四硫富瓦烯(TTF)类有机单晶微纳器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机单晶微纳器件的研究对于探索材料电子传输的本征特性具有十分重要的意义。我们在制备高性能有机单晶场效应晶体管的同时,分析有机单晶的分子结构、生长方向、堆积形式等有助于我们认识电子传输与分子结构之间的关系,理解电子沿有机晶体各个方向传输的本征特性,并获得具有高性能参数的理想分子形态,将提高有机功能分子可控合成的成功概率。
     作为研究最为广泛的杂环系统,四硫富瓦烯(TTF)以及衍生物以其优异的物理与化学性质受到广泛研究。本论文主要以TTF以及衍生物为代表研究其有机单晶场效应晶体管和光晶体管,主要研究内容如下:
     (1) TTF单晶存在两种相态,采用不同溶剂分别可控合成两种相态的TTF单晶。实验中采用正庚烷溶剂能够可控生成TTF的一维α相,而氯苯溶剂能够可控生成TTF的一维β相,通过控制单晶生长的过程参数能控制单晶尺寸的大小;采用溶液法原位制备TTF单晶场效应晶体管。对大量器件数据总结后发现,不同相的迁移率有所不同,α相的最大迁移率能达到1.2cm2V~(-1)s~(-1),而β相的最大迁移率仅为0.23 cm2V~(-1)s~(-1);将TTF分子之间的电荷传输过程模拟为一种Brownian迁移过程,理论结果显示与实验结果完全吻合。
     (2)合成了TTF的一种衍生物TCTT-TTF,主要在TTF两边四个不稳定位置上引入四个氰乙硫基。采用溶液法自组装生成各种形貌与尺寸的TCTT-TTF单晶;对比TCTT-TTF与α相TTF的电化学稳定性、热稳定性、真空稳定性等,分析两种晶体的分子结构与堆积。结果表明,TCTT-TTF的稳定性远远好于α相TTF;采用溶液法原位制备TCTT-TTF单晶场效应晶体管,其中绝缘层为聚乙烯醇(PVA)与十八烷基三氯硅烷(OTS)双层修饰;采用三氯甲烷溶剂获得器件的迁移率、开关比和阈值电压分别为0.01cm2V~(-1)s~(-1)、1.1×10~3和26.7V。
     (3)β相TTF单晶与TCNQ单晶对光都具有响应性。其中β相TTF单晶对光的响应时间超过60s,光开关比较低;而TCNQ单晶对光的响应时间则低于0.5s,光开关比超过100;栅压的引入对两种晶体的响应度无影响,只是改变光开关比;对比β相TTF与TCNQ晶体结构发现,分子间π···π作用,包括“边对边”、“面对面”的堆积越好,越有助于提高光生载流子的传输速率,同时提高电子与空穴重新结合的几率与速率;而相对松散的堆积结构使得光生载流子的传输速率降低,同时也降低了电子与空穴重新结合的几率与速率,从而表现出强烈的残留电导率,并且无法通过栅压的调节而获得改善;TCNQ单晶光晶体管显示出良好的光导作用,具有很好的应用前景。
It’s very important to develop micro- and nano-sized organic single crystallinedevices for investigating the intrinsic transport property of organic semiconductor. Wehave fabricated high performance organic single crystalline field-effect transistors andanalyzed molecular structure, growth direction and molecular packing of organicsingle crystals, which will help us understand the relationship between molecularstructure and transport properties and the transport anisotropy of organic singlecrystals, and obtain ideal molecular configurations with high device performance tocontrollably synthesize organic functional molecules.
     As the widely studied heterocyclic system, TTF and its derivatives have beenapplied into various fields because of outstanding physical and chemical properties.This paper has studied organic single crystalline field-effect transistor andphototransistor of TTF and its derivatives, and the main results are presented asfollows:
     (1) The crystals of TTF existed in two polymorphic modifications, and we haveadopted different solvents to grow TTF single crystals with different phases. Inour experiments, one-dimensional pureαphase TTF single crystals could becontrollably obtained by the selection of n-heptane while one-dimensional pureβphase could be provided by chlorobenzene. The size of these crystals could beaccurately controlled by the parameters of crystal growth process. TTF singlecrystalline field-effect transistors with two phases have been in situ fabricated bydrop cast. The mobilities of different phases were different. The maximumfield-effect mobility ofαphase was near 1.20 cm2V~(-1)s~(-1) whileβphase showedthe maximum mobility only about 0.23 cm2V~(-1)s~(-1). We modeled the chargetransport of TTF molecule as a Brownian motion process, and the results oftheoretical calculations have been highly accorded with our experimental results.
     (2) One of TTF derivatives, TCTT-TTF have been synthesized based on theintroduction of four groups of cyanoethylthio at the instable positions of TTF.Single crystals of TCTT-TTF with various patterns and dimensions could beobtained by solution self-assembly. The comparisons of electrochemical stability,thermal stability and vacuum stability combined with the analysis of molecularstructure and packing between TCTT-TTF and TTF have showed that the stabilityof TCTT-TTF would be greater than that of TTF. TCTT-TTF single crystalline field-effect transistors have been in situ fabricated by the drop cast and theinsulators have been modified by the combination of polyvinyl alcohol (PVA) andoctadecyltrichlorosilane (OTS). The field-effect mobility, on/off ratio andthreshold voltage of the device by the selection of chloroform would be 0.01cm~2V~(-1)s~(-1), 1.1×10~3 and 26.7 V, respectively.
     3) Single crystal ofβphase TTF and TCNQ have been responding to the lightirradiation. The response time ofβphase TTF single crystal would exceed 60 sand on/off ratio between dark and light irradiation would be very low while theresponse time of TCNQ single crystal would be below 0.5 s and on/off ratiowould be greater than 100. The introduction of gate voltage would have no effectin the responsibility of the two kinds of crystals and just modify on/off ratio.Comparison of crystalline structure and packing betweenβphase TTF and TCNQhave showed that more perfect packing ofπ···πinteraction between molecules,including the packing of“side-by-side”and“face-to-face”, the more rapid thetransfer speed of the photo-excited carriers would be, at the same time the chanceand speed of recombination of electrons and holes would be further enhanced.Relatively loose packing would result in the low speed of the transfer of thephoto-excited carriers and reduction of the chance and speed of recombination ofelectrons and holes, which would show very high persistent conductivity andcould not be improved by the adjustment of gate voltage. TCNQ single crystallinephototransistor showed good function of light guide and great potentials ofapplication.
引文
[1] deBoerRWI,Organicsingle-crystalfield-effecttransistors: [Ph.DDissertation],Netherlands:TechnischeUniversiteitDelft,2005
    [2] Zeis R, Single crystal field-effect transistors based on layered semiconductors:[Ph.DDissertation],Germany: konstanzuniversity,2005
    [3]陈治明,王建农,半导体器件的材料物理学基础,科学出版社,1999,51-53
    [4]胡文平,刘云圻,朱道本,有机功能材料薄膜与器件,2004,26(3):1-15
    [5]汤庆鑫,李荣金,汪海风等,小分子场效应晶体管,2006,18(11):1538-1553
    [6] Kroto H W, Heath J R, O'Brien S C, et al., C60: Buckminsterfullerene, Nature,1985,318:162-163
    [7] KastnerJ,PaloheimoJandKuzmanyH,SolidStateScience,1993,512-513
    [8] Haddon R C, Perel A S, Morris R C, et al., C60 thin film transistors, Appl PhysLett,1995,67(1):121-123
    [9] Dodabalapur A, Katz H E, Torsi L, et al., Organic field-effect bipolar transistors,ApplPhysLett,1996,68(8):1108-1110
    [10] Horiuchi K, Nakada K, Uchino S, et al., Passivation effectsof alumina insulatinglayer on C60 thin-film field-effect transistors, Appl Phys Lett, 2002, 81(10):1911-1912
    [11] Singh T B, Marjanovic N, Stadler P, et al., Fabrication and characterization ofsolution-processedmethanofullerene-basedorganicfield-effect transistors, J ApplPhys,2005,97(8):83714-83714
    [12] Kobayashi S, Takenobu T, Mori S, et al., Fabrication and characterization of C60thin-film transistors withhighfield-effect mobility,Appl Phys Lett,2003,82(25):4581-4583
    [13] Itaka K, Yamashiro M, Yamaguchi J, et al., High-mobility C60 field-effectmolecular-wetting controlled transistors fabricated on substrates, Adv Mater,2006,18(13):1713-1716
    [14] Anthopoulos T D, de Leeuw D M, Cantatore E, et al., Organiccomplementary-like inverters employing methanofullerene-based ambipolarfield-effecttransistors,ApplPhysLett,2004,85(18):4205-4207
    [15] Wang S D, Kanai K, Ouchi Y, et al., Bottom contact ambipolar organic thin filmtransistor and organic inverter based on C60/pentacene heterostructure, OrgElectron,2006,7(6):457-464
    [16] Anthopoulos T D, Tanase C, Setayesh S, et al., Ambipolar organic field-effecttransistors based on a solution-processed methanofullerene, Adv Mater, 2004,16(23-24):2174-2179
    [17] Kunugi Y, Takimiya K, Negishi N, et al., An ambipolar organic field-effecttransistor using oligothiophene incorporated with two [60]fullerenes, J MaterChem,2004,14(19):2840-2841
    [18] Kuwahara E, Kubozono Y, Hosokawa T, et al., Fabrication of ambipolarfield-effecttransistordevicewithheterostructureofC60 andpentacene,ApplPhysLett,2004,85(20):4765-4767
    [19] Amriou S, Mehta A and Bryce M R, Functionalised9-(1,3-dithiol-2-ylidene)thioxanthenederivatives:aC60conjugateasanambipolarorganicfieldeffecttransistor(OFET),JMaterChem,2005,15(12):1232-1234
    [20] Kang S J, Yi Y, Kim C Y, et al., Ambipolar organic thin-film transistors usingC60/pentacene structure: Characterization of electronic structure and deviceproperty,ApplPhysLett,2005,87(23):33502-33502
    [21] Kuwahara E, Kusai H, Nagano T, et al., Fabrication of a logic gate circuit basedon ambipolar field-effect transistors with thin films Of C60 and pentacene, ChemPhysLett,2005,413(4-6):379-383
    [22] Gu T, Tsamouras D, Melzer C, et al., Photovoltaic devices from fullereneoligophenyleneethynyleneconjugates,ChemPhysChem,2002,3(1):124-127
    [23] Nierengarten J F, Gu T, Aernouts T, et al., Fullerene-oligophenyleneethynyleneconjugates: relationships between charge-carrier mobility, photovoltaiccharacteristicsandchemicalstructure,ApplPhysA,2004,79(1):47-49
    [24] Fungo F, Milanesio M E, Durantini E N, et al., Optically induced switch of thesurface work function in TiO2/porphyrin-C60 dyad system, J Mater Chem, 2007,17(20):2107-2112
    [25] Iijima S, Helical microtubules of graphitic carbon, Nature, 1991, 354(6348):56-58
    [26] Hamada N, Sawada S-i and Oshiyama A, New one-dimensional conductors:Graphiticmicrotubules,PhysRevLett,1992,68(10):1579-1581
    [27] Tans S J, Verschueren AR M and Dekker C, Room-temperature transistor basedonasinglecarbonnanotube,Nature,1998,393(6680):49-52
    [28] Martel R, Schmidt T, Shea H R, et al., Single- and multi-wall carbon nanotubefield-effecttransistors,ApplPhysLett,1998,73(17):2447-2449
    [29] Avouris P, Molecular electronics with carbon nanotubes, Acc Chem Res, 2002,35(12):1026-1034
    [30] Wind S J, Appenzeller J, Martel R, et al., Vertical scaling of carbon nanotubefield-effect transistors using top gate electrodes, Appl Phys Lett, 2002, 80(20):3817-3819
    [31] JaveyA, Guo J, Wang Q, et al., Ballistic carbon nanotube field-effect transistors,Nature,2003,424(6949):654-657
    [32] Cui X D, Freitag M, Martel R, et al., Controlling energy-level alignments atcarbonnanotube/Aucontacts,NanoLett,2003,3(6):783-787
    [33] Tulevski GS,MiaoQ,AfzaliA,et al.,Chemical complementarityinthecontactsfor nanoscale organic field-effect transistors, J Am Chem Soc, 2006, 128(6):1788-1789
    [34] Collins P G, Bradley K, Ishigami M, et al., Extreme oxygen sensitivity ofelectronicpropertiesofcarbonnanotubes,Science,2000,287(5459):1801-1804
    [35] Sumanasekera G U, Adu C K W, Fang S, et al., Effects of Gas Adsorption andCollisions on Electrical Transport in Single-Walled Carbon Nanotubes, Phys RevLett,2000,85(5):1096-1099
    [36] Wilder J WG, Venema LC, Rinzler AG, et al., Electronic structure of atomicallyresolvedcarbonnanotubes,Nature,1998,391(6662):59-62
    [37] Martel R, Derycke V, Lavoie C, et al., Ambipolar electrical transport insemiconducting single-wall carbon nanotubes, Phys Rev Lett, 2001, 87(25):256805
    [38] Liu X L, Lee C, Zhou C W, et al., Carbon nanotube field-effect inverters, ApplPhysLett,2001,79(20):3329-3331
    [39] Derycke V, Martel R, Appenzeller J, et al., Controlling doping and carrierinjectionincarbonnanotubetransistors,ApplPhysLett,2002,80(15):2773-2775
    [40] Esfarjani K, Farajian A A, Hashi Y, et al., Electronic and transport properties ofN-Pdopednanotubes,ApplPhysLett,1999,74(1):79-81
    [41] KongJ, Zhou C, Yenilmez E, et al.,Alkaline metal-doped n-type semiconductingnanotubesasquantumdots,ApplPhysLett,2000,77(24):3977-3979
    [42] Zhou C, Kong J, Yenilmez E, et al., Modulated Chemical Doping of IndividualCarbonNanotubes,Science,2000,290(5496):1552-1555
    [43] Kong J, Cao J, Dai H, et al., Chemical profiling of single nanotubes:Intramolecular p--n--p junctions and on-tube single-electron transistors, ApplPhysLett,2002,80(1):73-75
    [44] Horowitz G, Fichou D, Peng X, et al., A field-effect transistor based onconjugatedalpha-sexithienyl,SolidStateComm,1989,72(4):381-384
    [45] Garnier F, Horowitz G, Peng X, et al., An all-organic "soft" thin film transistorwithveryhighcarriermobility,AdvMater,1990,2(12):592-594
    [46] Akimichi H, Waragai K, Hotta S, et al., Field-effect transistors using alkylsubstitutedoligothiophenes,ApplPhysLett,1991,58(14):1500-1502
    [47] Schoonveld W A, Vrijmoeth J and Klapwijk T M, Intrinsic charge transportproperties of an organic single crystal determined using a multiterminal thin-filmtransistor,ApplPhysLett,1998,73(26):3884-3886
    [48] Schoonveld W A, Wildeman J, Fichou D, et al., Coulomb-blockade transport insingle-crystalorganicthin-filmtransistors,Nature,2000,404(6781):977-980
    [49] Katz H E, Torsi L and Dodabalapur A, Synthesis, Material Properties, andTransistorPerformanceofHighlyPureThiopheneOligomers,ChemMater,1995,7(12):2235-2237
    [50] Garnier F, Organic-Based Electronics a la Carte, Acc Chem Res, 1999, 32(3):209-215
    [51] Chwang A B, Granstrom E L and Frisbie C D, Fabrication of a sexithiophenesemiconducting wire: Nanoshaving with an atomic force microscope tip, AdvMater,2000,12(4):285-288
    [52] Torsi L, Dodabalapur A and Katz H E, An analytical model for short-channelorganicthin-filmtransistors,JApplPhys,1995,78(2):1088-1093
    [53] Horowitz G, Garnier F, Yassar A, et al., Field-Effect Transistor Made with aSexithiopheneSingleCrystal,AdvMater,1996,8(1):52-54
    [54] Crone B, Dodabalapur A, Lin Y Y, et al., Large-scale complementary integratedcircuitsbasedonorganictransistors,Nature,2000,403(6769):521-523
    [55] Chwang A B and Frisbie C D, Field effect transport measurements on singlegrains of sexithiophene: Role of the contacts, J Phys Chem B, 2000, 104(51):12202-12209
    [56] Wu M Wand Conwell EM, Transport in a-sexithiophene films, Chem Phys Lett,1997,266:363-367
    [57] Torsi L, Dodabalapur A, Rothberg LJ, et al., Charge transport in oligothiophenefield-effecttransistors,PhysRevB,1998,57(4):2271-2275
    [58] Schoonveld W A, Oostinga J B, Vrijmoeth J, et al., Charge trapping instabilitiesofsexithiopheneThinFilmTransistors,SynthMet,1999,101(1-3):608-609
    [59] Granstrom E L and Frisbie C D, Field effect conductance measurements on thincrystalsofsexithiophene,JPhysChemB,1999,103(42):8842-8849
    [60] Hajlaoui M E, Garnier F, Hassine L, et al., Growth conditions effects onmorphology and transport properties of an oligothiophene semiconductor, SynthMet,2002,129(3):215-220
    [61] Halik M, Klauk H, Zschieschang U, et al., Relationship between molecularstructure and electrical performance of oligothiophene organic thin filmtransistors,AdvMater,2003,15(11):917-922
    [62] Xiao K, Liu Y Q, Qi T, et al., A highly pi-stacked organic semiconductor forfield-effecttransistorsbasedonlinearlycondensedpentathienoacene,JAmChemSoc,2005,127(38):13281-13286
    [63] Gao J H, Li R J, Li LQ, et al., High-performance field-effect transistor based ondibenzo[d,d ']thieno[3,2-b;4,5-b ']dithiophene, an easily synthesizedsemiconductor with high ionization potential, Adv Mater, 2007, 19(19):3008-3011
    [64] Aleshin AN, Lee J Y, Chu S W, et al., Mobility studies of field-effect transistorstructures based on anthracene single crystals, Appl Phys Lett, 2004, 84(26):5383-5385
    [65] Briseno A L, Aizenberg J, Han Y J, et al., Patterned growth of large orientedorganic semiconductor single crystals on self-assembled monolayer templates, JAmChemSoc,2005,127(35):12164-12165
    [66] Meng H, Sun F P, Goldfinger M B, et al., High-performance, stable organicthin-film field-effect transistors based on bis-5 '-alkylthiophen-2'-yl-2,6-anthracenesemiconductors,JAmChemSoc,2005,127(8):2406-2407
    [67] KimSH,YangYS,LeeJ H,etal.,Organicfield-effecttransistorsusingperylene,OptMater,2003,21(1-3):439-443
    [68] Ando S, Nishida J, Fujiwara E, et al., Novel p- and n-type organicsemiconductorswithananthraceneunit,ChemMater,2005,17(6):1261-1264
    [69] Ito K, Suzuki T, Sakamoto Y, et al., Oligo(2,6-anthrylene)s: Acene-oligomerapproach for organic field-effect transistors, Angew Chem-Int Ed, 2003, 42(10):1159-1162
    [70] Kobayashi K, Masu H, Shuto A, et al., Control of face-to-face pi-pi stackedpacking arrangement of anthracene rings via chalcogen-chalcogen interaction:9,10-bis(methylchalcogeno)anthracenes,ChemMater,2005,17(26):6666-6673
    [71] Butko V Y, Chi X and Ramirez A P, Free-standing tetracene single crystal fieldeffecttransistor,SolidStateCommun,2003,128(11):431-434
    [72] Goldmann C, Haas S, Krellner C, et al., Hole mobility in organic single crystalsmeasured by a "flip-crystal" field-effect technique, J Appl Phys, 2004, 96(4):2080-2086
    [73] Moon H, Zeis R, Borkent E J, et al., Synthesis, crystal structure, and transistorperformance of tetracene derivatives, J Am Chem Soc, 2004, 126(47):15322-15323
    [74] Newman C R, Chesterfield R J, Merlo J A, et al., Transport properties ofsingle-crystal tetracene field-effect transistors with silicon dioxide gate dielectric,ApplPhysLett,2004,85(3):422-424
    [75] de Boer R W I, Klapwijk T M and Morpurgo A F, Field-effect transistors ontetracenesinglecrystals,ApplPhysLett,2003,83(21):4345-4347
    [76] Xia Y, Kalihari V, Frisbie C D, et al., Tetracene air-gap single-crystal field-effecttransistors,ApplPhysLett,2007,90(16):162106
    [77] Takahashi T, Takenobu T, Takeya J, et al., Ambipolar light-emittingtransistors ofatetracenesinglecrystal,AdvFunctMater,2007,17(10):1623-1628
    [78] Hepp A, Heil H, Weise W, et al., Light-emitting field-effect transistor based on atetracenethinfilmPhysRevLett,2003,9115(15):7406-7406
    [79] Cicoira F, Santato C, Dinelli F, et al., Correlation between morphology andfield-effect-transistor mobility in tetracene thin films, Adv Funct Mater, 2005,15(3):375-380
    [80] Abthagir PS, Ha YG, You E A, et al., Studies of tetracene- and pentacene-basedorganic thin-film transistors fabricated by the neutral cluster beam depositionmethod,JPhysChemB,2005,109(50):23918-23924
    [81] Sun M, Excited state properties of novel p- and n-type organic semiconductorswithananthraceneunit,ChemPhys,2006,320(2-3):155-163
    [82] Podzorov V, Pudalov V M and Gershenson M E, Field-effect transistors onrubrenesinglecrystalswithparylenegateinsulator,ApplPhys Lett,2003,82(11):1739-1741
    [83] Takeya J, Nishikawa T, Takenobu T, et al., Effects of polarized organosilaneself-assembled monolayers on organic single-crystal field-effect transistors, ApplPhysLett,2004,85(21):5078-5080
    [84] Sundar V C, Zaumseil J, Podzorov V, et al., Elastomeric transistor stamps:Reversible probing of charge transport in organic crystals, Science, 2004,303(5664):1644-1646
    [85] Menard E, Podzorov V, Hur S H, et al., High-performance n- and p-typesingle-crystal organic transistors with free-space gate dielectrics, Adv Mater,2004,16(23-24):2097-2101
    [86] Stassen AF, de Boer R W I, Iosad N N, et al., Influence of the gate dielectric onthe mobility of rubrene single-crystal field-effect transistors, Appl Phys Lett,2004,85(17):3899-3901
    [87] Podzorov V, Menard E, Borissov A, et al., Intrinsic charge transport on thesurfaceoforganicsemiconductorsPhysRevLett,2004,9308(8):6602-6602
    [88] Rang Z L, Nathan M I, Ruden P P, et al., Hydrostatic pressure dependence ofcharge carrier transport in single-crystal rubrene devices, Appl Phys Lett, 2005,86(12):23501
    [89] Takahashi T, Takenobu T, Takeya J, et al., Ambipolar organic field-effecttransistorsbasedonrubrenesinglecrystals,ApplPhysLett,2006,88(3):33505
    [90] GoldmannC,KrellnerC, PernstichKP,et al.,Determinationoftheinterfacetrapdensity of rubrene single-crystal field-effect transistors and comparison to thebulktrapdensity,JApplPhys,2006,99(3):34507
    [91] Hulea I N, Russo S, Molinari A, et al., Reproducible low contact resistance inrubrene single-crystal field-effect transistors with nickel electrodes, Appl PhysLett,2006,88(11):13512
    [92] Fischer M, Dressel M, Gompf B, et al., Infrared spectroscopy on the chargeaccumulation layer in rubrene single crystals, Appl Phys Lett, 2006, 89(18):82103
    [93] Hiroshiba N, Kumashiro R, Tanigaki K, et al., Rubrene single crystalfield-effecttransistor with epitaxial BaTiO3 high-k gate insulator, Appl Phys Lett, 2006,89(15):52110
    [94] ZeisR,BesnardC,SiegristT,etal.,Fieldeffectstudiesonrubreneandimpuritiesofrubrene,ChemMater,2006,18(2):244-248
    [95] Molinari A, Gutierrez I, Hulea I N, et al., Bias-dependent contact resistance inrubrene single-crystal field-effect transistors, Appl Phys Lett, 2007, 90(21):212103
    [96] Brown A R, Pomp A, Hart C M, et al., Logic Gates Made from PolymerTransistorsandTheirUseinRingOscillators,Science,1995,270(5238):972-974
    [97] Brown A R, Pomp A, de Leeuw D M, et al., Precursor route pentacenemetal-insulator-semiconductor field-effect transistors, J Appl Phys, 1996, 79(4):2136-2138
    [98] YangYS, Kim S H, Lee J-I, et al., Deep-level defect characteristics in pentaceneorganicthinfilms,ApplPhysLett,2002,80(9):1595-1597
    [99] Nelson S F, Lin Y Y, Gundlach D J, et al., Temperature-independent transport inhigh-mobilitypentacenetransistors,ApplPhysLett,1998,72(15):1854-1856
    [100] Jurchescu O D, Baas J and Palstra TTM, Effect of impurities on the mobilityofsinglecrystalpentacene,ApplPhysLett,2004,84(16):3061-3063
    [101] Sheraw C D, Jackson T N, Eaton D L, et al., Functionalized Pentacene ActiveLayerOrganicThin-FilmTransistors,AdvMater, 2003,15(23):2009-2011
    [102] Madru M, Guillaud G, Sadoun M A, et al., The first field effect transistor basedon an intrinsic molecular semiconductor, Chem Phys Lett, 1987, 142(1-2):103-105
    [103] Madru R, Guillaud G, Sadoun M A, et al., Awell-behaved field effect transistorbased on an intrinsic molecular semiconductor, Chem Phys Lett, 1988, 145(4):343-346
    [104] Bao Z, Lovinger A J and Dodabalapur A, Organic field-effect transistors withhigh mobility based on copper phthalocyanine, Appl Phys Lett, 1996, 69(20):3066-3068
    [105] Bao Z A, Lovinger AJ and Brown J, New air-stable n-channel organic thin filmtransistors,JAmChemSoc,1998,120(1):207-208
    [106] Li L Q, Tang Q X, Li H X, et al., An ultra closely pi-stacked organicsemiconductor for high performance field-effect transistors, Adv Mater, 2007,19(18):2613-2617
    [107] Tang Q X, Li H X, He M, et al., Low threshold voltage transistors based onindividual single-crystalline submicrometer-sized ribbons of copperphthalocyanine,AdvMater,2006,18(1):65-68
    [108] TangQ X, Li H X, Liu YL, et al., High-performance air-stable n-type transistorswith an asymmetrical device configuration based on organic single-crystallinesubmicrometer/nanometerribbons,JAmChemSoc,2006,128(45):14634-14639
    [109] Tang Q X, Li L Q, Song Y B, et al., Photoswitches and phototransistors fromorganicsingle-crystallinesub-micro/nanometerribbons,AdvMater,2007,19(18):2624-2628
    [110] Checcoli P, Conte G, Salvatori S, et al., Tetra-phenyl porphyrin based thin filmtransistors,SynthMet,2003,138(1-2):261-266
    [111] Wudl F, Smith G M and Hufnagel E J, Bis-1, 3-dithiolium chloride: an unusuallystable organic radical cation, J Chem Soc D: Chem Comm, 1970, 1970(21):1453-1454
    [112] Acker D S, Harder R J, Hertler W R, et al., 7,7,8,8-Tetracyanoquinodimethaneand its electrically conductiong anion-radical derivatives, J Am Chem Soc,1960,82(24):6408-6409
    [113] Ferraris J, Cowan D O, Walatka V, et al., Electron transfer in a new highlyconductingdonor-acceptorcomplex,JAmChemSoc,1973,95(3):948-949
    [114] Jerome D, Organic conductors: From charge density wave TTF-TCNQ tosuperconducting(TMTSF)2PF6,ChemRev,2004,104(11):5565-5591
    [115] BendikovM,WudlFandPerepichkaDF,Tetrathiafulvalenes,oligoacenenes,andtheir buckminsterfullerene derivatives: The brick and mortar of organicelectronics,ChemRev,2004,104(11):4891-4945
    [116] Mas-Torrent M, Durkut M, Hadley P, et al., High mobility ofdithiophene-tetrathiafulvalene single-crystal organic field effect transistors, J AmChemSoc,2004,126(4):984-985
    [117] Mas-Torrent M, Hadley P, Bromley S T, et al., Single-crystal organic field-effecttransistors based on dibenzo-tetrathiafulvalene, Appl Phys Lett, 2005, 86(1):12110
    [118] BrownAR,DeLeeuwDM,LousEJ,etal.,Organicn-typefield-effecttransistor,SynthMet,1994,66(3):257-261
    [119] Gao W Y and Kahn A, Controlled p-doping of zinc phthalocyanine bycoevaporation with tetrafluorotetracyanoquinodimethane: A direct and inversephotoemissionstudy,ApplPhysLett,2001,79(24):4040-4042
    [120] Malenfant P R L, Dimitrakopoulos C D, Gelorme J D, et al., N-type organicthin-film transistor with high field-effect mobility based on aN,N-'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative, Appl PhysLett,2002,80(14):2517-2519
    [121] Chesterfield R J, New n-channel organic semiconductors for thin film transistors:[Ph.DDissertation],USA,Universityof Minnesota,2004
    [122] ChesterfieldRJ,NewmanCR,PappenfusTM,etal.,Highelectronmobilityandambipolar transport in organic thin-film transistors based on a pi-stackingquinoidalterthiophene,AdvMater,2003,15(15):1278-1282
    [123] Chesterfield R J, McKeen J C, Newman C R, et al., Organic Thin FilmTransistors Based on N-Alkyl Perylene Diimides: Charge Transport Kinetics as aFunction of Gate Voltage and Temperature, J Phys Chem B, 2004, 108(50):19281-19292
    [124]李荣金,李洪祥,周欣然等,聚合物场效应晶体管材料及其器件,化学进展,2007,19(2):325-336
    [125] SirringhausH,BrownPJ,FriendRH,etal.,Two-dimensionalchargetransportinself-organized, high-mobility conjugated polymers, Nature, 1999, 401(6754):685-688
    [126] Kim D H, Han J T, Park Y D, et al., Single-crystal polythiophene microwiresgrownbyself-assembly,AdvMater,2006,18(6):719-723
    [127] McCulloch I, Heeney M, Bailey C, et al., Liquid-crystalline semiconductingpolymerswithhighcharge-carriermobility,NatMater,2006,5: 328-333
    [128] Ong B S, Wu Y L, Liu P, et al., High-performance semiconductingpolythiophenes for organic thin-film transistors, J Am Chem Soc, 2004, 126(11):3378-3379
    [129] Pan H, Li Y, Wu Y, et al., Low-Temperature, Solution-Processed, High-MobilityPolymer Semiconductors for Thin-Film Transistors, J Am Chem Soc, 2007,129(14):4112-4113
    [130] ZenA,PflaumJ,HirschmannS,etal.,EffectofMolecularWeightandAnnealingof Poly (3-hexylthiophene) s on the Performance of Organic Field-EffectTransistors,AdvFunctMater,2004,14(8):757-764
    [131] Bao Z, Dodabalapur A and Lovinger A J, Soluble and processable regioregularpoly(3-hexylthiophene) for thin film field-effect transistor applications with highmobility,ApplPhys Lett,1996,69(26):4108-4110
    [132] YangH, Shin TJ,Yang L, et al., Effect ofMesoscale Crystalline Structure on theField-Effect Mobility of Regioregular Poly (3-hexyl thiophene) in Thin-FilmTransistors,AdvFunctMater,2005,15(4):671-676
    [133] Park J, Park S Y, Shim S-O, et al., A polymer gate dielectric for high-mobilitypolymer thin-film transistors and solvent effects, Appl Phys Lett, 2004, 85(15):3283-3285
    [134] Bao Z and Lovinger A J, Soluble Regioregular Polythiophene Derivatives asSemiconducting Materials for Field-Effect Transistors, Chem Mater, 1999, 11(9):2607-2612
    [135] Stutzmann N, Friend R H and Sirringhaus H, Self-aligned, vertical-channel,polymerfield-effecttransistors,Science,2003,299(5614):1881-1884
    [136] Kinder L, Kanicki J and Petroff P, Structural ordering and enhanced carriermobility in organic polymer thin film transistors, Synth Met, 2004, 146(2):181-185
    [137] Babel A and Jenekhe S A, High electron mobility in ladder polymer field-effecttransistors,JAmChemSoc,2003,125(45):13656-13657
    [138] Meijer E J, De Leeuw D M, Setayesh S, et al., Solution-processed ambipolarorganicfield-effecttransistorsandinverters,NatMater,2003,2(10):678-682
    [139] Brzoska J B, Azouz I B and Rondelez F, Silanization of Solid Substrates: AStepTowardReproducibility,Langmuir,1994,10(11):4367-4373
    [140] Majewski L A and Grell M, Organic field-effect transistors with ultrathinmodifiedgateinsulator,SynthMet,2005,151(2):175-179
    [141] Merlo J A and Frisbie C D, Field effect conductance of conducting polymernanofibers,JPolymSciPtB-PolymPhys,2003,41(21):2674-2680
    [142] Shkunov M, Simms R, HeeneyM, et al., Ambipolar field-effect transistors basedon solution-processable blends of thieno[2,3-b]thiophene terthiophene polymerandmethanofullerenes,AdvMater,2005,17(21):2608-2612
    [143] Yasuda T, Goto T, Fujita K, et al., Ambipolar pentacene field-effect transistorswithcalciumsource-drainelectrodes,ApplPhysLett,2004,85(11):2098-2100
    [144] Takahashi Y, Hasegawa T, Abe Y, et al., Tuning of electron injections for n-typeorganic transistor based on charge-transfer compounds, Appl Phys Lett, 2005,86(6):063504
    [145] Takahashi Y, Hasegawa T, Horiuchi S, et al., High MobilityOrganic Field-EffectTransistor Based on Hexamethylenetetrathiafulvalene with Organic MetalElectrodes,ChemMater,2007,19(26):6382-6384
    [146] Veres J,OgierS,LloydG,et al.,Gateinsulatorsinorganicfield-effect transistors,ChemMater,2004,16(23):4543-4555
    [147] Halik M, Klauk H, Zschieschang U, et al., Low-voltage organic transistors withanamorphousmoleculargatedielectric,Nature,2004,431(7011):963-966
    [148] Jang Y, Kim D H, Park Y D, et al., Low-voltage and high-field-effect mobilityorganictransistorswithapolymerinsulator,ApplPhysLett,2006,88(7):072101
    [149]刘雅玲,李洪祥,胡文平等,有机单晶场效应晶体管,化学进展, 2006, 18:189-199
    [150]汤庆鑫,酞菁单晶微纳材料与微纳光电器件的研究: [博士学位论文],北京:中国科学院化学研究所,2007
    [151] Kloc C, Simpkins P G, Siegrist T, et al., Physical vapor growth ofcentimeter-sizedcrystalsofalpha-hexathiophene,JCrystalGrowth,1997,182(3):416-427
    [152] Laudise R A, Kloc C, Simpkins P G, et al., Physical vapor growth of organicsemiconductors,JCrystalGrowth,1998,187(3-4):449-454
    [153] Reese C, Chung W-J, Ling M-m, et al., High-performance microscalesingle-crystal transistors by lithography on an elastomer dielectric, Appl PhysLett,2006,89(20):202108
    [154] Butko V Y, Chi X, Lang D V, et al., Field-effect transistor on pentacene singlecrystal,ApplPhysLett,2003,83(23):4773-4775
    [155] Takeya J, Goldmann C, Haas S, et al., Field-induced charge transport at thesurface of pentacene single crystals: A method to study charge dynamics oftwo-dimensional electron systems in organic crystals, J Appl Phys, 2003, 94(9):5800-5804
    [156] Minari T, Nemoto Tand Isoda S, Fabrication and characterization of single-grainorganicfield-effecttransistorofpentacene,JApplPhys,2004,96(1):769-772
    [157] Goldmann C, Gundlach D J and Batlogg B, Evidence of water-related discretetrap state formation in pentacene single-crystal field-effect transistors, Appl PhysLett,2006,88(6):63501
    [158] Roberson L B, Kowalik J, Tolbert L M, et al., Pentacene Disproportionationduring Sublimation for Field-Effect Transistors, J Am Chem Soc, 2005, 127(9):3069-3075
    [159] Briseno A L, Mannsfeld S C B, Lu X M, et al., Fabrication of field-effecttransistors from hexathiapentacene single-crystal nanowires, Nano Lett, 2007,7(3):668-675
    [160] Podzorov V, Sysoev S E, Loginova E, et al., Single-crystal organic field effecttransistors with the hole mobility similar to ~8 cm2/V s, Appl Phys Lett, 2003,83(17):3504-3506
    [161] Pernstich K P, Goldmann C, Krellner C, et al., Shifted Transfer characteristics oforganicthinfilmandsinglecrystalFETs,SynthMet,2004,146(3):325-328
    [162] BrisenoAL,MannsfeldSCB,LingMM,etal.,Patterningorganicsingle-crystaltransistorarrays,Nature,2006,444(7121):913-917
    [163] Briseno A L, Tseng R J, Ling M M, et al., High-performance organicsingle-crystal transistors on flexible substrates, Adv Mater, 2006, 18(17):2320-2324
    [164] Takeya J, Yamagishi M, Tominari Y, et al., Very high-mobility organicsingle-crystal transistors with in-crystal conduction channels, Appl Phys Lett,2007,90(10):2120-2120
    [165] Takeya J, Kato J, Hara K, et al., In-Crystal and Surface Charge Transport ofElectric-Field-Induced Carriers in Organic Single-Crystal Semiconductors, PhysRevLett,2007,98(19):196804
    [166] Ichikawa M, Yanagi H, Shimizu Y, et al., Organic field-effect transistors made ofepitaxially grown crystals of a thiophene/phenylene co-oligomer, Adv Mater,2002,14(18):1272-1275
    [167] Mannsfeld S C B, Locklin J, Reese C, et al., Probing the anisotropic field-effectmobilityof solution-deposited dicyclohexyl-alpha-quaterthiophene single crystals,AdvFunctMater,2007,17(10):1617-1622
    [168] Nam M S,Ardavan A, Cava R J,et al., Intrinsic electronic transport properties oforganic field-effect transitors based on single crystallinetetramethyltetraselenafulvalene,ApplPhysLett,2003,83(23):4782-4784
    [169] Jiang H, Yang X, Cui Z, et al., Phase dependence of single crystalline transistorsoftetrathiafulvalene,ApplPhysLett,2007,91(12):123505
    [170] de Boer R W I, Stassen A F, Craciun M F, et al., Ambipolar Cu- andFe-phthalocyanine single-crystal field-effect transistors, Appl Phys Lett, 2005,86(26):62109
    [171] Zeis R, Siegrist T and Kloc C, Single-crystal field-effect transistors based oncopperphthalocyanine,ApplPhysLett,2005,86(2):22103
    [172] YamadaK,TakeyaJ,ShigetoK,etal.,Chargetransportofcopperphthalocyaninesingle-crystal field-effect transistors stable above 100 degrees C, Appl Phys Lett,2006,88(12):22110
    [173] Payne M M, Parkin S R, AnthonyJ E, et al., Organic field-effect transistors fromsolution-deposited functionalized acenes with mobilities as high as 1 cm2/Vs, JAmChemSoc,2005,127(14):4986-4987
    [174] Zeis R, Kloc C, Takimiya K, et al., Single-Crystal Field-Effect Transistors BasedonOrganicSelenium-ContainingSemiconductor, JpnJ Appl Phys, 2005, 44(6A):3712-3714
    [175] Briseno A L, Tseng R J, Li S H, et al., Organic single-crystal complementaryinverter,ApplPhysLett,2006,89(22):22111
    [176] Kim D H, Lee D Y, Lee H S, et al., High-mobility organic transistors based onsingle-crystalline microribbons of triisopropylisilylethynl pentacene viasolution-phaseself-assembly,AdvMater,2007,19(5):678-682
    [177] Lee W H, Kim D H, Jang Y, et al., Solution-processable pentacene microcrystalarrays forhighperformanceorganicfield-effecttransistors,ApplPhys Lett,2007,90(13):32106
    [178] Yamada K, Okamoto T, Kudoh K, et al., Single-crystal field-effect transistors ofbenzoannulated fused oligothiophenes and oligoselenophenes, Appl Phys Lett,2007,90(7):72102
    [179] Tripathi A K, Heinrich M, Siegrist T, et al., Growth and electronic transport in9,10-diphenylanthracene single crystals - An organic semiconductor of highelectronandholemobility,AdvMater,2007,19(16):2097-2101
    [180] Ng H T, Han J, Yamada T, et al., Single crystal nanowire vertical surround-gatefield-effecttransistor,NanoLett,2004,4(7):1247-1252
    [181] Panzer M J and Frisbie C D, High charge carrier densities and conductancemaxima in single-crystal organic field-effect transistors with a polymerelectrolytegatedielectric,ApplPhysLett,2006,88(20):3504-3504
    [182] Takeya J, Yamada K, Hara K, et al., High-density electrostatic carrier doping inorganic single-crystal transistors with polymer gel electrolyte, Appl Phys Lett,2006,88(11):12102
    [183] Lee J Y, Roth S and Park YW, Anisotropic field effect mobility in single crystalpentacene,ApplPhysLett,2006,88(25):52106
    [184] Bryce M R, Tetrathiafulvalenes asπ-Electron Donors for IntramolecularCharge-TransferMaterials,AdvMater,1999,11(1):11-23
    [185] Bryce M R, Functionalised tetrathiafulvalenes: new applications as versatileπ-electronsystemsinmaterialschemistry,JMaterChem,2000,10(3):589-598
    [186] Nielsen M B, Lomholt C and Becher J, Tetrathiafulvalenes as building blocks insupramolecularchemistryII,ChemSocRev,2000,29(3):153-164
    [187] Segura J Land Martin N, New Concepts in Tetrathiafulvalene Chemistry, AngewChem-IntEd,2001,40(8):1372-1409
    [188] Jeppesen J O and Becher J,Pyrrolo-Tetrathiafulvalenes andTheir Applications inMolecular and Supramolecular Chemistry, Eur J Org Chem, 2003, 2003(17):3245-3266
    [189] Rovira C, Bis(ethylenethio)tetrathiafulvalene (BET-TTF) and RelatedDissymmetrical Electron Donors: From the Molecule to Functional MolecularMaterialsandDevices(OFETs),ChemRev,2004,104(11):5289-5318
    [190] GorguesA,HudhommePandSalleM,HighlyFunctionalizedTetrathiafulvalenes:Riding along the Synthetic Trail from Electrophilic Alkynes, Chem Rev, 2004,104(11):5151-5184
    [191] Mori T, Organic Conductors with Unusual Band Fillings, Chem Rev, 2004,104(11):4947-4970
    [192] KobayashiA, FujiwaraE andKobayashi H,Single-Component MolecularMetalswithExtended-TTF DithiolateLigands,ChemRev,2004,104(11):5243-5264
    [193] Petersen M A, Zhu L J, Jensen S H, et al., Photoswitches containing adithiafulveneelectrondonor,2007,17(5):797-804
    [194] W. F. Cooper N C K,J. W. Edmonds, A. Nagel, F. Wuld, P.Coppens, Crystal andmolecular structure of the aromatic sulphur compound 2,2'-bi-1,3-dithiole.evidenceford-orbitalparticipationinbonding,ChemCommun,1971,889-890
    [195] Ellern A, Bernstein J, Becker J Y, et al., A New Polymorphic Modification ofTetrathiafulvalene. Crystal Structure, Lattice Energy and IntermolecularInteractions,ChemMater,1994,6(8):1378-1385
    [196] Iizuka M, Shiratori Y, Kuniyoshi S, et al., Fabrication and characterization offield effect transistors using donor and acceptor stacked layers, Appl Surf Sci,1998,130-132:914-918
    [197] Miskiewicz P, Mas-Torrent M, Jung J, et al., Efficient high area OFETs bysolution based processing of a pi-electron rich donor, Chem Mater, 2006, 18(20):4724-4729
    [198] Doi I, Miyazaki E, Takimiya K, et al., Development of N-Alkyl-SubstitutedBis(pyrrolo[3,4-d])tetrathiafulvalenes as Organic Semiconductors forSolution-Processible Field-Effect Transistors, Chem Mater, 2007, 19(22):5230-5237
    [199] Mas-Torrent M, Hadley P, Bromley S T, et al., Correlation between crystalstructure and mobility in organic field-effect transistors based on single crystalsoftetrathiafulvalenederivatives,JAmChemSoc,2004,126(27):8546-8553
    [200] Colin C, Pasquier C R, Auban-Senzier P, et al., Transport properties ofmonocrystalline microwires of EDT-TTF(CONHMe)2and (TMTSF)2ClO4, SynthMet,2004,146(3):273-277
    [201] Naraso, Nishida J I, Ando S, et al., High-performance organic field-effecttransistors based on pi-extended tetrathiafulvalene derivatives, J Am Chem Soc,2005,127(29):10142-10143
    [202] Matsushita M M, Kawakami H, Okabe E, et al., Afield-effect transistor consistsofspin-polarizedTTF-baseddonor,Polyhedron,2005,24(16-17):2870-2875
    [203] Katsuhara M, Aoyagi I, Nakajima H, et al., Organic field-effect transistors basedon new TTF-based liquid crystalline materials, Synth Met, 2005, 149(2-3):219-223
    [204] Naraso, Nishida J, Kumaki D, et al., High performance n- and p-type field-effecttransistors basedontetrathiafulvalenederivatives J Am ChemSoc,2006,128(30):9598-9599
    [205] Gao X K, Wu W P, Liu Y Q, et al., A facile synthesis of linear benzene-fusedbis(tetrathiafulvalene) compounds and their application for organic field-effecttransistors,ChemCommun,2006,26:2750-2752
    [206] Gao X K, Wang Y, Yang X D, et al., Dibenzotetrathiafulvalene bisimides: Newbuilding blocks for organic electronic materials, Adv Mater, 2007, 19(19):3037-302
    [207] Xue J G and Forrest S R, Organic thin-film transistors based onbis(1,2,5-thiadiazolo)-p-quinobis (1,3-dithiole), Appl Phys Lett, 2001, 79(22):3714-3716
    [208] Noda B,KatsuharaM, Aoyagi I,et al.,Organic Field-Effect Transistors BasedonTetrathiafulvaleneDerivatives,ProcIntSympSuper-FunctOrgaDevices, 2005,6:154-157
    [209] Bromley S T, Mas-Torrent M, Hadley P, et al., Importance of intermolecularinteractions in assessing hopping mobilities in organic field effect transistors:Pentacene versus dithiophene-tetrathiafulvalene, J Am Chem Soc, 2004, 126(21):6544-6545
    [210] Shibata K, Wada H, Ishikawa K, et al., (Tetrathiafulvalene)(tetracyanoquinodimethane) as a low-contact-resistance electrode for organictransistors,ApplPhysLett,2007,90(19):193509
    [211] TakahashiY,HasegawaT,AbeY,etal.,Organicmetalelectrodesforcontrolledp-and n-type carrier injections in organic field-effect transistors, Appl Phys Lett,2006,88(7):73504
    [212] Mas-Torrent M, Hadley P, Crivillers N, et al., Large photoresponsivity inhigh-mobility single-crystal organic field-effect phototransistors,ChemPhysChem,2006,7(1):86-88
    [213] Rovira C and Novoa J J, Strength and Directionality of the S……SIntermolecular Interactions Present in TTF-Based Molecular Crystals. ACombinedStatisticalandAbInitioStudy,Chem-AEurJ,1999,5(12):3689-3697
    [214] Venuti E, Valle R G D, Farina L, et al., Temperature dependence of structure andphonons ofα-andβ-TTF crystals, Phys Chem Chem Phys, 2001, 3(18):4170-4175
    [215] Law K-Y, Organic Photoconductive Materials: Recent Trends and Developments,ChemRev,1993,93:449-486
    [216] BozioR, Infrared andRamanspectraof TTF and TTF-d4,Chem Phys Lett, 1977,52(3):503-508
    [217] Bozio R, Zanon I, Girlando A, et al., Vibrational spectroscopy of molecularconstituents of one-dimensional organic conductors. Tetrathiofulvalene (TTF),TTF+,and(TTF+)2dimer,JChemPhys,1979,71(5):2282-2293
    [218] WozniakWT,DepasqualiG,KleinMV,et al.,VibrationalspectraofTTF-TCNQ:EvidenceforTTF0andTCNQ0inthinfilms,ChemPhysLett,1975,33(1):33-36
    [219] Benoit C, Temperature dependence of infrared spectra of TTF (TCNQ) thin filmsonKBr,SolidStateCommun,1976,20(3):257-259
    [220] Deng W Q and Goddard W A, Predictions of Hole Mobilities in OligoaceneOrganicSemiconductorsfromQuantumMechanicalCalculations,JPhysChemB,2004,108(25):8614-8621
    [221] Bredas J L, Beljonne D, Coropceanu V, et al., Charge-Transfer andEnergy-Transfer Processes inπ-Conjugated Oligomers and Polymers: AMolecularPicture,ChemMater,2004,104(11):4971-5004
    [222] Valeev E F, Coropceanu V, daSilvaFilho D A, et al., Effect of ElectronicPolarization on Charge-Transport Parameters in Molecular OrganicSemiconductors,JAmChemSoc,2006,128(30):9882-9886
    [223] Troisi A and Orlandi G, The hole transfer in DNA: calculation of electroncouplingbetweenclosebases,ChemPhysLett,2001,344(5-6):509-518
    [224] LiuG,XueG,YuW,etal.,2,3,6,7-Tetrakis(2-cyanoethylthio)tetrathiafulvalene,ActaCrystE,2002,58:o842-o844
    [225]张妹玉,陈朝,异质结光晶体管的研究与进展,微纳电子技术, 2006, 43(6):273-278
    [226] Katsume T, Hiramoto M and Yokoyama M, Photocurrent multiplication innaphthalene tetracarboxylic anhydride film at room temperature, Appl Phys Lett,1996,69(24):3722-3724
    [227] Hiramoto M, Miki A, Yoshida M, et al., Photocurrent multiplication in organicsinglecrystals,ApplPhysLett,2002,81(8):1500-1502
    [228] Dutta S and Narayan K S, Gate-voltage control of optically-induced charges andmemory effects in polymer field-effect transistors, Adv Mater, 2004, 16(23-24):2151-2155
    [229] Dutta S and Narayan K S, Nonexponential relaxation of photoinducedconductanceinorganicfieldeffecttransistors,PhysRevB,2003,6812(12):5208
    [230] Dutta S, Singh T B and Narayan K S, Photoinduced relaxation effects inthree-terminalpolymerbaseddevicestructures,SynthMet2003,139(3):553-556
    [231] Dutta S and Narayan K S, Photoinduced charge transport in polymer field effecttransistors,SynthMet,2004,146(3):321-324
    [232] Dutta S and Narayan K S, Photocurrent spectroscopy under depletion mode oftransparentpolymerfield-effecttransistors,ApplPhysLett,2005,87(19):93505
    [233] Dutta S and Narayan K S, Spectroscopic studies of photoinduced transport inpolymerfieldeffecttransistors,SynthMet,2005,155(2):328-331
    [234] Saragi T P I, Pudzich R, Fuhrmann T, et al., Organic phototransistor based onintramolecular charge transfer in a bifunctional spiro compound, Appl Phys Lett,2004,84(13):2334-2336
    [235] LongRE,SparksRAandTruebloodKN,Thecrystalandmolecularstructureof7,7,8,8-tetracyanoquinodimethane,ActaCrystal,1965,18(5):932-939
    [236] Lee C H, Yu G and Heeger A J, Persistent photoconductivity inpoly(p-phenylenevinylene): Spectral response and slow relaxation, Phys Rev B,1993,47(23):543-553
    [237] Cornil J, Beljonne D, Calbert J P, et al., Interchain interactions in organicpi-conjugated materials: Impact on electronic structure, optical response, andchargetransport,AdvMater,2001,13(14):1053-1067
    [238] CurtisMD,CaoJandKampfJW,Solid-StatePackingofConjugatedOligomers:From pai-Stacks to the Herringbone Structure, J Am Chem Soc, 2004, 126(13):4318-4328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700