-4210.
    [16] Naito K, Sakurai M, Egusa S. EXAFS and Density Functional Study of Gold(I) Thiosulfate Complex in Aqueous Solution [J].J. Phys. Chem. A, 1997, 101:2350-2523.
    [17] Runge E, Gross E K U. Density-Functional Theory for Time-Dependent Systems [J].Phys. Rev. Lett., 1984, 52:997-1000.
    [18] (a) Casado J, Pappenfus T M, Mann K R, et al. Spectroscopic and Theoretical Study of the Molecular and Electronic Structures of a Terthiophene-Based Quinodimethane [J].ChemPhysChem, 2004, 5:529-539. (b) Milian B, Pou-Amerigo R, Viruela R, et al. On the electron affinity of TCNQ [J].Chem. Phy. Lett., 2004, 391:148-151.
    [19] Becke A D. Density-functional thermochemistry. III. The role of exactexchange [J].J. Chem. Phys. 1993, 98:5648-5652
    [20] Stephens P J, Devlin F J, Chabalowski F C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields [J].J. Phys. Chem., 1994, 98:11623-11627.
    [21] Novoa J J, Sosa C. Evaluation of the Density Functional Approximation on the Computation of Hydrogen Bond Interactions [J].J. Phys. Chem., 1995, 99:15837-15845.
    [22] Raghavachari K, Pople J A. Calculation of one-electron properties using limited configuration interaction techniques [J].Int. J. Quantum Chem., 1981, 20:1067-1071.
    [23] Halls M D, Schlegel H B. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III) [J].Chem. Mater., 2001, 13:2632-2640.
    [24] (a) Statmann R E, Scuseria G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J].J. Chem. Phys., 1998, 109:8218-8224. (b) Matsuzawa N N, Ishitani A. Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region [J].J. Phys. Chem. A, 2001, 105:4953-4962. (c) Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J].J. Chem. Phys., 1998, 108:4439-4449.
    [25] Frisch M J, Trucks G W, Pople J A. Gaussian 03, Revision C.02, Gaussian, Inc.: Wallingford, CT, 2004.
    [26] Puschnig P, Ambrosch-Draxl C. Density-functional study for the oligomers of poly(para-phenylene): Band structures and dielectric tensors [J].Phys. Rev. B, 1999, 60:7891-7898.
    [27] Colle R, Curioni A. Density-Functional Theory and Car-Parinello Study of Electronic, Structural, and Dynamical Properties of the Hexapyrrole Molecule [J].J. Phys. Chem. A, 2000, 104:8546-8550.
    [28] H?rhold H H Opfermann J. Synthesis and relation between structure and electrophysical properties [J].Makromol. Chem., 1970, 131:105-132.
    [29] (a) Brédas J L, Chance R R, Baughman R H, et al. Ab initio effective Hamiltonian study of the electronic properties of conjugated polymers [J].J. Chem. Phys., 1982, 76:3673-3678. (b) Brédas J L, Silbey R, Boudreaux D S, et al. Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole [J].J. Am. Chem. Soc., 1983, 105:6555-6559.
    [30] Kozaki M, Yonezawa Y, Igarashi H, et al. Novel cyclopentadithiophene dimers with small HOMO-LUMO gaps [J].Synthetic Metals, 2003, 135:107-108.
    [31] Miyamae T, Yoshimura D, Ishii H, et al. Ultraviolet photoelectron spectroscopy of poly(pyridine-2,5-diyl), poly(2,2-bipyridine-5,5-diyl), and their K-doped states [J].J. Chem. Phys., 1995, 103:2738-2744. (b) Miyamae T, Yoshimura D, Ishii H, et al. Photomission study of poly(pyridine-2,5-diyl), poly(2,2-bipyridine-5, 5-diyl) and their K-doped states [J].Electron. Spectrosc. Relat. Phenom., 1996, 78:399-401.
    [32] Cohen R, Stokbro K, Martin J M L, et al. Charge Transport in Conjugated Aromatic Molecular Junctions: Molecular Conjugation and Molecule?Electrode Coupling [J].J. Phys. Chem. C, 2007, 111:14893-14902
    [33] Ma J, Li S Y, Jiang Y S. A Time-Dependent DFT Study on Band Gaps and Effective Conjugation Lengths of Polyacetylene, Polyphenylene, Polypentafulvene, Polycyclopentadiene, Polypyrrole, Polyfuran, Polysilole, Polyphosphole, and Polythiophene [J].Macromolecules, 2002, 35:1109-1115.
    [34] Liu T, Gao J S, Xia B H, et al. Theoretical studies on the electronic structures and optical properties of the oligomers involving bipyridyl, thiophenyl and ethynyl groups [J].Polymer, 2007, 48:502-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700