醇溶性有机小分子电子注入/传输材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光二极管由于在平板显示及白光照明领域的应用潜力而引起了人们的广泛关注。其中,电子由电极注入,即电子注入,是非常重要的研究课题。通常情况下,可使用低功函的金属,如Ba、Ca、Mg等提高电子的注入。但这些元素对水、氧特别敏感,环境稳定性差。因而,利用阴极界面材料,提高在环境中较为稳定的金属,如Al、Ag、Au等的电子注入性能,显得尤为重要。目前,研究较多的阴极界面材料,包括纯粹的无机盐、有机共轭聚合物电解质或一些非离子型的小分子化合物、聚合物。本文的研究集中在制备和表征新型可溶液加工的小分子电子注入/传输材料方面。
     我们首次合成了含有枝状芳基单元的单铵基离子分子玻璃材料,命名为glass-1。该分子离子玻璃合成简单、容易纯化,并且在甲醇中具有非常好的溶解性;譬如:室温下,10 mg分子离子盐易溶于1 ml甲醇中,因而可以方便地从醇溶液中成膜。以该分子离子材料为电子注入/传输层的聚合物绿光器件ITO/PEDOT:PSS/P-PPV/glass-1/Al,最大电流效率达12.2 cd A-1,是纯Al器件的43倍,并接近Ba/Al器件的水平。
     在此基础上,设计制备了一系列含有线型共轭单元的单铵基分子离子盐,命名为1a/1b和2a/2b。通过在芴的9位上引入刚性的苯基单元,成功地将结晶态的1a/1b转变成无定形态的2a/2b,并且使离子盐在醇类溶剂中的溶解度也有了很大的提高。在阴离子相同的前提下,含有线性共轭单元的单铵基分子离子盐2a、2b表现出比含有枝状芳基单元的离子盐更好的器件性能。此外,我们还研究了阴离子的改变对材料自身及器件性能的影响。如材料的分解温度、溶解度、器件的稳定性。
     在对单铵基离子盐研究的基础上,设计合成了两组基于双铵基的离子盐,命名为dBr-1/dBF_4-1和dBr-2/dBF_4-2。相对于dBr-1/dBF_4-1,端基为3-(4-仲丁氧基苯基)-5-(1-萘基)苯基的dBr-2/dBF_4-2表现出更好的醇溶性。以小分子绿光材料为发光层,比较了双铵基离子盐dBF_4-2和单铵基离子盐2b作为电子注入/传输层的器件的电致发光性能。发现两者均能有效提高电子的注入/传输,并且器件性能和Ba/Al作为阴极的器件相当。
     为避免离子迁移对器件性能造成的潜在影响,设计合成了两个非离子型的电子注入/传输材料,分别用代号PA-1和PA-2表示。化合物PA-1和PA-2分别是基于二胺和三胺基的树枝状中性小分子。以PA-2为电子注入/传输层、高功函数金属Al为阴极所构成的小分子绿光器件,获得了10.6 cd A~(-1)的最大电流效率。
Because of the potential applications in flat panel displays and solid-state lighting, organic light-emitting diodes (OLEDs) have drawn greet attention. For OLEDs, efficient electron injection from various metal cathodes has been a subject of intensive research. The early OLEDs have used low work-function metals such as Ca and Mg as efficient cathodes. However, these metals are very sensitive to both moisture and oxygen. Thus it is very important to develop new cathode buffer materials that are capable of facilitating electron injection from more environmentally stable metals such as Al, Ag or Au. Up to now, a variety of electron-injection materials including inorganic salts, conjugated polyelectrolytes and non-ionic molecules or polymers have been reported. This thesis mainly focuses on the synthesis and characterization of new solution processable small molecular electron-injection moleculars.
     We first reported a monoammonium-based molecular glass containing a rigid and bulky branched aromatic unit, namely glass-1. It can be facilely synthesized and purified, showing good solubility in methanol. For instance, 10 mg of the sample can be readily dissolved in 1 ml of methanol at room temperature, so it can be processed from methanol solution. With this monoammonium salt as electron injection layer, a polymer yellow-green light-emitting device (ITO/PEDOT:PSS/P-PPV/glass-1/Al) shows a maximum current efficiency of 12.2 cd A-1, almost forty-two times higher than the bare Al device, which is comparable to that of the Ba/Al device.
     Further, we designed and synthesized a series of molecular monoammonium salts based on a linearπ-conjugated unit, namely 1a/1b and 2a/2b. Replacement of the ethyl groups in 1a/1b by ethoxyphenyl substituents at one of the two fluorenyl moieties can improve the solubility in methanol and promote glass formation of compounds 2a/2b. It has been found that 2a and 2b show better device performances than 1a and 1b, respectively. In addition, the counteranion has an important effect on the device performances of the OLEDs as well as on solubility and thermal properties of the resulting ionic salts. ?
     Based on the above monoammonium salts, we developed two types of bis-ammonium salts, namely dBr-1/dBF_4-1 and dBr-2/dBF_4-2. Compared to dBr-1/dBF_4-1, compounds dBr-2/dBF_4-2 containing 3-(4-sec-butoxyphenyl)-5-(1-naphthyl)phenyl substituents show better solubility in alcohol. The green light-emitting OLEDs based on the bis-ammonium salt dBF_4-2 and monoammonium salt 2b as the electron-injection layers and Al as the cathode show comparable performances.
     We have also designed and synthesized two non-ionic molecules, which were named as PA-1 and PA-2. Compounds PA-1 and PA-2 are based on diamine and triamine, respectively. The green light-emitting device with PA-2 as the electron-injection/transport layer and high work-function metal Al as cathode revealed a maximal efficiency of 10.6 cd A~(-1).
引文
[1]陈金鑫,黄孝文,有机电激发光材料与元件,台北:五南出版社,2005
    [2] Pope. M, Kallmann. H, Magnante. P, Electroluminescence in organic crystals, J. Chem. Phys. 1963, 38: 2042-2043
    [3] Vincett. P. S, Barlow. W. A, Hann. R. A, et al., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin. Solid. Films. 1982, 94: 171-183
    [4] Tang. C. W, Vanslyke. S. A, Organic electroluminescent diodes, Appl. Phys. Lett. 1987, 51: 913-915
    [5] Burroughes. J. H, Bradley. D. D. C, Brown. A. R, et al., Light-emitting diodes based on conjugated polymer, Nature. 1990, 347: 539-541
    [6] Braun. D, Heeger. A. J, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett. 1991, 58: 1982-1984
    [7] Zhao. L, Li. C, Zhang. Y, et al., Anthracene-cored dendrimer for solution-processible blue emitter: Syntheses, characterizations, photoluminescence, and electroluminescence, Macromol. Rapid. Commun. 2006, 27: 914-920
    [8] Huang. J, Li. C, Xia. Y. J, et al., Amorphous fluorescent organic emitters for efficient solution-processed pure red electroluminescence: Synthesis, purification, morphology, solid-state photoluminescence, and device characterizations, J. Org. Chem. 2007, 72: 8580-8583
    [9] Wang. L, Jiang. Y, Luo. J, et al., Highly Efficient and Color-Stable Deep-Blue Organic Light-Emitting Diodes Based on a Solution-Processible Dendrimer, Adv. Mater. 2009, 21: 4854.
    [10] Huang. J, Li. Q, Zou. J. H, et al., Electroluminescence and Laser Emission of Soluble Pure Red Fluorescent Molecular Glasses Based on Dithienylbenzothiadiazole, Adv. Funct. Mater. 2009, 19: 2978-2986
    [11] Li. Y, Li. A. Y, Li. B. X, et al., Asymmetrically 4,7-Disubstituted Benzothiadiazoles as Efficient Non-doped Solution-Processable Green Fluorescent Emitters, Org. let. 2009, 11: 5318-5321
    [12] Tang. S, Liu. M. R, Lu. P, et al., A Molecular Glass for Deep-Blue Organic Light-Emitting Diodes Comprising a 9,9′-Spirobifluorene Core and Peripheral Carbazole Groups, Adv. Funct. Mater. 2007: 17, 2869-2877
    [13] Zhang. M, Xue. S. F, Dong. W. Y, et al., Highly-efficient solution-processed OLEDs based on new bipolar emitters, Chem. Commun. 2010, 46: 3923-3925
    [14] Liu. F, Tang. C, Chen. Q. Q, et al., Pyrene functioned diarylfluorenes as efficient solution processable light emitting molecular glass, Org. Electro. 2009,10: 256-265
    [15] Fang. J. L, Zhou. Y, Li. Y. F, et al., Solution-Processable Gradient red-emittingπ-conjugated dendrimers based on benzothiadiazole as core: synthesis, characterization, and cevice performances. J. Org. Chem., 2009, 74: 7449-7456
    [16] Zhang. M, Xue. S.F, Ma. Y.G, et al., Highly-efficient solution-processed OLEDs based on new bipolar emitters. Chem. Commun., 2010, 46: 3923–3925
    [17] Huang J.S., Watanab T.e, Yang Y. ea al., Highly efficient red-emission polymer phosphorescent light-emitting diodes based on two novel tris(1-phenylisoquinolinato- C2,N)iridium(III) derivatives, Adv. Mater. 2007, 19, 739-743
    [18] Huang. C, Zhen. C. G, Su S. P, et al., High-efficiency solution processable electrophosphorescent iridium complexes bearing polyphenylphenyl dendron ligands Organomet. Chem. 2009, 694: 1317–1324;
    [19] Yang. Y, Zhou. y, He. Q. G, et al., Solution-Processible red-emission organic materials containing triphenylamine and benzothiodiazole units: synthesis and applications in organic light-emitting diodes. J. Phys. Chem. B: 2009, 113, 7745–7752
    [20] Adachi. C, Tsutsui. T, Saito. S, et al. Organic electroluminescent device having a hole conductor as an emitting layer. Appl. Phys. Lett. 1989, 55: 1489-1491
    [21] Huang. F, Wu. H. B, Wang. D, et al., Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater. 2004, 16: 708-716
    [22] Huang. F, Hou. L. T, Wu. H. B, et al., High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: Green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors. J. Am. Chem. Soc. 2004, 126: 9845-9853
    [23] Wu. H. B, Huang. F, Mo. Y. Q, et al., Efficient electron injection from a bilayer cathodeconsisting of aluminum and alcohol-/water-soluble conjugated polymers. Adv. Mater. 2004, 16: 1826-1830
    [24] Zhou. G., Y. H. Geng, Cheng. Y. X, et al., Efficient blue electroluminescence from neutral alcohol-soluble polyfluorenes with aluminum cathode, Appl. Phys. Lett. 2006, 89, 233501
    [25] Niu. X. D, Qin. C. J, Zhang. B. H, et al., Efficient multilayer white polymer light-emitting diodes with aluminum cathodes, Appl. Phys. Lett. 2007, 90: 203513
    [26] Friend. R. H, Gymer. R. W, Holmes. A. B, et al., Electroluminescence in conjugated polymers, Nature. 1999, 397: 121-128
    [27]黄春晖,李富友,黄维,有机电致发光材料与器件导论.复旦大学出版社,2005.
    [28] Malliaras. G. G, Salem. J. R, Brock. P. J, et al.,Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes, J. Appl. Phys. 1998, 84: 1583-1587
    [29] Yu. G, Zhang. C, Heeger. A. J, Dual-Function Semiconducting Polymer Devices: Light- emitting and Photodetecting Diodes, Appl. Phys. Lett. 1994, 64: 1540-1542
    [30] Anderson. J. D, McDonald. E. M, Lee. P. A, et al., Electrochemistry and Electrogenerated Chemiluminescence Processes of the Components of Aluminum Quinolate/Triarylamine, and Related Organic Light-Emitting Diodes, J. Am. Chem. Soc. 1998, 120: 9646-9655
    [31] Kepler. R. G, Beeson. P. M, Jacobs. S. J, et al., Electron and hole mobility in tris(8-hydroxyquinolinolato-N1,O8) aluminum, Appl. Phys. Lett. 1995, 66: 3618-3620
    [32] Barth. S, Muller. P, Riel. H, et al., Electron mobility in tris(8-hydroxy- quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes,J. Appl. Phys. 2001, 89: 3711-3719
    [33] Liu. Z, Pinto. J, Soares. J, et al., Efficient multilayer organic light emitting diode, Synth. Met. 2001, 122: 177-179
    [34] Yin. S. G, Hua. Y. L, Chen. X. H, et al., Improved efficiency of molecular organic EL devices based on super molecular structure, Synth. Met. 2000, 111: 109-112
    [35] Tang. H, Do. L. M, Kim. Y, et al., Synthesis and luminescence behaviors of aluminumcomplex with mixed ligands, Synth. Met. 2001, 121: 1669-1670
    [36] Shao. Y, Qiu. Y, Hu. XM, et al., A high thermal stable light-emitting complex based on a tridentate ligand, Chem. Lett. 2000, 9: 1068-1069
    [37] Bao. Z, Lovinger. J. A, Brown. J, New air-stable n-channel organic thin film transistors. J. Am. Chem. Soc. 1998, 120: 207-208
    [38] Sano, T; Nishio, Y; Hamada, Y, et al., Design of conjugated molecular materials for optoelectronics, J. Mater. Chem. 2000, 10: 157-161
    [39] Hamada. Y, Sano. T, Fujita. M, et al., Organic electroluminescent devices with 8-hydroxyquinoline derivative-metal complexes as an emitter, Jpn. J. Appl. Phys. 1993, 32: L514-15
    [40] Burrows. P. E, Sapochak. L. S, McCarty. D. M, Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices, Appl. Phys. Lett. 1994, 64: 2718-2720
    [41]吴有智,郑新友,朱文清等,发光学报. 2003, 24: 473-476
    [42] Guillaud. G, Chaabane. R. B, Jouve. C, et al., Transient behavior of thin film transistors based on nickel pathalocyanine, Chem. Phys. L ett. 1994, 219: 123 -125.
    [43] Chen. B. J, Sun. X. W, Li. Y. K, Influences of central metal ions on the electroluminescene and transport properties of tris-(8-hydroxyquinoline) metal chelates, Appl. Phys. Lett. 2003, 82: 3017-3019
    [44] Adachi. C, Tsutsui. T, Saito. S, Organic electroluminescent device having a hole conductor as an emitting layer, Appl. Phys. Lett. 1989, 55: 1489-1491
    [45] Pommerehne. J, Vestweber. H, Guss. W, et al., Efficient two layer leds on a polymer blend basis, Adv. Mater. 1995, 7: 551-554
    [46] Adachi. C, Tsutsui. T, Saito. S, Blue light-emitting organic electroluminescent devices, Appl. Phys. Lett. 1990, 56: 799-801
    [47] Cao. Y, Parker. I. D, Yu. G, et al., Improved quantum efficiency for electroluminescence in semiconducting polymers, Nature. 1999, 397: 414-417
    [48] Hoshino. S, Ebata. K, Furukawa. K, Near-ultraviolet electroluminescent performance of polysilane-based light-emitting diodes with a double-layer structure, J. Appl. Phys. 2000, 87: 1968-1973
    [49] Tokuhisa. H, Era. M, Tsutsui. T, et al., Electron drift mobility of oxadiazole derivatives doped in polycarbonate, Appl. Phys. Lett. 1995, 66: 3433-3435
    [50] Yasuda. T, Yamaguchi. Y, Zou. D. C, et al., Carrier mobilities in organic electron transport materials determined from space charge limited current, Jpn. J. Appl. Phys. 2002, 41: 5626-5629
    [51] Ichikawa. M, Kawaguchi. T, Kobayashi. K, et al. Bipyridyl oxadiazoles as efficient and durable electron-transporting and hole-blocking molecular materials, J. Mater. Chem. 2006, 16: 221-225
    [52] Wang. C. S, Jung. G. Y, Batsanov. A. S, et al., New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids, J. Mater. Chem. 2002, 12: 173-180
    [53] Wang. C. S, Jung. G. Y, Hua. Y. L, et al., An efficient pyridine- and oxadiazole-containing hole-blocking material far organic light-emitting diodes: Synthesis, crystal structure, and device performance, Chem. Mater. 2001, 13: 1167-1173
    [54] O’Brien. D, Bleyer. A, Lidzey. D. G, et al., Efficient multilayer electroluminescence devices with poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) as the emissive layer, J. Appl. Phys. 1997, 82: 2662-2670
    [55] Tamoto. N, Adachi. C, Nagai. K, Electroluminescence of 1,3,4-oxadiazole and triphenylamine-containing molecules as an emitter in organic multilayer light emitting diodes, Chem. Mater. 1997, 9: 1077-1085
    [56] Bettenhausen. J, Strohriegl. P, Dendrimers with 1,3,4-oxadiazole units. Synthesis and characterization, Macromol. Rapid. Commun. 1996, 17: 623-631
    [57] Tamao. K, Uchida. M, Izumizawa. T, et al. Silole derivatives as efficient electron transporting materials, J. Am. Chem. Soc. 1996, 118: 11974-11975
    [58] Murata. H, Malliaras. G. G, Uchida. M, et al., Non-dispersive and air-stable electron transport in an amorphous organic semiconductor, Chem. Phys. Lett. 2001, 339: 161-166
    [59] Ono. K, Wakida. M, Saito. K, et al., Synthesis and carrier-transporting properties of 5,10-dihydro-5,5-dimethyl-10,10-diphenyl-1,9-diazasilanthrene, Chem. Lett. 2005, 34:1698-1699
    [60] Sasabe. H, Gonmori. E, Chiba. T, et al., Wide-Energy-Gap Electron-Transport Materials Containing 3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue Organic Light-Emitting Device, Chem. Mater. 2008, 20: 5951-5953
    [61] Tanaka. D, Sasabe. H, Li. Y. J, et al., Ultra high efficiency green organic light-emitting devices, Jpn. J. Appl. Phys. 2007, 46: L10-L12
    [62] Sasabe. H, Chiba. T, Su. S. J, et al., 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices, Chem. Commun. 2008, 44: 5821-5823
    [63] Kido. J, Gonmori. E, Ide. N, et al., Proceedings of the Material Research Society Spring 2007 Meeting; San Francisco, April 9-13, 2007; Materials Research Society:Warrendale, PA, 2007, O6.35
    [64] Su. S. J, Chiba. T, Takeda. T, Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs, Adv. Mater. 2008, 20: 2125-2130
    [65] Su. S. J, Gonmori. E, Sasabe. H, et al., Highly Efficient Organic Blue- and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off , Adv. Mater. 2008, 20: 4189-4194
    [66] Sasabe. H, Gonmori. E, Chiba. T, et al., Asian Conference on Organic Electronics 2009, O-13.
    [67] Sasabe. H, Gonmori. E, Chiba. T, et al., International Conference on Science and Technology of Synthetic Metals. 2010, 5P-197
    [68] Su. S. J, Takahashi. Y, Chiba. T, et al., Structure-Property Relationship of Pyridine- Containing Triphenyl Benzene Electron-Transport Materials for Highly Efficient Blue Phosphorescent OLEDs, Adv. Funct. Mater. 2009, 19: 1260-1267
    [69] Xiao. L. X, Su. S. J, Agata. Y, et al., Nearly 100% Internal Quantum Efficiency in an Organic Blue-Light Electrophosphorescent Device Using a Weak Electron Transporting Material with a Wide Energy Gap, Adv. Mater. 2009, 21: 1271-1274
    [70] Pu. Y. J, Yoshizaki. M, Akiniwa. T, et al., Dipyrenylpyridines for electron-transporting materials in organic light emitting devices and their structural effect on electroninjection from LiF/Al cathode, Org. Electron. 2009, 10: 877-882
    [71] Chou. H. H, Cheng. C. H, A Highly Efficient Universal Bipolar Host for Blue,Green, and Red Phosphorescent OLEDs, Adv. Mater. 2010, 22: 2468-2471
    [72] Jeon, SO; Yook, KS; Joo, CW, et al. Phenylcarbazole-Based Phosphine Oxide Host Materials For High Efficiency In Deep Blue Phosphorescent Organic Light-Emitting Diodes,Adv. Funct Mater. 2009, 19: 3644-3649
    [73] Jeon, SO; Yook, KS; Joo, CW, et al. High-Efficiency Deep-Blue-Phosphorescent Organic Light-Emitting Diodes Using a Phosphine Oxide and a Phosphine Sulfide High-Triplet-Energy Host Material with Bipolar Charge-Transport Properties, Adv. Mater. 2010, 22: 1872-1876
    [74] Matsushima. T, Adachi C, Extremely low voltage organic light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers, Appl. Phys. Lett. 2006, 89: 253506
    [75] Ha. M. Y, Moon. D. G, Low voltage organic light-emitting devices with triphenylphosphine oxide layer, Appl. Phys. Lett. 2008, 93: 043306
    [76] Jeon. S. O, Yook. K. S, Joo. C W, et al, High efficiency blue phosphorescent organic light emitting diodes using a simple device structure, Appl. Phys. Lett. 2009, 94: 013301
    [77] Jeon. S. O, Yook. K. S, Joo. C W, et al, A phosphine oxide derivative as a universal electron transport material for organic light-emitting diodes, J. Mater. Chem. 2009, 19: 5940-5944
    [78] Chien. C. H, Chen. C. K, Hsu. F. M, et al, Multifunctional Deep-Blue Emitter Comprising an Anthracene Core and Terminal Triphenylphosphine Oxide Groups, Adv. Funct. Mater. 2009, 19: 560-566
    [79] Mohammad. Q, Manoharan. S. S, High mobility electron-transport material based on 2,5-dibenzthiazolyl thiophene, J. Appl. Phys. 2005, 97: 096101
    [80] Earmme. t, Ahmed. E, Jenekhe. S. A, Highly Efficient Phosphorescent Light-Emitting Diodes by Using an Electron-Transport Material with High Electron Affinity, J. Phys. Chem. C. 2009, 113: 18448-18450
    [81] Gao. Z. Q, Lee. C. S, Bello. I, et al., Bright-blue electroluminescence from a silyl-substituted ter-(phenylene-vinylene) derivative, Appl. Phys. Lett. 1999, 74: 865-867
    [82] Tao. Y. T, Wang. Q, Yang. C. L, Multifunctional Triphenylamine/Oxadiazole Hybrid as Host and Exciton-Blocking Material: High Effi ciency Green Phosphorescent OLEDs Using Easily Available and Common Materials, Adv. Funct. Mater. 2010, 20: 2923-2929
    [83] Ichikawa, M; Fujimoto, S; Miyazawa, Y, et al., Bipyridyl substituted triazoles as hole-blocking and electron-transporting materials for organic light-emitting devices, Org. Electron. 2008, 9: 77-84
    [84] Hwang. F. M, Chen. H. Y, Chen. P. S, et al., Iridium(III) complexes with orthometalated quinoxaline ligands: Subtle tuning of emission to the saturated red color, Inorg. Chem. 2005, 44: 1344-1353
    [85] Kulkarni. A. P, Zhu. Y, Jenekhe. S. A, Quinoxaline-containing polyfluorenes: Synthesis, photophysics, and stable blue electroluminescence, Macromolecules. 2005, 38: 1553-1563
    [86] Huang. T. H, Whang. W. T, Shen. J. Y, et al., Dibenzothiophene/oxide and quinoxaline/ pyrazine derivatives serving as electron-transport materials, Adv. Funct. Mater. 2006, 16: 1449-1456
    [87] Tonzola. C. J, Alam. M. M, Kaminsky. W, et al., New n-type organic semiconductors: Synthesis, single crystal structures, cyclic voltammetry, photophysics, electron transport, and electroluminescence of a series of diphenylanthrazolines, J. Am. Chem. Soc. 2003, 125: 13548-13558
    [88] Noda. T, Shirota. Y, 5,5'-bis(dimesitylboryl)-2,2'-bithiophene and 5,5''- bis(dimesitylboryl)-2,2': 5',2''-terthiophene as a novel family of electron-transporting amorphous molecular materials, J. Am. Chem. Soc. 1998,120: 9714-9715
    [89] Wu. H. b, Huang. F, Peng. J. b, et al, High-efficiency electron injection cathode of Au for polymer light-emitting devices, Org. Electron. 2005, 6: 118-128
    [90] Wu. H. b, Huang. F, Peng. J. b, et al, Efficient electron injection from bilayer cathode with aluminum as cathode, Synth. Met, 2005, 153: 197-200
    [91] Zeng. W. J, Wu. H. B, Zhang. C, et al., Polymer Light-Emitting Diodes with Cathodes Printed from Conducting Ag Paste, Adv. Mater. 2007, 19: 810-814
    [92] Huang. F, Hou. L. T, Shen. H. L, et al., Synthesis, photophysics, and electro luminescence of high-efficiency saturated red light-emitting polyfluorene-based polyelectrolytes and their neutral precursors, J. Mater. Chem. 2005, 15: 2499-2507
    [93] Huang. F, Hou. L. T, Shen. H. L, et al. Synthesis and optical and electroluminescent properties of novel conjugated polyelectrolytes and their neutral precursors derived from fluorene and benzoselenadiazole, J. Polym. Sci. Part A. 2006, 44: 2521-2532
    [94] Ma. W. L, Iyer. P. K, Gong. X, et al, Water/Methanol-Soluble Conjugated Conjugated Copolymer as an Electron-Transport Layer in Polymer Light-Emitting Diodes, Adv. Mater. 2005, 17: 274.
    [95] Yang. R. Q, Wu. H. B, Cao. Y, et al., Control of Cationic Conjugated Polymer Performance in Light Emitting Diodes by Choice of Counterion, J. Am. Chem. Soc. 2006, 128: 14422-14423
    [96] Yang. R. Q, Garcia. A, Korystov. D, et al, Control of Interchain Contacts, Solid-State Fluorescence Quantum Yield, and Charge Transport of Cationic Conjugated Polyelectrolytes by Choice of Anion, J. Am. Chem. Soc. 2006, 128: 16532-16539
    [97] Park. J, Yang. R. Q, Hoven. C. V, et al., Structural Characterization of Conjugated Polyelectrolyte Electron Transport Layers by NEXAFS Spectroscopy, Adv. Mater. 2008, 20: 2491-2496
    [98] Jin. Y, Bazan. G. C, Heeger. A. J, et al., Improved electron injection in polymer light- emitting diodes using anionic conjugated polyelectrolyte, Appl. Phys. Lett. 2008, 93: 123304
    [99] Ortony. J. H, Yang. R. Q, Brzezinski. J. Z, et al., Thermophysical Properties of Conjugated Polyelectrolytes, Adv. Mater. 2008, 20: 298-302
    [100] Seo. J. H, Yang. R, Q, Brzezinski. J. Z, et al., Electronic Properties at Gold/Conjugated -Polyelectrolyte Interfaces, Adv. Mater. 2009, 21: 1006-1011
    [101] Garcia. A, Yang. R, Jin. Y, et al, Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes, Appl. Phys. Lett. 2007, 91: 153502.
    [102] Huang. F, Niu. Y. H, Zhang. Y, et al, A Conjugated, Neutral Surfactant as Electron- Injection Material for High-Efficiency Polymer Light-Emitting Diodes, Adv. Mater.2007, 19: 2010-2014
    [103] Niu. Y. H, Ma. H, Xu. Q. M, et al, High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode, Appl. Phys. Lett. 2005, 86: 083504
    [104] Niu. Y. H, Jen. A. K.-Y, Shu. C. F, High-efficiency polymer light-emitting diodes using neutral surfactant modified aluminum cathode, J. Phys. Chem. B, 2006, 110: 6010-6014
    [105] Huang. F, Shih. P. I, Shu. C. F, et al., Highly Efficient Polymer White-Light- Emitting Diodes Based on Lithium Salts Doped Electron Transporting Layer, Adv. Mater. 2009, 21: 361-365.
    [106] Huang. F, Zhang. Y, Liu. M. S, et al., Electron-Rich Alcohol-Soluble Neutral Conjugated Polymers as Highly Efficient Electron-Injecting Materials for Polymer Light-Emitting Diodes, Adv. Funct. Mater. 2009, 19, 2457-2466
    [107] Huang. F, Shih. P. I, Liu. M. S, et al., Lithium salt doped conjugated polymers as electron transporting materials for highly efficient blue polymer light-emitting diodes, Appl. Phys. Lett. 2008, 93, 243302
    [108] Huang. F, Niu. Y. H, Liu. M. S, et al., Efficient ultraviolet-blue polymer light-emitting diodes based on a fluorene-based non-conjugated polymer, Appl. Phys. Lett. 2006, 89, 081104
    [109] Campbell. A. J, Bradley. D. D. C, Antoniadis. H, Dispersive electron transport in an electroluminescent polyfluorene copolymer measured by the current integration time-of-flight method, Appl. Phys. Lett. 2001, 79: 2133-2135
    [110] Donley. C. L, Zaumseil. J, Andreasen. J, et al., Effects of packing structure on the optoelectronic and charge transport properties in poly(9,9-di-n-octylfluorene-alt- benzothiadiazole) , J. Am. Chem. Soc. 2005, 127: 12890-12899
    [111] Zhou. G, Qian. G, Ma. L, et al., Polyfluorenes with phosphonate groups in the side chains as chemosensors and electroluminescent materials, Macromolecules. 2005. 38: 5416-5424
    [112] Niu. X. D, Qin. C. J, Zhang. B. H, et al., Efficient multilayer white polymer light- emitting diodes with aluminum cathodes, Appl. Phys. Lett. 2007. 90: 203513.
    [113] Qin. C. J, Cheng. Y. X, Wang. L. X, et al., Phosphonate-Functionalized Polyfluorene asa Highly Water-Soluble Iron(III) Chemosensor, Macromolecules. 2008, 41: 7798-7804
    [114] Niu. Y. H, Ma. H, Xu. Q. M, et al., High-efficiency light-emitting diodes using neutral surfactants and aluminum cathode, Appl. Phys. Lett. 2005, 86: 083504
    [115] Deng. X. Y, Lau. W. M, Wong. K. Y, et al.,High efficiency low operating voltage polymer light-emitting diodes with aluminum cathode, Appl. Phys. Lett. 2004, 84: 3522-3524
    [116] Guo. T. F, Yang. F. S, Tsai. Z. J, et al., High-performance polymer light-emitting diodes utilizing modified Al cathode, Appl. Phys. Lett. 2005, 87: 013504
    [117] Lee. T. W, Lee. H. C, Park O. O, High-efficiency polymer light-emitting devices using organic salts: A multilayer structure to improve light-emitting electrochemical cells, Appl. Phys. Lett. 2002, 81: 214-216
    [118] Hsiao. C. C, Hsiao. A. E, Chen. S. A, Design of hole blocking layer with electron transport channels for high performance polymer light-emitting diode, Adv. Mater. 2008, 20: 1982-1988
    [119] Lee. T. H, Huang. J. C. A, Pakhomov. G. L, et al., Organic-Oxide Cathode Buffer Layer in Fabricating High-Performance Polymer Light-Emitting Diodes, Adv. Funct. Mater. 2008, 18: 3036-3042
    [120] Olivati. C. A, Carvalho. A. F, Balogh. D. T, et al., Electrical properties of polymer/metal interface in polymer light-emitting devices: electron injection barrier suppression, J. Mater. Sci. 2006. 41: 2767-2770
    [121] Cao. Y, Yu. G, Heeger. A. J, Efficient, low operating voltage polymer light-emitting diodes with aluminum as the cathode material, Adv. Mater. 1998, 10: 917-920
    [122] Yang. R. Q, Xu. Y. H, Dang. X. D, et al., Conjugated oligoelectrolyte electron transport/ injection layers for organic optoelectronic devices, J. Am. Chem. Soc. 2008, 130: 3282-3283
    [123] Liu. G, Li. A. Y, An. D, et al., An Ionic Molecular Glass as Electron Injection Layer for Efficient Polymer Light-Emitting Diode, Macromol. Rapid. Commun. 2009, 30: 1484-1491
    [124] Lindell. L, Unge. M, Osikowicz. W, et al, Integer charge transfer at the tetrakis(dimethylamino)ethylene/Au interface, Appl. Phys. Lett. 2008, 92: 163302
    [125] Li. F. H, Zhou. Y, Zhang. F. L,et al, Tuning Work Function of Noble Metals As Promising Cathodes in Organic Electronic Devices, Chem. Mater. 2009, 21: 2798-2802
    [126] Br(?)ker. B, Blum. R. P, Frisch. J, Gold work function reduction by 2.2 eV with an air-stable molecular donor layer, Appl. Phys. Lett. 2008, 93: 243303
    [127] Lo. S. C, Burn. P. L, Development of dendrimers: Macromolecules for use in organic light-emitting diodes and solar cells, Chem. ReV. 2007, 107: 1097-1116
    [128] Allard. S, Forster. M, Souharce. B, et al., Organic semiconductors for solution- processable field-effect transistors (OFETs), Angew. Chem. Int. Ed. 2008, 47: 4070- 4098
    [129] Sirringhaus. H, Materials and Applications for Solution-Processed Organic Field-Effect Transistors, Proc. IEEE. 2009, 97: 1570-1579
    [130] Roncali. J, Molecular Bulk Heterojunctions: An Emerging Approach to Organic Solar Cells, Acc. Chem. Res. 2009, 42: 1719-1730
    [131] Kulkarni. A. P, Tonzola. C. J, Babel. A, et al., Electron transport materials for organic light-emitting diodes, Chem. Mater. 2004, 16: 4556-4573
    [132] Tang. C. W, Vanslyke. S. A, Organic electroluminescent diodes, Appl. Phys. Lett. 1987, 51: 913-915
    [133] D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett. 1991, 58: 1982-1984
    [134] Cao. Y, Yu. G, Parker. I. D, et al., Ultrathin layer alkaline earth metals as stable electron-injecting electrodes for polymer light emitting diodes, J. Appl. Phys. 2000, 88: 3618.
    [135] Oh. S. H, Na. S. I, Nah. Y. C, et al., Novel cationic water-soluble polyfluorene derivatives with ion-transporting side groups for efficient electron injection in PLEDs, Org. Electro. 2007, 8: 773-783
    [136] Oh. S.H, Vak. D, Na. S. I, et al., Water-soluble polyfluorenes as an electron injecting layer in PLEDs for extremely high quantum efficiency, Adv. Mater. 2008, 20: 1624- 1629
    [137] Lin. C. Y, Garcia. A, Zalar. P, et al., Effect of Thermal Annealing on Polymer Light- Emitting Diodes Utilizing Cationic Conjugated Polyelectrolytes as Electron InjectionLayers, J. Phys. Chem. C. 2010, 114: 15786-15790
    [138] Spreitzer. H, Becker. H, Kluge. E, et al., Soluble phenyl-substituted PPVs - New materials for highly efficient polymer LEDs, Adv. Mater.1998, 10: 1340-1343
    [139] Campbell. I. H, Kress. J. D, Martin. R. L, et al., Controlling charge injection in organic electronic devices using self-assembled monolayers, Appl. Phys. Lett. 1997, 71: 3528- 3530
    [140] Wu, CC; Liu, WG; Hung, WY, et al. Spiroconjugation-enhanced intermolecular charge transport, Appl. Phys. Lett. 2005, 87: 052103
    [141] Zhu. X. H, Gindre. D, Mercier. N, et al., Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer, Adv. Mater. 2003, 15: 906- 909
    [142] Brunner. K, Dijken. A. V, Borner. H, et al., Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes: Tuning the HOMO Level without Influencing the Triplet Energy in Small Molecules, J. Am. Chem. Soc. 2004, 126: 6035-6042
    [143] Imanishi. M, Tomishima. Y, Itou. S, et al., Discovery of a Novel Series of Biphenyl Benzoic Acid Derivatives as Potent and Selective Humanβ3- Adrenergic Receptor Agonists with Good Oral Bioavailability. Part I, J. Med. Chem. 2008, 51: 1925-1944
    [144] Roncali. J, Frere. P, Blanchard. P, et al., Molecular and supramolecular engineering of pi-conjugated systems for photovoltaic conversion, Thin Solid Films. 2006, 511: 567- 575
    [145] Zhu. R, Lin. J. M, Wang. W. Z, et al., Use of the beta-phase of poly(9,9-dioctylfluorene) as a probe into the interfacial interplay for the mixed bilayer films formed by sequential spin-coating, J. Phys. Chem. B. 2008, 112: 1611-1618
    [146] Garcia. A, Brzezinski. J. Z, Nguyen. T. Q, Cationic Conjugated Polyelectrolyte Electron Injection Layers: Effect of Halide Counterions, J. Phys. Chem. C. 2009, 113: 2950-2954
    [147] Hoven. C, Yang. R. Q, Garcia. A, et al, Ion Motion in Conjugated Polyelectrolyte Electron Transporting Layers, J. Am. Chem. Soc. 2007, 129, 10976-10977
    [148] Meerholz. K, Device physics - Enlightening solutions, Nature. 2005, 437: 327-328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700