有机超薄膜与金属界面特性测量及其相关理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来有机光电器件得到迅猛发展,有望取得重大突破,成为一个十分活跃的研究领域。然而在有机光电器件中不可避免的会涉及有机材料与金属电极相接触的界面问题,光电器件最终性能的发挥与器件的界面特性密切相关。本文针对有机光电器件中存在的共性问题,即有机材料与金属电极相接触的界面性质进行了理论和实验新方法的研究。主要工作内容有:
     1.建立了用于有机超薄膜/金属界面特性测量的光二次谐波理论。基于有机超薄膜/金属界面样品结构,构建了四层物理模型。由麦克斯韦方程组出发,根据强光与物质相互作用引起的非线性极化过程和相应的边界条件,首次推导出光在界面中传播的线性过程和非线性过程,给出了基频(ω)和倍频(2ω)条件下,前向波、后向波、反射波和透射波在不同偏振入射场合电场强度的表达式,不同偏振方向入射与输出光强之间的对应关系。为开展利用光二次谐波测量有机超薄膜/金属界面特性的实验奠定了理论基础。
     2.首次进行了利用光二次谐波法测量有机超薄膜/金属界面特性的实验。选用具有优异光电性能的酞菁铜衍生物(copper tetra- tert-butyl Phthalocyanine, CuttbPc)作为有机层,采用LB膜制膜技术,制备了有机超薄膜。搭建和调试了光二次谐波测量系统,观察到CuttbPc LB膜/金属(Al或Au)界面在1000~1300nm波段光二次谐波产生的现象,分析了其产生机制。测量并计算了非线性极化率χQ和χdc等参数,实验结果与理论计算得到较好的符合。这是一种突破传统研究手段,获得有机超薄膜/金属界面特性测量的新方法。
     3.利用传统电学测量方法——Kelvin探针法测量了CuttbPc LB膜/金属(Al或Au)样品界面电位,计算出空间电荷和电子态密度分布等参数,得到CuttbPc LB膜与金属(Al和Au)界面处表面电位随膜厚的变化等一系列对应关系,验证了光二次谐波法测量结果,揭示了光二次谐波信号与界面电位等电学参数的内在关系。
     4.首次将电场调制谱方法用于有机超薄膜/金属界面特性的测量。观察到CuPc膜/金属(Al)界面的基频(1f)和倍频(2f)电场调制吸收信号均与外加调制电场的强度成正比。由此得到可以通过改变外加直流偏置电压推算表面静电势值的新方法。
During the recent years, organic photo-electronic devices have been developed dramatically and hopefully get great research achievements. However, it is unavoidable that the interfaces between organic material/metals are the questions should be met in organic photo-electronic devices. The performance of the devices is closely related to the characteristics of the interfaces.
     The study of this dissertation is aimed to the common questions of in organic photo-electronic devices, characterize of the interface between organic material/metals, a novel of theoretical studies and experimental methods were carried out. The main works of this thesis were the followings:
     1. The second harmonic generation (SHG) theory for the measurement of the characteristics of interface between organic material and metals was set up. Based on the sample structure of organic LB film/metals, a physical four-layers model was lay out. Started from Maxwell equations, the linear and nonlinear procedures of light transformations in the interface were also introduced. The corresponding relations between the light intensities of input and output were presented for the forward wave, backed wave, reflective wave and transmitted wave under different incident directions and withωand 2ωseparately. It offered a theoretical foundation for the measurement experiments of the interface characteristics between organic material and metals by SHG method.
     2. The experiments for measuring the interface characteristics of organic LB film/metals were carried out firstly by using SHG method.
     CuttbPc and its derivative materials with excellent opto-electronic features were selected for the preparation of organic ultrathin film by using Langmuir-Blodgett (LB) film technique. SHG phenomena was observed in the interfaces of CuttbPc LB film/metals (Al or Au) from the 1000~1300nm and its mechanisms were investigated. The nonlinear susceptibility ofχQ andχdcwere measured and calculated. The results were coincided between experiments and theory. Thus SHG can be used as a new method for the measurement of the interface characteristics between organic material and metals. 3. The surface potentials of the interfaces between organic LB film and metals (Al or Au) were measured by using Kelvin probe method. Corresponding relations of the surface potentials and film depths were tested and verified results of SHG measurements. It shows the inhesion relations between SHG signals and the electric parameters of interfaces, such as surface potential etc.
     4. The electroabsorbance (EA) spectrum method was used firstly, to measure the characteristics interface between the organic ultrathin film/metals. A new method that the calculate the surface electrostatic potentials can be get by changing the supplied direct-current (DC) bias voltages was presented.
引文
[1] 朱道本,加强学科交叉 提升创新能力,中国科学基金,2001,15(6): 321-323
    [2] 帅志刚,朱道本,物理学与化学交叉——有机分子固体与聚合物的物理问 题,物理,2002,31(6):349-352
    [3] 周奇,庄斗南,有机电子学时代的到来,国外科技动态,2001,379:15-18
    [4] Tang C. W.,VanSlykes S. A.,Organic electroluminescent diodes, Appl. Phys. Lett.,1987,51:913-91
    [5] G.Gustafsson, Y.Cao ,G.M.Treacy, et al., Flexible light-emitting diodes made from soluble conducting polymers,Nature,1992,357(6378):477-479
    [6] 应根欲,胡文波,邱勇等,平板显示技术,北京,人民邮电出版社,2002
    [7] Clarisse C.,Riou M.T.,Gauneau M.,Field-effect transistor with diphthalocyanine thin film. Electron Lett.,1988,24:674-676
    [8] 周桂江, 叶成, 有机/聚合物场效应管化学通报 2002 6(4) :227-233
    [9] J.J.M.Halls,R.H.Friend. The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction,Synthetic Metals,1997,85(1-3):1307-1308
    [10] A.Goetzberger,J.Luther, G.Willeke, Solar cells: past, present, future,Solar Energy Materials &Solar Cells,2002,74:1-11
    [11] Burroughes J.H., Bradley D.D., Brown A. R., et al., Light emitting diodes based on conjugated polymers,Nature,1990, 347: 539-542
    [12] 邱勇,OLED国内外发展动态,彩色显像管, 2001,4:1-1,30
    [13] Tsumura A.,Koezuka H.,Ando T., Macromolecular electronic device Field-effect transistor with a polythiophene thin film, App. Phys. Lett., 1986, 49:1210-1215
    [14] F.Garnier,R.Hajlaoui,A.Yassar, All-Polymer Field-Effect Transistor Realized by Printing Techniques,Science, 1994,265:1684-1686.
    [15] 工藤一浩,有机トランジスタの现状と将来展望,应用物理,2003,72: 1151-1155
    [16] J.J.M.Halls,R.H.Friend.Synthetic Metals, The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction,1997,85(1-3):1307-1308
    [17] 解良聪,上野信雄,有机薄膜界面の电子状态:现状と课题,应用物理(日刊),2003,72:(10)1260-1267
    [18] Bulovic V.,Tian P.,Burrows P.E.,et al., A surface-emitting vacuum- deposited organic light emitting device, Appl. Phys. Lett.,1997, 70:2954-2956
    [19] Mathine D.L.,Woo H.S.,He W.,et al., Helerogeneously integrated organic light-emitting diodes with complementary metal-oxide-silicon circuitry. Appl. Phys. Lett.,2000,76:3849-3851
    [20] Mada Yochi,Sugitani Suehiro, Arai Kunihiro,et al., Optical properties of oxygen-ion-implanted benzo-cyclo-butene films, Vac. Sci. Technol. A,2001,19:883-886
    [21] Forrest S.R., Ultrathin organic films grown by organic molecular beam deposition and related techniques, Chem. Rev,1997,97:1793-1896.
    [22] ZHANG Fu-jia,WANG De-ming,ZHANG De-jiang, et al., Investigation on barrier characteristics for Si-based compounds, Semiconductor Optoelectronics(半导体光电),2000,21:182-185(in Chinese)
    [23] Forrest S.R.,Kaplan M.L.,Schmidt P.H., Organic-on-inorganic semiconductor contact barrier diodes, Ⅰ,Theory with applications to organic thin films and prototype devices, Appl. Phys.,1984,55:1492-1507
    [24] Forrest S.R., Kaplan M.L., Schmidt P.H., Organic-on-inorganic semiconductor contact barrier diodes,Ⅱ ,Dependence on organic film and metal contact properties, Appl.Phys.,1984,56:543-551
    [25] Xu Xue-mei,PENG Jing-cui, LI Hong-jian,et a1., Effects of the LiF layer on the performance of ITO/Alq3/LiF:Al device, Journal of Optoelectronics·Laser (光电子·激光),2004,15(5):572-574.(in Chinese)
    [26] 李成全,金属/聚酰亚胺 LB 薄膜的电子特性研究,硕士,西安交通大学,2000
    [27] L.H.Lee Dual mechanism for metal-polymer contact electrification Electrostat,1994,32:1-5
    [28]A.M.Cowley,S.M.Sze, Surface States and Barrier Height of Metal-Semiconductor Systems,Appl. Phys., 36(1965) 3212-3216
    [29] I. Shinohara, F. Yamamoto, H. Anzai, S. Endo,Chemical structure and electrostatic properties of polymers, Electrostat., 1976 2:99--103
    [30] H. W. Gibson, Control of electrical properties of polymers by chemical modification,Polymer, 1984,25:3-8
    [31] B. Hamilton, A. C. Rose-Innes, Why do some polymers charge positively? An experimental investigation, Electrostat., 1981,10:121-127
    [32] J. Lowell, A. R. Akande, Contact electrification-why is it variable? Phys.D.,1988,21:125-129
    [33] C.B. Duke, W.R. Salaneck, T.J. Fabish, Electronic structure of pendant-group polymers: Molecular-ion states and dielectric properties of poly(2-vinyl pyridine),Phys. Rev.B., 1978, 18:5717-5721
    [34] M. Iwamoto, Y. .Majima, H. Naruse, et al., Generation of Maxwell displacement current across an azobenzene monolayer by photoisomerization, Nature, 1991, 353:419-422
    [35] 岩本光正,有機材料?超薄膜電子デバイスへの応用,電子情報通信学会誌,1997, 80:63-66
    [36] M. Iwamoto ,C. X. Wu, The Physical Properties of Organic Monolayers, Singapore: World Scientific Press, 2001
    [37] E.Itoh, H.Kokubo,M.Iwamoto,Electrostatic phenomena in π-conjugated Langmuir-Blodgett films on metal electrodes, Jpn. J. Appl. Phys.,1998,37: 577-583
    [38] C.Q. Li, C.X. Wu and M. Iwamoto: Jpn. J. Appl. Phys., 2000,39:1840-1844
    [39] M.Iwamoto,T.Manaka, A.Tojima, Generation of Maxwell-displacement current due to tilting phase transition of amphiphile monolayers on water surface,Chem. Phys. Lett., 2002,359: 169-175 [40 ] Cheng X M, Li C Q, T.Manaka ,et al., Second harmonic generation from the interface of CuttPc Langmuir-Blodgett film/metal, Sci. Chin B., 2002,32(5):450-455 (in Chinese)
    [41] Cheng-quan Li, Takaaki manaka, Xiao-man Cheng, Mitsumasa Iwamoto, Study of SHG from CuttbPc Langmuir-Blodgett Film/Metal Interface, Jpn. J. Appl. Phys. Part 1, 2003, 42:2516-2522
    [42] Takaaki Manaka, Yuuma Suzue, Mitsumasa Iwamoto, Investigation of theElectrostatic Phenomena at Pentacene/Metal Inerface by Second Harmonic Generation, Japanese Journal of Applied Physics, 2005, 44(4B):2818-2822
    [43] Cheng X. M., Yao S. V., Li C. Q., et al., Analysis of second harmonic generation from CuttPc Langmuir-Blodgett film/metal interface, Chin. Phys. Lett., 2004, 21(1):153-155
    [44] Cheng X M, Yao S V, Li C Q et al., Measurement of Surface Potential at Metal/ Organic material Interfaces by Electro-Absorption Method, Chin Phys Lett, , 2004,21(10):2026-2028
    [45] 程晓曼, 姚素薇,酞菁铜/金属薄膜界面电位与光二次谐波特性分析, 化学物理学报, 2004,17(5):407-601
    [48] 黄春辉, 李富友, 黄岩谊,光电功能超薄膜,北京:北京大学出版社,2001,1-144
    [49] 石井淑夫著,よい LB 膜をつくる实践的技术,东京:共立出版株式会社, 1989
    [50] 欧阳健明,LB 膜原理与应用,广州:暨南大学出版社,1999
    [51] X .Song, M. Miura, J.A. Shelnute, et al., Langmuir-Blodgett Films of Stearic Acid Containing porphyrin,Langmuir,1996,12:2019-2023
    [52] Y.Ren, W. Liu,M.Han et al., Structural Study on the polar Langmuir-Blodgett Films of a new azo-containing polymer through polarized infrared and UV-visible Thin Solid Films, 1993,229:249-252
    [53] D.Blaudez, T.Bufeteau, B.Desbat, et al., In-Plane organization of LB monolayers from FTIR spectroscopy Thin Solid Films,1994,243:55 9-565
    [54] 唐伟忠,薄膜材料制备原理技术及应用,北京:冶金工业出版社,1998
    [55] 曲喜新,杨邦朝,姜节俭等,电子薄膜材料,北京:科学出版社,1996
    [56] D.L.Smith,Thin Film Deposition,McGraw-Hill Inc.,New York,1995
    [57] P.A.Franken, A.E.Hill, C.W.Peters, Generation of Optical Harmonics,Phys. Rev. Lett., 1961, 7:118-122
    [58] Y.R.Shen,The Principles of Nonlinear Optics,New York:Wiley, 1984
    [59] N. Bloembergen, Nonlinear Optics,New York:Benjamin,1965
    [60] Charles C. Wang, Second-Harmonic generation of Light at the Boundary of an Isotropic Medium, Physical Review, 1969, 178(3):1457-1461
    [61] Ping Yuan,Zonggiu Xia,Y.H.Zou, et al., Femtosecond time-resolved optical response of phthalocyanine Langmuir-Blodgett fiml, J.Appl.Phys.,1994,75(9)4848-4851
    [62] Jeong-Geun Yoo, Hajime Hoshi, Takahiro Sakai, et al., Determination of molecular orientational distribution using surface second-harmonic generation analyzed by five-layer model and maximum-entropy method, Journal of Applied Physics, 1998, 84(8):4079-4086
    [63] Eiji Itoh, Haruo Kokubo, Shigeto Shouriki, et al., Surface potential of phthalocyanine Langmuir-Blodgett films on metal electrodes, J. Appl. Phys., 1998, 83(1):372-376
    [64] 林直树,石井久夫,伊藤英辅,关一彦,ケルビン法でみた有机/金属界面の构造,应用物理(日刊),2002,71(12):1488-1492
    [65] H.Ishii,K.Seki,Conjugated polymer and Molecular Interfaces , New York, Marcel Dekker, 2002,293-310
    [66] Cardona,Modulation Spectroscopy,Academic Press, New York,1969
    [67] Wenyan Jia, Kazuhiko Misawa, Hiro Matsuda, Shuji Okada, Hachiro Nakanishi, Takayoshi Kobayashi , Electroabsorption of a new urethane-substituted polydiacetylene PDA-5BCMU-4A in a film, Chem. Phys. Lett., 1996, 255:385-392
    [68] 程晓曼,取代基的聚苯乙炔高聚物电吸收谱特性的研究,科学通报, 1998, 43(8):889-892
    [69] Byeong-cho Chin, Kazuhiko Misawa, Toshio Masuda, Takayoshi Kobayashi,Large static dipole moment in substituted polyacetylenes obtained by electroabsorption, Chem. Phys. Lett., 2000, 318:499-504
    [70] N. Bloembergen and P.S.Pershan, Light waves at the boundary of nonlinear media. Phys. Rev. 1962,128:606-612
    [71] S. Qin, W.M. You,Z.B. Su, Second-harmonic generation from the quadrupole response in C60 films,Phys. Rev. B, 1993, 48:17562-17569
    [72] B.Koopmans, A.M.Janner, H.T.Jonkman, second-harmonic generation from C60,Phys.Rev.Lett.,1993, 71:3569-3573
    [73] D. Wilk, D. Johannsmann, C. Stanners, Second-harmonic generation from C60 thin films at 1.064 μm,Phys. Rev. B, 1995, 51:10057-10062
    [74] H. Hoshi, N. Nakamura, K. Maruyama, Optical Second- and Third-Harmonic Generations in C60 Film, Jpn. J. Appl. Phys. 1991,30, L1397-1403
    [75] Y. Liu, H. Jiang, W. Wang, Second-harmonic signal through the orientational phase transition in fullerene films,Phys. Rev. B, 1994, 50:4940-4945
    [76] K. Kumagai, G. Mizutani, H. Tsukioka, Second-harmonic generation in thin films of copper phthalocyanine, Phys. Rev. B, 1993, 48(19):488-495
    [77] T.Yamada, H.Hoshi, T.Manaka, Resonant enhancement of second-harmonic generation of electric quadrupole origin in phthalocyanine films, Phys. Rev. B, 1996, 53: (20):314-317
    [78] 陈仕艳,刘云圻,黄学斌,酞菁在分子材料器件方面的研究进展, 2004, 14(2)125-131
    [79] VanSlyke S.A.,Chen C.H.,Tang C. W.,et al.,Organic electroluminescent devices with improved stability, Appl Phys Lett, 1996, 69(15): 2160-2162
    [80] S. Tanaka, C.Adachi, T.Koyama, et al., Organic light emitting diodes using triphenylene derivatives as a hole transport material. Chem Lett, 1998, 10 975-979
    [81] T. Tominaga, K.Hayashi, N.Toshima, Construction of a sequential potential field by [Cu(pc)]/[Zn(pc)]double-layered thin film: Application to electrochromic and electroluminescent devices. Journal of Porphyrins and Phthalocyanines, 1997, 1(3): 239
    [82] Z. Bao, A. J.Lovinger, A. Dodabalapur, Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl Phys Lett, 1996, 69(20): 3066-3070
    [83] Yunqi Liu, Wenping Hu, Wenfeng Qiu,et al. Organic field-effect transistors based on Langmuir-Blodgett films of substituted phthalocyanines. Sensor and Actuators B: Chemical, 2001, 80(3): 202-208
    [84] Baker S, Phthalocyanine Langmuir Blodgett film gas detector. IEE Proc, Part I: Solid-State Electron Devices, 1983, 130(5): 260-265
    [85] Xu G, Bao Z, Groves J T. Langmuir-Blodgett films of regioregular poly(3-hexylthiophene) as field-effect transistors.Langmuir, 2000, 16: 1834-1841
    [86] Altindal A, et al. Halogen sensing using thin films of crosswise-substitutedphthalocyanines. Sensors and Actuators B: Chemical, 2001, 77(1-2): 389-395
    [87] Wenping Hu, Yunqi Liu, Yu Xu, et al., The gas sensitivity of Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine. Sensors and Actuators B: Chemical, 1999, 56(3): 228-233
    [88] L.D.Landan, E.M.Lifshitz.Quantum Mechanics, 1977, Oxford, Pergamon, 97-140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700