几种光功能材料的超快光激发和光动力学过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从有机物和无机物两个方面研究了两种蓝色荧光类材料。这两种材料均有用于蓝色发光二极管领域的应用前景。本文通过800纳米的飞秒激光激发,详细研究了这两类材料在非线性激发下的发光特性,并利用泵浦探测技术和时间分辨荧光技术研究了其荧光发射和粒子数演变等瞬态行为,分析了非线性荧光的产生机理。此外,本文还研究了紫细菌外周捕光天线LH2中的能量传递过程。
     主要的研究内容和主要创新点如下:
     1.有机材料:联六苯纳米棒
     对一类PPP低聚物做为基本单元而生长成的纳米棒阵列薄膜的荧光特性作了研究,其在单光子和双光子激发下的荧光研究结果,均显示出很强的激发和荧光发射各向异性,不论单光子或双光子激发,只有当激发光的偏振方向垂直于纳米棒的取向时,才能达到最佳激发效果。另外通过对其双光子激发出的荧光的偏振性研究,我们发现其出射荧光也具有很强的偏振性,偏振方向亦垂直于纳米棒。通过对荧光空间分布的研究,发现其发光方向主要集中在两个相互垂直的平面中。这些研究结果表明,此类材料对于制作有偏振特性的有机发光二极管具有很大的应用前景。其空间分布研究对于其应用也有很大的参考价值。此外,我们还研究了纳米棒薄膜在400nm激光激发下的动力学,其动力学过程包括了一个2ps左右的快的激发态带内弛豫和一个25ps左右的激发态向基态弛豫两个阶段。
     2.无机材料:氧化锌
     我们利用800纳米飞秒激光激发氧化锌单晶和纳米棒材料,均发现其荧光发射有受激发射现象。对于氧化锌单晶材料,我们在测量荧光的同时,也研究了其在相同激发能量密度条件下激发态粒子数的弛豫过程,其荧光在受激发射后峰位发生了红移,并且此时的动力学过程呈现出一个4皮秒的快过程,说明此时的受激发射激励是来源于载流子浓度超过Mott浓度而形成电子空穴等离子体。对于氧化锌纳米棒,当激发能量密度超过一定阈值时,其荧光发射产生也会受激发射现象,表现为荧光的急剧增加但峰位不变,通过分析此时的瞬态荧光光谱,我们发现这一受激发射过程建立时间>5ps,因此此时的光学增益的来源主要为激子-激子散射所造成,随着能量密度的进一步提高荧光峰位显著红移,根据此时的瞬态荧光谱,荧光发射的建立过程明显缩短,说明此时电子空穴等离子体已取代激子-激子散射成为主要的增益效应,导致能带重整化,最终使得荧光峰红移。
     本文研究结果表明这两类材料都具有很好的荧光特性,对有机材料的荧光特性研究表明其具有成为偏振发光二极管的特性。对氧化锌材料的研究对于人们深入了解其内在增益机理有所帮助。
     3.此外,本文还研究了紫细菌外周捕光天线LH2中的能量传递过程,通过分析激发B800带和B850带所表现出的丰富变化的光动力学特性,我们认为B850环的双激子带对B850的动力学过程有着大的贡献。通过八能级系统速率方程拟合了LH2在不同激发波长处的超快光动力学实验结果。高光强辐照所产生的氧化作用也对LH2的光动力学过程有重大的影响。其结果表明光氧化虽未改变B800向B850高速的能量传递,但B850环上分子被氧化而成的细菌叶绿素阳离子所形成的更低的能量陷获态的产生,导致了B850所表现出来的超快光动力学有了很大的改变,其能量传递途径由原先的经带内弛豫到荧光发射态的传递,在有光氧化时,变为激发能量以更快的弛豫速率被陷获态所俘获。
The blue light-emitting diode (LED) is a rapidly expanding research field in recent years. In this thesis, we focus on two blue fluorescent materials, organic and inorganic, which could be the promising candidates for blue LED application. Using femtosecond (fs) pulses, we studied the photoluminescence (PL) emission from these materials under nonlinear optical excitation, and used the fs pump-probe and time-resolved photoluminescence (TRPL) techniques to investigate the mechanisms of these processes. We also studied the energy transfer processes in light harvesting complexes (LH2) from Rb.Sphaeroides by using femtosecond pump-probe technique.
     The main research and the innovative results are given below.
     1. Organic material: Para-sexiphenyl (PSP) nano-needles
     The PSP nanoneedle film is a long-range ordered structure consisted of oriented nano-needles, which are parallel to each other in a limited area and turn to a tilted orientation in adjacent areas. We studied the PL emission of PSP nano-needles under linear and nonlinear optical excitation. Excited by the femtosecond pulses, two-photon absorption (TPA) induced PL emission spectrum shows several peaks corresponding to the vibronic transitions in PSP molecules. Polarization-dependent PL measurements reveal that the TPA induced PL in the highly-ordered structures, similar with the linear excitation case, is strongly dependent on the excitation polarization. The measurement of PL emission with different polarizations and at different detection directions reveals that the PL emission from these highly-ordered structures has strong dependence on the polarization and emission direction. We also studied the population evolution in this nano-needles film under 400 nm excitation. The ultrafast dynamics show a 2 ps relaxation process of the excitation state and a 25 ps transition from the singlet state to the ground state.
     2. Inorganic material: Zinc oxide (ZnO)
     The multi-photon absorption induced ultraviolet stimulated emission were observed from both ZnO bulk crystals and ZnO nanorods under the pumping of the femtosecond pulses at wavelength of 800nm. For ZnO bulk crystals, the PL emission peak shows a red-shift with the increasing pumping, while the ultrafast dynamic shows a lifetime of about 4 ps, so the optical gain from ZnO crystal is attributed to the electron hole plasma (EHP). For ZnO nanorods, the formation time of the stimulated emission peak was determined to be longer than 5 ps, and the mechanism of the stimulated emission is attributed to the exciton-exciton scattering (EE) process. With the increase of the excitation flux, the PL peak shows an obvious red-shift, and the formation time decreases, so the EHP becomes the main optical gain mechanisms under high excitation flux.
     The research shows that two materials are promising candidates in the blue LED field. The organic material PSP may have potential applications in polarized LED.
     3. We also studied the energy transfer processes in light harvesting complexes (LH2) from Rb.Sphaeroides by using femtosecond pump-probe technique. At excitation wavelength around 835 nm, a sharp photobleaching signal was observed which was assigned to the contribution of the two-exciton state, further confirmed by the power dependence measurement. Rate equations with eight-level scheme were used to simulate the population evolution in LH2 and the transient dynamics under femtosecond pulse excitation. The photo-oxidation effect of LH2 was investigated by using the absorption spectroscopic and fs pump-probe techniques. The experimental results reveal that in comparison with the unoxidized BChl-B850 molecules, BChl-B850 radical cation in oxided B850 could act as an efficient relaxation channel to rapidly trap the excitation energy, but the B800→B850 energy transfer process is almost unaffected in the oxidation process.
引文
[1].Koga,K;Yamaguchi,T.Single-crystals of sic and their application to blue leds[J].Progress in Crystal Growth and Characterization of Materials.1991,23:127-151.
    [2].Nakamura,S;Mukai,T;Senoh,M.Candela-class high-brightness ingan/algan double-heterostructure blue-light-emitting diodes[J].Applied Physics Letters.1994,64(13):1687-1689.
    [3].Millard,IS.High-efficiency polyfluorene polymers suitable for RGB applications[J].Synthetic Metals.2000,111:119-123.
    [4].Lu,P;Zhang,HQ;Shen,FZ,et al.A wide-bandgap semiconducting polymer for ultraviolet and blue light emitting diodes[J].Macromolecular Chemistry And Physics.2003,204(18):2274-2280.
    [5].Morin,JF;Beaupre,S;Leclerc,M,et al.Blue light-emitting devices from new conjugated poly(N-substituted-2,7-carbazole) derivatives[J].Applied Physics Letters.2002,80(3):341-343.
    [6].Niu,YH;Yang,W;Cao,Y.High-efficiency blue-light-emitting diodes with narrow linewidth based on blends of poly[2-(2 '-ethylhexyloxy)-1,4-phenylene]and poly (dialkylfluorene-co-dibenzothiophene)[J].Applied Physics Letters.2002,81(15):2884-2886.
    [7].Grem,G;Leditzky,G;Ullrich,B,et al.Realization of a blue-light-emitting device using poly (para-phenylene)[J].Advanced Materials.1992,4(1):36-37.
    [8].Yang,Y;Pei,Q;Heeger,AJ.Efficient blue polymer light-emitting diodes from a seres of soluble poly(paraphenylene)s[J].Journal of Applied Physics.1996,79(2):934-939.
    [9].Yang,Y;Pei,Q;Heeger,AJ.Efficient blue light-emitting diodes from a soluble poly(para-phenylene):Internal field emission measurement of the energy gap in semiconducting polymers[J].Synthetic Metals.1996,78(3):263-267.
    [10].Leising,G;Tasch,S;Meghdadi,F,et al.Blue electroluminescence with ladder-type poly (para-phenylene) and para-hexaphenyl[J].Synthetic Metals.1996,81(2-3):185-189.
    [11].Graupner,W;Grem,G;Meghdadi,F,et al.Electroluminescence with conjugated polymers and oligomers[J].Molecular Crystals and Liquid Crystals Science and Technology Section A-molecular Crystals and Liquid Crystals.1994,256:549-554.
    [12].Era,M;Tsutsui,T;Saito,S.Polarized electroluminescence from oriented p-sexiphenyl vacuum-deposited film[J].Applied Physics Letters.1995,67(17):2436-2438.
    [13].Tasch,S;Brandstatter,C;Meghdadi,F,et al.Red-green-blue light emission from a thin film electroluminescence device based on parahexaphenyl[J].Advanced Materials.1997,9(1):33-&.
    [14].Piaggi,A;Lanzani,G;Bongiovanni,G,et al.Emission properties of para-hexaphenyl polycrystalline films [J]. Physical Review B. 1997, 56(16): 10133-10137.
    [15]. Zenz, C; Cerullo, G; Lanzani, G, et al. Ultrafast photogeneration mechanisms of triplet states in para-hexaphenyl [J]. Physical Review B. 1999,59(22): 14336-14341.
    [16]. Faulques, E; Wery, J; Lefrant, S, et al. Transient photoluminescence of para-hexaphenyl layers [J]. Physical Review B. 2002,65(21): 212202.
    [17]. Muller, B; Kuhlmann, T; Lischka, K, et al. MBE growth of para-hexaphenyl on GaAs (001)-2x4 [J]. Surface Science. 1998, 418(1): 256-266.
    [18]. Andreev, AY; Matt, G; Sitter, H, et al. High oriented epitaxial oligomer/fullerene structures grown by hot wall epitaxy [J]. Synthetic Metals. 2001,116(1-3): 235-239.
    [19]. Smilgies, DM; Boudet, N; Yanagi, H. In-plane alignment of para-sexiphenyl films grown on KCl(001) [J]. Applied Surface Science. 2002,189(1-2): 24-30.
    [20]. Yanagi, H; Morikawa, T; Hotta, S. Electroluminescence from low-dimensionally confined crystals of thiophene/p-phenylene co-oligomers [J]. Applied Physics Letters. 2002, 81(8): 1512-1514.
    [21]. Andreev, A; Matt, G; Brabec, CJ, et al. Highly anisotropically self-assembled structures of para-sexiphenyl grown by hot-wall epitaxy [J]. Advanced Materials. 2000,12(9): 629-+.
    [22]. Quochi, F; Cordelia, F; Orru, R, et al. Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy [J]. Applied Physics Letters. 2004,84(22): 4454-4456.
    [23]. Quochi, F; Cordelia, F; Mura, A, et al. Gain amplification and lasing properties of individual organic nanofibers [J]. Applied Physics Letters. 2006,88(4): 041106
    [24]. Andreev, A; Quochi, F; Cordelia, F, et al. Coherent random lasing in the deep blue from self-assembled organic nanofibers [J]. Journal of Applied Physics. 2006, 99(3): 034305
    [25]. Balzer, F; Shamery, KA; Neuendorf, R, et al. Nonlinear optics of hexaphenyl nanofibers [J]. Chemical Physics Letters. 2003, 368(3-4): 307-312.
    [26]. Maibohm, C; Brewer, JR; Sturm, H, et al. Bleaching and coating of organic nanofibers [J]. Journal Of Applied Physics. 2006,100(5): 054304.
    [27]. Balzer, F; Beermann, J; Bozhevolnyi, SI, et al. Optically active organic microrings [J]. Nano Letters. 2003, 3(9): 1311-1314.
    [28]. Cordelia, F; Quochi, F; Saba, M, et al. Optical gain performance of epitaxially grown para-sexiphenyl films [J]. Advanced Materials. 2007,19: 2252-+.
    [29]. Holonyak, N; Bevacqua, SF. Coherent (visible) light emission from ga(asl-xpx) junctions [J]. Applied Physics Letters. 1962,1(4): 82-83.
    [30]. Niina, T. Gap red-light emitting diodes produced by a rotating boat system of liquid-phase epitaxial-growth [J]. Journal of the Electrochemical Society. 1977,124(8): 1285-1289.
    [31].Lorimor,OG;Dapkus,PD;Hackett,WH.Very high.efficiency gap green light emitting diodes [J].Journal of the Electrochemical Society.1975,122(3):407-412.
    [32].Nakamura,S.The blue laser diode:GaN based light emitter and lasers[M],Springer-Berlin,NewYork,1997.
    [33].Nakamura,S;Senoh,M;Nagahama,S,et al.Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours[J].Applied Physics Letters.1997,70(11):1417-1419.
    [34].Gaul,DA;Rees,WS.True blue inorganic optoelectronic devices[J].Advanced Materials.2000,12(13):935-946.
    [35].Haase,MA;Qiu,J;Depuydt,JM,et al.Blue-green laser-diodes[J].Applied Physics Letters.1991,59(11):1272-1274.
    [36].Jeon,H;Ding,J;Nurmikko,AV,et al.Low threshold pulsed and continuous-wave laser action in optically pumped(zn,cd)se/znse multiple quantum-well lasers in the blue-green[J].Applied Physics Letters.1991.59(11):1293-1295.
    [37].Nakamura,S;Senoh,M;Nagahama,S,et al.Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime[J].Applied Physics Letters.1997,70(7):868-870.
    [38].Yu P,Tang Z.K,Wong G.K.L,et al.Stimulated emission at room temperature from ZnO quantum dot films[C].Proceeding of 23rd international conference on the Physics of Semiconductors.Vol.2 edited by M.Scheffler and R.Zimmermann,World Scientific,Singapore,1996,p1453
    [39].Bagnall,DM;Chen,YF;Zhu,Z,et al.Optically pumped lasing of ZnO at room temperature [J].Applied Physics Letters.1997,70(17):2230-2232.
    [40].Zu,P;Tang,ZK;Wong,GKL,et al.Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J].Solid State Communications.1997,103(8):459-463.
    [41].Tang,ZK;Wong,GKL;Yu,P,et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J].Applied Physics Letters.1998,72(25):3270-3272.
    [42].Yu,P;Tang,ZK;Wong,GKL,et al.Room-temperature gain spectra and lasing in microcrystalline ZnO thin films[J].Journal of Crystal Growth.1998,184:601-604.
    [43].Bagnall,DM;Chen,YF;Shen,MY,et al.Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE[J].Journal of Crystal Growth.1998,184:605-609.
    [44]. Bagnall, DM; Chen, YF; Zhu, Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers [J]. Applied Physics Letters. 1998, 73(8): 1038-1040.
    [45]. Huang, MH; Wu, YY; Feick, H, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Advanced Materials. 2001,13(2): 113-116.
    [46]. Huang, MH; Mao, S; Feick, H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science. 2001, 292(5523): 1897-1899.
    [47]. Alivov, YI; Van Nostrand, JE; Look, DC, et al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes [J]. Applied Physics Letters. 2003, 83(14)s: 2943-2945.
    [48]. Yu, QX; Xu, B; Wu, QH, et al. Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode [J]. Applied Physics Letters. 2003, 83(23): 4713-4715.
    [49]. Alivov, YI; Kalinina, EV; Cherenkov, AE, et al. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates [J]. Applied Physics Letters. 2003, 83(23): 47194721.
    [50]. Park, WI; Yi, GC. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN [J]. Advanced Materials. 2004,16(1): 87-+.
    [51]. Chichibu, SF; Ohmori, T; Shibata, N, et al. Greenish-white electroluminescence from p-type CuGaS2 heterojunction diodes using n-type ZnO as an electron injector [J]. Applied Physics Letters. 2004, 85(19): 4403-4405.
    [52]. Osinsky, A; Dong, JW; Kauser, MZ, et al. MgZnO/AlGaN heterostructure light-emitting diodes [J]. Applied Physics Letters. 2004,85(19): 4272-4274.
    [53]. Konenkamp, R; Word, RC; Schlegel, C. Vertical nanowire light-emitting diode [J]. Applied Physics Letters. 2004, 85(24): 6004-6006.
    [54]. Yang, HS; Han, SY; Heo, YW, et al. Fabrication of hybrid n-ZnMgO/n-ZnO/p-AlGaN/p-GaN light-emitting diodes [J]. Japanese Journal of Applied Physics Part 1-regular Papers Brief Communications & Review Papers. 2005,44(10): 7296-7300.
    [55]. Sun, H; Zhang, QF; Wu, JL. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure [J]. Nanotechnology. 2006,17(9): 2271-2274.
    [56]. Osinsky, AV; Dong, JW; Xie, JQ, et al. ZnCdO/ZnMgO and ZnO/AlGaN heterostructures for UV and visible light emitters [J]. Gan, Ain, Inn And Related Materials. 2006,892:429-437.
    [57]. Murai, A; Thompson, DB; Chen, CY, et al. light-emitting diode based on ZnO and GaN direct wafer bonding [J]. Japanese Journal of Applied Physics Part 2-letters & Express Letters. 2006, 45(37-41): L1045-L1047.
    [58]. Jiao, SJ; Lu, YM; Shen, DZ, et al. Ultraviolet electroluminescence of ZnO based heterojunction light emitting diode[J].Physica Status Solidi C - Current Topics in Solid State Physics.2006,3(4):972-975.
    [59].Zhang,ZZ;Wei,ZP;Lu,YM,et al.P-Type ZnO on sapphire by using O-2-N-2 co-activating and fabrication of ZnO LED[J].Journal of Crystal Growth.2007,301:362-365.
    [60].Chen,PL;Ma,XY;Yang,DR.Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices[J].Applied Physics Letters.2006,89(11):111112.
    [61].Bulashevich,KA;Evstratov,IY;Karpov,SY.Hybrid ZnO/Ⅲ-nitride light-emitting diodes:modelling analysis of operation[J].Physica Status Solidi A-applications And Materials Science.2007,204(1):241-245.
    [62].Nakamura,A;Ohashi,T;Yamamoto,K,et al.Full-color electroluminescence from ZnO-based heterojunction diodes[J].Applied Physics Letters.2007,90(9):093512.
    [63].Tsukazaki,A;Kubota,M;Ohtomo,A,et al.Blue light-emitting diode based on ZnO[J].Japanese Journal of Applied Physics Part 2-letters & Express Letters.2005,44(20-23):L643-L645.
    [64].Ryu,YR;Lee,TS;Lubguban,JA,et al.Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes[J].Applied Physics Letters.2006,88(24):241108.
    [65].Van Vugt,LK;Ruhle,S;Vanmaekelbergh,D.Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire[J].Nano Letters.2006,6(12):2707-2711.
    [66].Jiao,SJ;Zhang,ZZ;Lu,YM,et al.ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J].Applied Physics Letters.2006,88(3):031911.
    [67].Aoki,T;Hatanaka,Y;Look,DC.ZnO diode fabricated by excimer-laser doping[J].Applied Physics Letters.2000,76(22):3257-3258.
    [68].Guo,XL;Choi,JH;Tabata,H,et al.Fabrication and optoelectronic properties of a transparent ZaO homostructural light-emitting diode[J].Japanese Journal of Applied Physics Part 2-letters.2001,40(3A):L177-L180.
    [69].Tsukazaki,A;Ohtomo,A;Onuma,T,et al.Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J].Nature Materials.2005,4(1):42-46.
    [1].Pope,M;Magnante,P;Kallmann,HP.Electroluminescence in organic crystals[J].Journal of Chemical Physics.1963,38(8):2042-&.
    [2].Vincett,PS;Barlow,WA;Hann,RA,et al.Electrical-conduction and low-voltage blue electro-luminescence in vacuum-deposited organic films[J].Thin Solid Films.1982,94(2):171-183.
    [3].Tang,CW;Vanslyke,SA.Organic electroluminescent diodes[J].Applied Physics Letters.1987,51(12):913-915.
    [4].Burroughes,JH;Bradley,DDC;Brown,AR,et al.Light-emitting-diodes based on conjugated polymers[J].Nature.1990,347(6293):539-541.
    [5].Braun,D;Heeger,AJ.Visible-light emission from semiconducting polymer diodes[J].Applied Physics Letters.1991,58(18):1982-1984.
    [6].Gustafsson,G;Cao,Y;Treacy,GM,et al.Flexible light-emitting-diodes made from soluble conducting polymers[J].Nature.1992,357(6378):477-479.
    [7].Peierls,RE.Quantum theory of solids[M].London,Oxford University Perss,1995.
    [8].夏锦尧,实用荧光分析法,北京,中国人民公安大学出版社,1992,3-8.
    [9].樊美公,光化学基本原理于光子学材料学,北京,科学出版社,2001,1-29.
    [10].科恩 D.O.,德里斯科R.L.,有机光化学原理,北京,科学出版社1989,2-15.
    [11].特罗N.J.,现代分子光化学,北京,科学出版社,1987,83-163.
    [12].Guilbault G.G.,Chen R.F.,Govindjee,etc.,Practical Fluorescence,New York,Marcel Dekker,1990,76-108.
    [13].Parker,ID;Cao,Y;Yang,CY.Lifetime and degradation effects in polymer light-emitting diodes[J].Journal of Applied Physics.85(4):2441-2447.
    [14].Grem,G;Leditzky,G;Ullrich,B,et al.Realization of a blue-light-emitting device using poly(para-phenylene)[J].Advanced Materials.1992,4(1):36-37.
    [15].Ueda,M;Abe,T;Awano,H.Synthesis of poly(2,5-dialkoxyphenylene)[J].Macromolecules.1992,25(20):5125-5130.
    [16].Yang,Y;Pei,Q;Heeger,AJ.Efficient blue polymer light-emitting diodes from a series of soluble poly(paraphenylene)s[J].Journal of Applied Physics.1996,79(2):934-939.
    [17].Scherf,U;Mullen,K.Polyarylenes and polyarylenevinylenes.11.a modified 2-step route to soluble phenylene-type ladder polymers[J].Macromolecules.1992,25(13):3546-3548.
    [18].Huber,J;Mullen,K;Salbeck,J,et al.Blue-light-emitting diodes based on ladder polymers of the PPP type[J].Acta Polymeriea.1994,45(3):244-247.
    [19].Gruner,J;Wittmann,HF;Hamer,PJ,et al.Electroluminescence and photoluminescence investigations of the yellow emission of devices based on ladder-type oligo(para-phenylene)s [J]. Synthetic Metals. 1994, 67(1-3): 181-185.
    [20]. Wegner, G and Mullen, K. Electronic Materials-The Oligome Approach [M]. Weinheim, VCH, 1998.
    [21]. Zojer, E; Cornil, J; Leising, G, et al. Theoretical investigation of the geometric and optical properties of neutral and charged oligophenylenes [J]. Physical Review B. 1999, 59(12): 7957-7968.
    [22]. Puschnig, P; Ambrosch-Draxl, C. Density-functional study for the oligomers of poly (para-phenylene): Band structures and dielectric tensors [J]. Physical Review B. 1999, 60(11): 7891-7898.
    [23]. Andreev, A; Matt, G; Brabec, CJ, et al. Highly anisotropically self-assembled structures of para-sexiphenyl grown by hot-wall epitaxy [J]. Advanced Materials. 2000,12(9): 629-+.
    [24]. Andreev, AY; Montaigne, A; Hlawacek, G, et al. Para-sexiphenyl thin films grown by hot wall epitaxy on KCl(001) substrates [J]. Journal of Vacuum Science & Technology A. 2006, 24(4): 1660-1663.
    [25]. Haber, T; Oehzelt, M; Resel, R, et al. Single crystalline nature of para-sexiphenyl crystallites grown on KCl(100) [J]. Journal of Nanoscience and Nanotechnology. 2006,6(3): 698-703.
    [26]. Haber, T; Andreev, A; Thierry, A, et al. Para-sexiphenyl thin films on KCl(100) surfaces: Growth morphologies and their individual epitaxial order [J]. Journal Of Crystal Growth. 2005, 284(1-2): 209-220.
    [27]. Sitter, H; Andreev, A; Teichert, C, et al. Organic thin films grown by hot wall epitaxy on inorganic substrates [J]. Physica Status Solidi B-basic Solid State Physics. 2005, 242(9): 1877-1882.
    [28]. Suess, C; Wenzl, FP; Jakopic, G, et al. Combined XPS, AFM, TEM and ellipsometric studies on nanoscale layers in organic light emitting diodes [J]. Surface Science. 2002, 507: 473-479.
    [29]. Plank, H; Resel, R; Purger, S, et al. Heteroepitaxial growth of self-assembled highly ordered para-sexiphenyl films: A crystallographic study [J]. Physical Review B. 2001, 64(23): 235423
    [30]. Quochi, F; Cordelia, F; Orru, R, et al. Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy [J]. Applied Physics Letters. 2004, 84(22): 4454-4456.
    [31]. Quochi, F; Cordelia, F; Mura, A, et al. Gain amplification and lasing properties of individual organic nanofibers [JJ. Applied Physics Letters. 2006,88(4): 041106
    [32]. Andreev, A; Quochi, F; Cordelia, F, et al. Coherent random lasing in the deep blue from self-assembled organic nanofibers [J]. Journal of Applied Physics. 2006,99(3): 034305
    [33]. Perrin, F. The polarisation of flourescence light. Average life of molecules in their excited state [J]. Journal De Physique Et Le Radium. 1926,7: 390-401.
    [34]. Cordelia, F; Quochi, F; Saba, M, et al. Optical gain performance of epitaxially grown para-sexiphenyl films [J]. Advanced Materials. 2007,19:2252-+.
    [1]. Hvam, JM. Direct recording of optical-gain spectra from ZnO [J]. Journal of Applied Physics. 1978,49(6): 3124-3126.
    [2]. Hvam, JM. Temperature-induced wavelength shift of electron-beam-pumped lasers from CdSe, CdS, and ZnO [J]. Physical Review B. 1971, 4(12): 4459-&.
    [3]. Klingshirn, C. Luminescence of ZnO under high one-quantum and 2-quantum excitation [J]. Physica Status Solidi B-basic Research. 1975,71(2): 547-556.
    [4]. Wunstel, W; Klingshirn, C. Tunable laser-emission from wurtzite-type-ii-vi compounds [J]. Optics Communications. 1980,32(2): 269-273.
    
    [5]. Yu P, Tang Z. K, Wong G. K. L, et al. Stimulated emission at room temperature from ZnO quantum dot films [C]. Proceeding of 23rd international conference on the Physics of Semiconductors. Vol.2 edited by M. Scheffler and R. Zimmermann, World Scientific, Singapore, 1996, pl453
    
    [6]. Service, RE. Materials science - Will UV lasers beat the blues [J]? Science. 1997, 276(5314): 895-895.
    [7]. Bagnall, DM; Chen, YF; Zhu, Z, et al. Optically pumped lasing of ZnO at room temperature [J]. Applied Physics Letters. 1997, 70(17): 2230-2232.
    
    [8]. Zu, P; Tang, ZK; Wong, GKL, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Communications. 1997, 103(8): 459-463.
    
    [9]. Tang, ZK; Wong, GKL; Yu, P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Applied Physics Letters. 1998, 72(25): 3270-3272.
    [10]. Yu, P; Tang, ZK; Wong, GKL, et al. Room-temperature gain spectra and lasing in microcrystalline ZnO thin films [J]. Journal of Crystal Growth. 1998,184:601-604.
    [11]. Bagnall, DM; Chen, YF; Shen, MY, et al. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE [J]. Journal of Crystal Growth. 1998,184:605-609.
    [12]. Bagnall, DM; Chen, YF; Zhu, Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers [J]. Applied Physics Letters. 1998,73(8): 1038-1040.
    [13]. Cao, H; Zhao, YG; Ong, HC, et al. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films [J]. Applied Physics Letters. 1998,73(25): 3656-3658.
    [14]. Cao, H; Zhao, YG; Liu, X, et al. Effect of external feedback on lasing in random media [J]. Applied Physics Letters. 1999, 75(9): 1213-1215.
    [15]. Cao, H; Zhao, YG; Ho, ST, et al. Random laser action in semiconductor powder [J]. Physical Review Letters. 1999,82(11): 2278-2281.
    [16]. Huang, MH; Wu, YY; Feick, H, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J]. Advanced Materials. 2001,13(2): 113-116.
    [17]. Huang, MH; Mao, S; Feick, H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science. 2001,292(5523): 1897-1899.
    [18]. Stassinopoulos, A; Das, RN; Giannelis, EP, et al. Random lasing from surface modified films of zinc oxide nanoparticles [J]. Applied Surface Science. 2005,247(1-4): 18-24.
    [19]. Qiu, ZR; Wong, KS; Wu, MM, et al. Microcavity lasing behavior of oriented hexagonal ZnO nanowhiskers grown by hydrothermal oxidation [J]. Applied Physics Letters. 2004, 84(15): 2739-2741.
    [20]. Choy, JH; Jang, ES; Won, JH, et al. Hydrothermal route to ZnO nanocoral reefs and nanofibers [J]. Applied Physics Letters. 2004,84:287-289.
    [21]. Johnson, JC; Yan, HQ; Yang, PD, et al. Optical cavity effects in ZnO nanowire lasers and waveguides [J]. Journal of Physical Chemistry B. 2003,107(34): 8816-8828.
    [22]. Johnson, JC; Knutsen, KP; Yan, HQ, et al. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers [J]. Nano Letters. 2004,4(2): 197-204.
    [23]. Yan, HQ; He, RR; Johnson, J, et al. Dendritic nanowire ultraviolet laser array [J]. Journal of the American Chemical Society. 2003,125(16): 4728-4729.
    [24]. Govender, K; Boyle, DS; O'Brien, P, et al. Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition [J]. Advanced Materials. 2002,14(17): 1221-+.
    [25]. Kwok, WM; Djurisic, AB; Leung, YH, et al. Study of excitonic emission in highly faceted ZnO rods [J]. Chemical Physics Letters. 2005,412(1-3): 141-144.
    [26]. Yang, HY; Lau, SP; Yu, SF, et al. High-temperature random lasing in ZnO nanoneedles [J]. Applied Physics Letters. 2006, 89(1): 011103.
    [27]. Yu, SF; Yuen, C; Lau, SP, et al. Random laser action in ZnO nanorod arrays embedded in ZnO epilayers [J]. Applied Physics Letters. 2004,84(17): 3241-3243.
    [28]. Sun, XW; Yu, SF; Xu, CX, et al. Room-temperature ultraviolet lasing from zinc oxide microtubes [J]. Japanese Journal of Applied Physics Part 2-letters. 2003, 42(10B): L1229-L1231.
    [29]. Yuen, C; Yu, SF; Sun, XW, et al. Ultraviolet lasing phenomenon of zinc oxide hexagonal microtubes [J]. Japanese Journal of Applied Physics Part 1-regular Papers Short Notes & Review Papers. 2004,43(8A): 5273-5278.
    [30]. Lau, SP; Yang, HY; Yu, SF, et al. Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates [J]. Applied Physics Letters. 2005,87(1): 013104.
    [31]. Liu, CH; Zapien, JA; Yao, Y, et al. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays [J]. Advanced Materials. 2003,15(10): 838-+.
    [32]. Wang, ZL Zinc oxide nanostnictures: growth, properties and applications [J]. Journal of Physics-Condensed Matter. 2004,16(25): R829-R858.
    [33]. Fan, ZY; Lu, JG. Zinc oxide nanostnictures: Synthesis and properties [J]. Journal of Nanoscience and Nanotechnology. 2005,5(10): 1561-1573.
    [34]. Ozgur, U; Alivov, YI; Liu, C, et al. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics. 2005,98:041301.
    [35]. Teke, A; Ozgur, U; Dogan, S, et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO [J]. Physical Review B. 2004,70(19): 195207.
    [36]. Djurisic, AB; Leung, YH. Optical properties of ZnO nanostnictures [J]. Small. 2006,2(8-9): 944-961.
    [37]. Sirbuly, DJ; Law, M; Yan, HQ, et al. Semiconductor nanowires for subwavelength photonics integration [J]. Journal of Physical Chemistry B. 2005,109(32): 15190-15213.
    [38]. Studenikin, SA; Cocivera, M; Kellner, W, et al. Band-edge photoluminescence in polycrystalline ZnO films at 1.7K [J]. Journal of Luminescence. 2000,91(3-4): 223-232.
    [39]. Ko, HJ; Chen, YF; Yao, T, et al. Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy [J]. Applied Physics Letters. 2000,77(4): 537-539.
    [40]. Hamby, DW; Lucca, DA; Klopfstein, MJ, et al. Temperature dependent exciton photoluminescence of bulk ZnO [J]. Journal of Applied Physics. 2003,93(6): 3214-3217.
    [41]. Bagnall, DM; Chen, YF; Zhu, Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers [J]. Applied Physics Letters. 1998,73(8): 1038-1040.
    [42]. Cho, SL; Ma, J; Kim, YK, et al. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn [J]. Applied Physics Letters. 1999,75(18): 2761-2763.
    [43]. Szarko, JM; Song, JK; Blackledge, CW, et al. Optical injection probing of single ZnO tetrapod lasers [J]. Chemical Physics Letters. 2005,404(1-3): 171-176.
    [44]. Anderson, PW. Absence of diffusion in certain random lattices [J]. Physical Review. 1958, 109(5): 1492-1505.
    [45]. Lin, BX; Fu, ZX; Jia, YB. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Applied Physics Letters. 2001,79(7): 943-945.
    [46]. Lima, SAM; Sigoli, FA; Jafelicci, M, et al. Luminescent properties and lattice defects correlation on zinc oxide [J]. International Journal of Inorganic Materials. 2001, 3(7): 749-754.
    [47]. Xu, PS; Sun, YM; Shi, CS, et al. The electronic structure and spectral properties of ZnO and its defects [J]. Nuclear Instruments & Methods in Physics Research Section B-beam Interactions with Materials and Atoms. 2003,199:286-290.
    [48]. Rabi, II. Space quantization in a gyrating magnetic field [J]. Physical Review. 1937, 51(8): 0652-0654.
    [49]. Knight, PL; Milonni, PW. The rabi frequency in optical-spectra [J]. Physics Reports-review Section of Physics Letters. 1980,66(2): 21-107.
    [50]. Peng, H; Yuan, FL; Bai, LY, et al. Plasma synthesis of large quantities of zinc oxide nanorods [J]. Journal of Physical Chemistry C. 2007,111(1): 194-200.
    [51]. Klingshirn, CF. Light-matter interaction - Experimental aspects [C]. Spectroscopy and Dynamics of Collective Excitations in Solids. 1997,356:85-122.
    [52]. Takeda, J; Kurita, S; Chen, YF, et al. Ultrafast carrier dynamics in ZnO epitaxial thin films studied by optical Kerr gate luminescence spectroscopy [J]. International Journal of Modern Physics B. 2001,15(28-30): 3669-3672.
    [1]. Hawthornthwaite, A. M. and Cogdell, R. J. Bacteriochlorophyss-binding proteins. In The Chlorophylls [M]. Florida. Press, Boca Raton, 1991:493-528.
    [2]. Hunter, C. N. Genetic manipulation of the antenna complexes of purple bacteria. In Anoxygenic Photosynthetic BGacteria [M]. The Netherlands.Kluwer Acad. Publ., 1995:473-501.
    [3]. Zuber, H. and Cogdell, R. J. Structure and organization of purple bacterial antenna complexes [M]. The Netherlands, Kluwer Acad. Publ., 1995:315-348.
    [4]. Koyama, Y; Kuki, M; Andersson, PO, et al. Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis [J]. Photochemistry and Photobiology. 1996,63(3): 243-256.
    [5]. Chynwat,V; Frank, H. A. The application of the energy-gap law to the s-1 energies and dynamics of carotenoids [J]. Chemical Physics, 1995,194(2-3):237-244.
    [6]. Cogdell, RJ. Carotenoids in photosynthesis. Pure and Applied Chemistry. 1985, 57(5): 723-728.
    [7]. Horn, R; Paulsen, H. Folding in vitro of light-harvesting chlorophyll a/b protein is coupled with pigment binding [J]. Journal of Molecular Biology. 2002,318(2): (547-556).
    [8]. Hess, S; Akesson, E; Cogdell, RJ, et al. Energy transfer in spectrally inhomogeneous light-harvesting pigment-protein complexes of purple bacteria [J]. Biophysical Journal. 1995,69(6): 2211-2225.
    [9]. Wu, HM; Savikhin, S; Reddy, NRS, et al. Femtosecond and hole-burning studies of B800's excitation energy relaxation dynamics in the LH2 antenna complex of Rhodopseudomonas acidophila (strain 10050) [J]. Journal of Physical Chemistry. 1996,100(29): 12022-12033.
    [10]. Ma, YZ; Cogdell, RJ; Gillbro, T. Femtosecond energy-transfer dynamics between bacteriochlorophylls in the B800-820 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (Strain 7750) [J]. Journal of Physical Chemistry B. 1998,102(5): 881-887.
    [11]. Gillbro, T; Macpherson, AN; Arellano, JB, et al. Ultrafast internal conversion and energy transfer in light-harvesting carotenoid-containing complexes [J]. Abstracts of Papers of the American Chemical Society. 1998,216:719-719.
    [12]. Monshouwer, R; vanGrondelle, R. Excitations and excitons in bacterial light-harvesting complexes [J]. Biochimica Et Biophysica Acta-bioenergetics. 1996,1275(1-2): 70-75.
    [13]. Shreve, AP; Trautman, JK; Frank, HA, et al. Femtosecond energy-transfer processes in the b800-850 light-harvesting complex of rhodobacter-sphaeroides-2.4.1 [J]. Biochimica Et Biophysica Acta. 1991,1058(2): 280-288.
    [14]. Hess, S; Feldchtein, F; Babin, A, et al. Femtosecond energy-transfer within the lh2 peripheral antenna of the photosynthetic purple bacteria rhodobacter-sphaeroides and rhodopseudomonas-palustris 11 [J]. Chemical Physics Letters. 1993,216(3-6): 247-257.
    [15]. Monshouwer, R; Dezarate, IO; Vanmourik, F, et al. Low-intensity pump-probe spectroscopy on the b800 to b850 transfer in the light-harvesting 2 complex of rhodobacter-sphaeroides [J]. Chemical Physics Letters. 1995, 246(3): 341-346.
    [16]. Vanderlaan, H; Schmidt, T; Visschers, RW, et al. Energy-transfer in the b800-850 antenna complex of purple bacteria rhodobacter-sphaeroides - a study by spectral hole-burning [J]. Chemical Physics Letters. 1990,170(2-3): 231-238.
    [17]. Reddy, NRS; Small, GJ; Seibert, M, et al. Energy-transfer dynamics of the b800-b850 antenna complex of rhodobacter-sphaeroides - a hole burning study [J]. Chemical Physics Letters. 1991,181(5): 391-399.
    [18]. Pullerits, T; Hess, S; Herek, JL, et al. Temperature dependence of excitation transfer in LH2 of Rhodobacter sphaeroides [J]. Journal of Physical Chemistry B. 1997, 101(49): 10560-10567.
    [19]. Krueger, BP; Scholes, GD; Fleming, GR. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method (vol 102B, pg 5384,1998) [J]. Journal of Physical Chemistry B. 1998,102(47): 9603-9603.
    [20]. Middendorf, TR; Mazzola, LT; Lao, KQ, Et AL Stark-effect (electroabsorption) spectroscopy of photosynthetic reaction centers at 1.5 k - evidence that the special pair has a large excited-state polarizability [J]. Biochimica Et Biophysica Acta. 1993, 1143(2): 223-234.
    [21]. Ratsep, M; Wu, HM; Hayes, JM, et al. Stark hole-burning studies of three photosynthetic complexes [J]. Journal of Physical Chemistry B. 1998,102(20): 4035-4044.
    [22]. Alden, RG; Johnson, E; Nagarajan, V, et al. Calculations of spectroscopic properties of the LH2 bacteriochlorophyll - Protein antenna complex from Rhodopseudomonas acidophila [J]. Journal of Physical Chemistry B. 1997,101(23): 4667-4680.
    [23]. Trinkunas, G; Herek, JL; Polivka, T, et al. Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2 [J]. Physical Review Letters. 2001,86(18): 4167-4170.
    [24]. Leupold, D; Stiel, H; Teuchner, K, et al. Size enhancement of transition dipoles to one- and rwo-exciton bands in a photosynthetic antenna [J]. Physical Review Letters. 1996, 77(22): 4675-4678.
    [25]. Wu, HM; Ratsep, M; Lee, IJ, et al. Exciton level structure and energy disorder of the B850 ring and the LH2 antennal complex [J]. Journal of Physical Chemistry B. 1997, 101(38): 7654-7663.
    [26]. Nagarajan, V; Alden, RG; Williams, JC, et al. Ultrafast exciton relaxation in the B850 antenna complex of Rhodobacter sphaeroides [J]. Proceedings of The National Academy of Sciences of The United States of America. 1996,93(24): 13774-13779.
    [27]. Forster, T. Zwischenmolekulare Energiewanderung Und Fluoreszenz [J]. Annalen Der Physik. 1948,2(1-2): 55-75.
    
    [28]. Forster, T. In Modern Quantum Chemisty.Academic Press [M], NewYork. 1965,2: 93-137.
    [29]. Dexter, DL. A Theory of Sensitized Luminescence in Solids [J]. Journal of Chemical Physics. 1953,21(5): 836-850.
    [30]. Hess, S; Visscher, KJ; Pullerits, T, et al. Enhanced Rates of Subpicosecond Energy-transfer In Blue-shifted Light-harvesting Lh2 Mutants of Rhodobacter-sphaeroides [J]. Biochemistry. 1994,33(27): 8300-8305.
    [31]. Koolhaas, MHC; vanderZwan, G; Frese, RN, et al. Red shift of the zero crossing in the CD spectra of the LH2 antenna complex of Rhodopseudomonas acidophila: A structure-based study [J]. Journal of Physical Chemistry B. 1997,101(37): 7262-7270.
    [32]. Damjanovic, A; Ritz, T; Schulten, K. Light-harvesting and photoprotection by carotenoids in photosynthesis [J]. Biophysical Journal. 1998, 74(2): A76-A76.
    [33]. Herek, JL; Fraser, NJ; Pullerits, T, et al. B800 -> B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment exchange [J]. Biophysical Journal. 2000,78(5): 2590-2596.
    [34]. Sundstrom, V; Pullerits, T; van Grondelle, R. Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit [J]. Journal of Physical Chemistry B. 1999,103(13): 2327-2346.
    [35]. Scholes, GD; Fleming, GR. On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer [J]. Journal of Physical Chemistry B. 2000,104(8): 1854-1868.
    [36]. Stiel, H; Leupold, D; Teuchner, K, et al. One- and two-exciton bands in the LH2 antenna of Rhodopseudomonas acidophila [J]. Chemical Physics Letters. 1997,276(1-2): 62-69.
    [37]. Kuhn, O; Mukamel, S. Probing the two-exciton manifold of light-harvesting antenna complexes using femtosecond four-wave mixing [J]. Journal of Physical Chemistry B. 1997, 101(5): 809-816.
    [38]. Ma, YZ; Cogdell, RJ; Gillbro, T. Energy transfer and exciton annihilation in the B800-850 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (Strain 10050). A femtosecond transient absorption study [J]. Journal of Physical Chemistry B. 1997,101(6): 1087-1095.
    [39]. Knoester, J. Collective nonlinear-optical properties of disordered j-aggregates [J]. Advanced Materials. 1995, 7(5): 500-502.
    [40]. Bruggemann, B. May, V. Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system [J]. Journal of Chemical Physics. 2004,120(5): 2325.
    [41]. Knoester, J. Nonlinear optical susceptibilities of disordered aggregates - a comparison of schemes to account for intermolecular interactions [J]. Physical Review A. 1993, 47(3): 2083-2098.
    [42]. Leupold, D; Stiel, H; Ehlert, J, et al. Photophysical characterization of the B800-depleted light harvesting complex B850 of Rhodobacter sphaeroides - Implications to the ultrafast energy transfer 800 -> 850 nm [J]. Chemical Physics Letters. 1999,301(5-6): 537-545.
    [43]. Kropacheva, TN; Hoff, AJ. Electrochemical oxidation of bacteriochlorophyll a in reaction centers and antenna complexes of photosynthetic bacteria [J]. Journal Of Physical Chemistry B. 2001,105(23): 5536-5545.
    [44]. Fowler, GJS; Sockalingum, GD; Robert, B, et al. Blue shifts in bacteriochlorophyll absorbency correlate with changed hydrogen-bonding patterns in light-harvesting 2 mutants of rhodobacter-sphaeroides with alterations at alpha-tyr-44 and alpha-tyr-45 [J]. Biochemical Journal. 1994,299:695-700.
    [45]. Olsen, JD; Sockalingum, GD; Robert, B, et al. Modification of a hydrogen-bond to a bacteriochlorophyll-a molecule in the light-harvesting 1-antenna of rhodobacter-sphaeroides [J]. Proceedings of the National Academy of Sciences of the United States of America. 1994, 91(15): 7124-7128.
    [46]. Olsen, JD; Sturgis, JN; Westerhuis, WHJ, et al. Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides [J]. Biochemistry. 1997,36(41): 12625-12632.
    [47]. Sturgis, JN; Jirsakova, V; Reisshusson, F, et al. Structure and properties of the bacteriochlorophyll binding-site in peripheral light-harvesting complexes of purple bacteria [J]. Biochemistry. 1995,34(2): 517-523.
    [48]. Sturgis, JN; Olsen, JD; Robert, B, et al. Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides [J]. Biochemistry. 1997, 36(10): 2772-2778.
    [49]. Monshouwer, R; Dezarate, IO; Vanmourik, F, et al. Low-intensity pump-probe spectroscopy on the b800 to b850 transfer in the light-harvesting 2 complex of rhodobacter-sphaeroides [J]. Chemical Physics Letters. 1995,246(3): 341-346.
    [50]. Fajer, J; Borg, DC; Forman, A, et al. Cation radicals of free base and zinc bacteriochlorin, bacteriochlorophyll, and bacteriopheophytin [J]. Proceedings of the National Academy of Sciences of the United States of America. 1974,71(3): 994-998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700