钯催化炔卤构建碳卤键和环化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展简便直接的方法从廉价易得的原料合成复杂多官能团的有机分子是现代有机合成化学的研究热点之一。在有机合成化学中,炔卤是一种非常有研究意义、实用价值的有机合成砌块。与卤代烯烃的C(sp2)-X (X=I, Br, Cl)键相比,炔卤的C(sp)-X键具有更高的活性,反应后可产生碳碳三键官能团;与末端炔烯烃相比,炔卤的卤原子既作为活化基团,又起到定位基团作用。近年来,基于炔卤的官能团化反应受到广泛关注。例如:卤原子作为离去基团与炔烯烃、胺等发生偶联反应;基于卤原子定位效应的亲核加成反应;卤原子作为活化基团发生环化反应等。
     我们的目标是以炔卤为基本原料,发展过渡金属催化选择性构建C(sp)-C(sp~2)、C-N、和C-X键等的方法,进而合成多官能团化的目标分子,如炔烯卤、环丁烯卤、含氟烯烃、含氮杂环等一系列新颖的化合物。这些研究结果将分五部份逐一介绍。
     第一章为序论,首先简单阐述了各种炔卤化合物的制备方法,以及综述炔卤为原料选择性构建碳-碳、碳-氮、碳-氧键等策略,并利用这些策略合成一系列炔烃、烯炔、炔胺、炔醇和环化产物等。最后,介绍了本研究课题的研究目的、内容以及研究意义。
     第二章论述了钯催化炔卤与内炔高区域和立体选择性的炔溴化反应,制备cis-炔烯溴化合物。该反应底物适用性范围广,条件温和,产率高。溴炔化产物可以进一步发生官能团修饰反应。该反应首先通过炔卤对零价钯的氧化加成反应得到炔钯中间体,再与内炔顺式插入,最后经碳钯卤键还原消除得到炔烯溴产物。
     第三章介绍了在钯的催化下,炔卤对降冰片烯烃发生炔溴化反应,再经“桥钯化”迁移反应制备2-卤-7-炔基降冰片烷化合物。该反应底物适用范围广,带各种取代基的降冰片烯烃和炔卤都能很好地完成反应。同样条件下,炔卤与环辛烯发生[2+2]环加成反应得到环丁烯卤化合物。研究表明,张力相对较小的环辛烯与炔卤反应时,可能经过两次的钯插入得到环丁烯卤化钯中间体,再经还原消除得到环丁烯卤产物。
     第四章描述了一种简便直接合成(Z)-2-卤-1-氟烯的方法。该反应以末端炔为原料,NBS为溴源,氟化银为氟源。反应首先生成炔卤,进一步在氟化银的作用下高区域和立体选择性合成(Z)-2-卤-1-氟烯产物。该反应通过一锅法从末端炔直接合成目标产物。反应条件简单,官能团兼容性好,不使用腐蚀性原料。在反应中,氟化银既是合成炔卤的催化剂,同时又充当氟化反应的氟源。同时,非活化碳碳三键不会参与反应,但贫电子炔烃可以与氟化银反应得到氟化产物。
     第五章论述在醋酸钯的催化和氟化铯的促进下,以炔卤、异腈为原料,一锅法合成5-氨基吡咯酮的反应。该反应可能首先通过氟化铯促进异腈与炔卤的亲核加成反应合成了卤代烯基酰胺,然后零价钯对卤代烯基酰胺的碳溴键氧化加成,接着异腈与烯基钯中间体的1,1-迁移插入,环化、还原消除得到5-氨基吡咯酮产物。
     另外,在我们对炔卤的持续研究中,我们还发现了一种新颖的钯催化碳卤化反应,通过炔卤和炔卤之间的加成偶联反应可以顺利得到炔烯二卤产物,该方法具有良好的化学选择性,反应条件温和和收率高等优点。最后,我们还发现钯催化炔溴、烯烃、一氧化碳和甲醇的四组分反应可以顺利得到δ-炔基-γ-酯基化合物,该部分工作正在整理当中。
     最后介绍了攻读博士学位期间的研究总结、所获得的研究成果状况、以及致谢等。
The development of general and efficient methodologies for the synthesis of complexmolecular skeletons is the central focus of mordern organic chemistry. Haloalkynes areattractive starting materials in palladium-catalzyed transformations because they are highlyreactive and readily available from the inexpensive acetylides. Plus, they can tolerate variousreaction conditions and generally do not require additional oxidant or base. Halogen atomcould activate the triple bond and as the leaving group, the triple bond occurs thecross-coupling reaction with alkynes, akenes and amines etc; The halogen atom as thedirecting group which proceeds the nucleophilic addition reaction. The halogen atom as theactivating group which proceeds the annulation addition.
     In this context, we describe herein our recent explorations in the field of haloalkynechemistry. An array of broadly useful coupling methodologies has been developed for theformation of C(sp)-C(sp~2)、C-N and C-Br bonds etc. We further describe the application ofthese methods to the syntheses of complex systems, including the haloalkenyne, cyclobutylbromide, Bromofluoroalkenes, and heterocycles. Our research on activation andfunctionalization of alkynes has led to a series of new results which will be presented in thefollowing five chapters.
     In chapter1, we have introduced the reaction features of haloalkynes, the effectivesynthesis methods and the progress on selective C-C, C-N and C-X (X=I, Br, Cl) bondformation from haloalkynes and functionalization of haloalkynes has led to a series of alkynes,alkenes, Ynamides and cycloaddition products etc. Finally, introduces the significane of thisresearch subject.
     In chapter2, we have discovered a novel type of palladium-catalyzed cross-couplingreaction between bromoalkynes and internal alkynes. Direct cis-addition of bromoalkynes tovarious alkynes were found to take place to give difunctionalized enynes as products withPd(II) as a catalyst. The reaction condition was extremely easy, providing a facile method forthe synthesis of bromo alkenynes. Furthermore, an unusual mechanism was proposed torationalize the observations.
     In chapter3, The palladium-catalyzed intermolecular reaction of haloalkynes withnorbornene derivatives leads to7-alkynyl norbornane products. Forming a non-classical“norbornonium” cation or bridging palladium, which can rearrange the substituent at2-C to7-C, and then furnishing a7-C functionalization is key for the success of this reaction. In thesimilar condition, the [2+2] cycloaddition of haloalkynes with cyclooctene has been achieved in moderate to good yields.
     In chapter4, Difunctionalization of terminal alkynes was achieved with AgF and NBS ashalogen sources. The presence of the halide moiety greatly enhances the reactivity of the vinylfluoride compounds and probably can be transformed into various products that are difficulteven impossible to obtain via direct fluorination. Meanwhile, the monofluoroalkenes werefacilely synthesized via a highly chemo-and regioselective fluorination of electron-deficientC-C triple bonds using AgF as fluorinating reagent in good yields.
     In chapter5, we have developed a new strategy for the synthesis of bromoacrylamidesand polysubstituted iminopyrrolinones in good to excellent yields from readily availablestarting materials. This chemistry proceeds smoothly under the optimal reaction conditionsand various functional groups can be tolerated with exceptional selectivity. The methodologyis highly practical and it provides a straightforward approach to a series of5-iminopyrroloneand haloacrylamides in regioselective manner.
     In addition, a new general carbohalogenation procedure to couple haloalkynes underpalladium catalysis is described. The bromoalkynylation reaction is chemoselective andallows preparation of a vast array of simple and high functionalized internal alkynes in highyields. The palladium-catalyzed haoloalkynes, cycloalkenes, carbon monoxide and methanolprovides an efficicent approach to interesting f δ-alkynyl-γ-ester compounds in good yields.The part of the work is coming soon.
     Finally the research summary, research achievements, and acknowledgement areintroducted successively.
引文
[1].(a)..http://www.sciencehuman.com/party/focus/focus2010/focus201010f.htm;..(b)..http://wenku.baidu.com/view/2d79228583d049649b66586c.html.
    [2](a) Sehnal, P., Taylor, R. J. K., Fairlamb, I. J. S, Emergence of Palladium(IV) Chemistryin Synthesis and Catalysis, Chem. Rev [J].2010,110(2):824-889;(b) Miyaura, N., Suzuki, A,Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds, Chem. Rev [J].1995,95(7):2457-2483;(c) Muüiz, K, High-Oxidation-State Palladium Catalysis: NewReactivity for Organic Synthesis, Angew. Chem. Int. Ed [J].2009,48(50):9412-9423;(d) Li,C-J, Organic Reactions in Aqueous Media with a Focus on Carbon-Carbon Bond Formations:A Decade Update, Chem. Rev [J].2005,105(8):3095-3165.
    [3] Tsuji, J. Palladium Reagents and Catalysts; John Wiley and Sons: Chichester,2004.
    [4] Negishi, E-I. Ed.; Handbook of Organopalladium Chemistry for Organic Synthesis; JohnWiley and Sons: Hoboken, NJ,2002; Vol.1.
    [5](a) Nicolaou, K. C., Yang, Z., Liu, J. J., et al. Total synthesis of taxol [J]. Nature,1994,367,630-634;(b) Moore, R. E., Scheuer, P. J. Palytoxin: A New Marine Toxin from aCoelenterate [J]. Science,1971,172(3982):4954-498;(c) Moore, R. E., Bartolini, G.Structure of palytoxin [J]. J. Am. Chem. Soc.1981,103(9):2491-2494.
    [6](a) Allen, A.; Villeneuve, K.; Cockburn, N., et al. Alkynyl halides inruthenium(II)-catalyzed [2+2] cycloadditions of bicyclic alkenes [J]. Eur J. Org. Chem.,2008,(24):4178-4192;(b) Miura,T., Iwasawa, N. Reactions of Iodinated Vinylidene ComplexesGenerated from1-Iodo-1-alkynes and W(CO)5(thf)[J]. J. Am. Chem. Soc.2002,124(4):518-519;(c) Balsells, J.; Moyano, A.; Riera, A., et al. Tandem aminocarbonylation/pauson-khand reaction of haloacetylenes [J]. Org. Lett.,1999,1(12):1981-1984;(d) Yoo, W.J.; Allen, A.; Villeneuve, K., et al. Rhodium-catalyzed intramolecular [4+2] cycloadditions ofalkynyl halides [J]. Org. Lett.,2005,7(26):5853-5856.
    [7](a) Abou, A.; Foubelo, F.; Yus, M. Selective lithiation of1,6-dihalohex-1-enes and1,6-dihalohex-1-ynes [J]. Tetrahedron2007,63(28):6625-6634;(b) Sasaki, T.; Morin, J.-F.;Lu, M.; et al. Synthesis of a single-molecule nanotruck [J]. Tetrahedron Lett.2007,48(33):5817-5820;(c) Gosmini, C.; Bégouin, J.-M.; Moncomble, A. Cobalt-catalyzedcross-coupling reactions [J]. Chem. Commun.2008,28,3221;(d) Trofimov, B. A.; Sobenina,L. N.; Stepanova, Z. V.; et al. Regioselective Cross-Coupling of1-Vinylpyrroles withAcylbromoacetylenes on Al2O3: Synthesis of2-(2-Acylethynyl)-1-vinylpyrroles [J]. Synthesis2007,(3):447-451.
    [8](a) Zieglerc, G. R.; Welch, A.; Orzwhs, C. E.; et al. Nucleophilic Substitution at anAcetylenic Carbon: Acetylenic Thioethers from Haloalkynes and Sodium Thiolates [J]. J. Am.Chem. Soc.1963,85(11):1648-1651;(b) Kende, A. S.; Fludzinski, P.; Hill, J. H.; et al.Chloroacetylenes as Michael acceptors.3. Mechanism and synthetic utility of enolatereactions with halogenated olefins and chloroacetylenes [J]. J. Am. Chem. Soc.1984,106(12):3551-3562;(c) Poulsen, T. B.; Barnardi, L.; Aleman, J.; et al. Organocatalytic AsymmetricDirect α-Alkynylation of Cyclic β-Ketoesters [J]. J. Am. Chem. Soc.2006,129(2):441-449.
    [9](a) Frederick, M. O.; Mulder, J. A.; Tracey, M. R., et al. A copper-catalyzed C-N bondformation involving sp-hybridized carbons. A direct entry to chiral ynamides viaN-alkynylation of amides [J]. J. Am. Chem. Soc.,2003,125(9):2368-2369;(b) Dunetz, J. R.;Danheiser, R. L. Copper-mediated N-alkynylation of carbamates, ureas, and sulfonamides. Ageneral method for the synthesis of ynamides [J]. Org. Lett.,2003,5(21):4011-4014;(c)Seregin, I. V.; Ryabova, V.; Gevorgyan, V. Direct palladium-catalyzed alkynylation of N-fusedheterocycles [J]. J. Am. Chem. Soc.,2007,129(25):7742-7743;(d) Mamane, V.; Hannen, P.;Fu¨rstner, A. Synthesis of Phenanthrenes and Polycyclic Heteroarenes by Transition-MetalCatalyzed Cycloisomerization Reactions [J]. Chem.-Eur. J.2004,10(18):4556-4575;(e)Herve, A.; Rodriguez, A. L.; Fouquet, E. Stille Cross-Coupling of Activated AlkyltinReagents under “Ligandless” Conditions [J]. J. Org. Chem.2005,70(5):1953-1596.
    [10] Boger, D. L.; Brunette, S. R.; Garbaccio, R. M. Synthesis and Evaluation of a Series ofC3-Substituted CBI Analogues of CC-1065and the Duocarmycins [J]. J. Org. Chem.2001,66(15):5163-5173.
    [11] Trofimov, A.; Chernyak, N.; Gevorgyan, V. Dual role of alkynyl halides in one-stepsynthesis of alkynyl epoxides [J]. J. Am. Chem. Soc.,2008,130(41):13538-13539.
    [12] Sophie, M., Raymond, S., Jean F, N., et al. Reaction of perhalostyrenes withorganolithium compounds. Preparation of1-aryl-1-alkynes involving the intermediacy ofaryl fluoro acetylenes.[J]. Tetrahedron Lett.,1982,23(42):4329-4332.
    [13] Nishikawa, T.; Shibuya, S.; Hosokawa, S., et al. One pot synthesis of haloacetylenesfrom trimethylsilylacetylenes [J]. Synlett,1994,(7):485-486.
    [14] Abele, E.; Rubina, K.; Abele, R., et al. Mild and selective phase transfer catalysedbromination of terminal acetylenes using carbon tetrabromide as reagent [J]. J. Chem. Res.(S),1998,(9):618-619.
    [15] Okutani, M.; Mori, Y. Conversion of bromoalkenes into alkynes by wettetra-N-butylammonium fluoride [J]. J. Org. Chem.,2009,74(1):442-444.
    [16] Naskar, D.; Roy, S.1-Haloalkynes from propiolic acids: a novel catalytichalodecarboxylation protocol [J]. J. Org. Chem.,1999,64(18):6896-6897.
    [17] Sasson, Y.; Webster, O. W. Quaternary ammonium fluoride catalyzed halogenation ofcarbon acids by polyhaloalkanes [J]. J. Chem. Soc., Chem. Commun.,1992,23(49):1200-1201.
    [18] Verboom, W.; Westmijze, H.; Noten, L. J. D., et al. Convenient route to various1-chloro-1-alkynes [J]. Synthesis,1979,(4):296-297.
    [19](a) Yan, J.; Li, J.; Cheng, D. Novel and efficient synthesis of1-iodoalkynes [J]. Synlett,2007,(15):2442-2444;(b) Reddy, K. R.; Venkateshwar, M.; Maheswari, C. U., et al. Mildand efficient oxy-iodination of alkynes and phenols with potassium iodide and tert-butylhydroperoxide [J]. Tetrahedron Lett.,2010,51(16):2170-2173.
    [20](a) Meng, L.-G.; Cai, P.-J.; Guo, Q.-X., et al. Direct iodination of monosubstituted arylacetylenes and acetylenic ketones [J]. Synth. Commun.,2008,38(2):225-231;(b) Jeffery, T.Copper(I)-and phase-transfer-catalysed iodination of terminal alkynes [J]. J. Chem. Soc.,Chem. Commun.,1988,14:909-910.
    [21] Hein, J. E.; Tripp, J. C.; Krasnova, L. B., et al. Copper(I)-catalyzed cycloaddition oforganic azides and1-iodoalkynes [J]. Angew. Chem. Int. Ed.,2009,48(43):8018-8021.
    [22] Hofmeister, H.; Annen, K.; Laurent, H., et al. A novel entry to17α-bromo-and17α-iodoethynyl steroids [J]. Angew. Chem. Int. Ed.,1984,23(9):727-729.
    [23](a) Haley, M. M. Synthesis and properties of annulenic subunits of graphyne andgraphdiyne nanoarchitectures [J]. Pure Appl. Chem.2008,80(3):519-532;(b) Haley, M. M.,Tykwinski, R. R., Eds.; Carbon-Rich Compounds: From Molecules to Materials; Wiley-VCHVerlag GmbH&Co. KGaA: Weinheim, Germany,2006;(c) Marsden, J. A.; Haley, M. M.Carbon Networks Based on Dehydrobenzoannulenes.5. Extension of Two-DimensionalConjugation in Graphdiyne Nanoarchitectures [J]. J. Org. Chem.2005,70(25):10213-10226;(d) Eisler, S.; Slepkov, A. D.; Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F.A.; Tykwinski, R. R. Polyynes as a Model for Carbyn e:Synthesis, Physical Properties, andNonlinear Optical Response [J]. J. Am. Chem. Soc.2005,127(8):2666-2676;(e) Diederich,F., Stang, P. J., Tykwinski, R. R., Eds. Acetylene Chemistry: Chemistry, Biology and MaterialScience; Wiley-VCH Verlag GmbH&Co. KGaA: Weinheim, Germany,2005;(f) Nielsen, M.B.; Diederich, F. The Art of Acetylenic Scaffolding: Rings, Rods, and Switches [J]. Chem.Rec.2002,2(3):189-198;(g) Diederich, F. Chem. Commun.2001,219-227.
    [24](a) Lv, X.; Mao, J.; Liu, Y.; et al. A Neutral Stable and Soluble Polymer Radical withLow Band Gap and Its Photovoltaic Application [J]. Macromolecules2008,41(3):501-503;(b) Poon, S.-Y.; Wong, W.-Y.; Cheah, K.-W.; et al. Spatial Extent of the Singlet and TripletExcitons in Luminescent Angular-Shaped Transition-Metal Diynes and Polyynes ComprisingNon-π-Conjugated Group16Main Group Elements [J]. Chem.-Eur. J.2006,12(9):2550-2563;(c) Egbe, D. A. M.; Birckner, E.; Klemm, E. Highly luminescent diynecontaining hybrid polyphenyleneethynylene/poly(p-phenylenevinylene) polymer: Synthesisand characterization [J]. J. Polym. Sci., Part A: Polym. Chem.2002,40(15):2670-2679.
    [25](a) Stavri, M.; Mathew, K. T.; Gibson, T.; et al. New Constituents of Artemisiamonosperma [J]. J. Nat. Prod.2004,67(5):892-894;(b) de Jesus, R. P.; Faulkner, D. J.Chlorinated Acetylenes from the San Diego Sponge Haliclona lunisimilis [J]. J. Nat. Prod.2003,66(5):671-674;(c) Ladika, M.; Fisk, T. E.; Wu, W. W.; et al. High-StabilityLiposomes from Macrocyclic Diyne Phospholipids [J]. J. Am. Chem. Soc.1994,116(26):12093-12094;(d) Lerch, M. L.; Harper, M. K.; Faulkner, D. J. Brominated Polyacetylenesfrom the Philippines Sponge Diplastrella sp.[J]. J. Nat. Prod.2003,66(5):667-670.
    [26](a) Matsunaga, H.; Katano, M.; Yamamoto, H.; et al.[J]. Chem. Pharm. Bull.1990,38,3480–3482;(b) Kim, Y. S.; Jin, S. H.; Kim, S. I.; et al.[J]. Arch. Pharmacol. Res.1989,12,207-213.
    [27](a) Gung, B. W.; Kumi, G. Total Synthesis of (S)-()-(E)-15,16-DihydrominquartynoicAcid: A Highly Potent Anticancer Agent [J]. J. Org. Chem.2004,69(10):3488-3492;(b)Bellina, F.; Carpita, A.; Mannocci, L.; et al. First Total Synthesis of Naturally Occurring(-)-Nitidon and Its Enantiomer [J]. Eur. J. Org. Chem.2004,(12):2610-2619;(c) Lopez, S.;Fernandez-Trillo, F.; Midon, P.; et al. Synthesis of Marine Polyacetylenes Callyberynes A-Cby Transition-Metal-Catalyzed Cross-Coupling Reactions to sp Centers [J]. J. Org. Chem.2006,71(7):2802-2810;(d) Gung, B. W.; Dickson, H. Total Synthesis of (-)-MinquartynoicAcid: An Anti-Cancer, Anti-HIV Natural Product [J]. Org. Lett.2002,4(15):2517-2519;(e)Montierth, J. M.; DeMario, D. R.; Kurth, M. J.; et al. The polymer-supportedCadiot-Chodkiewicz coupling of acetylenes to produce unsymmetrical diynes [J].Tetrahedron1998,54(39):11741-11748.
    [28] Marino, J. P.; Nguyen, H. N. Bulky trialkylsilyl acetylenes in the Cadiot-Chodkiewiczcross-coupling reaction [J]. J. Org. Chem.,2002,67(19):6841-6844.
    [29] Jiang, H. F., Wang, A. Z. Copper-catalyzed cross-coupling reactions of bromoalkynolswith terminal alkynes in supercritical carbon dioxide [J]. Synthesis,2007,11,1649-1654.
    [30] Lei, A. W., Wei, S., Luo. Y. D. Investigation of an Efficient Palladium-CatalyzedC(sp)-C(sp) Cross-Coupling Reaction Using Phosphine-Olefin Ligand: Application andMechanistic Aspects [J]. J. Am. Chem. Soc,2008,130,14713-14720.
    [31] José, B.; Stephen M. G.; Ai-Lan L.; et al. Cadiot-Chodkiewicz Active TemplateSynthesis of Rotaxanes and Switchable Molecular Shuttles with Weak IntercomponentInteractions.[J]. Angew. Chem. Int. Ed.2008,47,4392-4396.
    [32] Buchanan, G. O.; Williams, P. G.; Feling, R. H.; et al. Sporolides A and B:StructurallyUnprecedented Halogenated Macrolides from the Marine Actinomycete Salinispora tropica [J]Org. Lett.2005,7(13):2731-2734.
    [33] Nicolaou, K. C.; Tang, Y. F.; Wang, J. H. Total synthesis of sporolide B [J]. Angew. Chem.Int. Ed.,2009,48(19):3449-3453.
    [34] Yoshida. H., Morishita. T., Opshita, J. Copper-catalysed bromoalkynylation of arynes[J].Chem.commom,2010,46,640-642.
    [35] Wada, T.; Iwasaki, M.; Kondoh, A., et al. Palladium-catalyzed addition ofsilyl-substituted chloroalkynes to terminal alkynes [J]. Chem.-Eur. J,2010,16(35):10671-10674.
    [36] Usanov, D. L.; Yamamoto, H. Enantioselective alkynylation of aldehydes with1-haloalkynes catalyzed by tethered bis(8-quinolinato) chromium complex [J]. J. Am. Chem.Soc.,2011,133(5):1286-1289.
    [37] Damle, S. V.; Seomoon, D.; Lee, P. H. Palladium-catalyzed homocoupling reaction of1-iodoalkynes: a simple and efficient synthesis of symmetrical1,3-diynes [J]. J. Org. Chem.,2003,68(18):7085-7087.
    [38](a) Hay, A. Communications-oxidative coupling of acetylenes [J]. J. Org. Chem.,1960,25(7):1275-1276;(b) Hay, A. S. Oxidative coupling of acetylenes [J]. J. Org. Chem.,1962,27(9):3320-3321.
    [39] Chen, Z., Jiang, H., Li, Y., et al. Highly efficient two-step synthesis of(Z)-2-halo-1-iodoalkenes from terminal alkynes [J]. Chem Commun.,2010,(46):8049-8051.
    [40] Arcadi, A.; Cacchi, S.; Fabrizi, G., et al. Palladium-catalyzed reaction ofo-alkynyltrifluoroacetanilides with1-bromoalkynes. An approach to2-substituted3-alkynylindoles and2-substituted3-acylindoles [J]. J. Org. Chem.,2005,70(16):6213-6217.
    [41] Arisawa, M.; Amemiya, R.; Yamaguchi, M. One-step ethynylation of silyl enol ether withchlorosilylethyne [J]. Org. Lett.,2002,4(13):2209-2211.
    [42] Amemiya, R.; Miyake, Y.; Yamaguchi, M. GaCl3promoted one-step α,α-diethynylationand α,α-diethenylation reactions of silyl enol ethers [J]. Tetrahedron Lett.,2006,47(11):1797-1800.
    [43] Yadav, J. S.; Reddy, B. V. S.; Yadav, N. N., et al. Indium-mediated alkynylation ofBaylis-Hillman acetates: a novel route to1,4-enynes [J]. Tetrahedron Lett.,2008,49(42):6090-6094.
    [44](a) Liu, Q., Duan, H., Luo, X., et al. An Electron-Deficient Diene as Ligand forPalladium-Catalyzed Cross-Coupling Reactions: An Efficient Alkylation of Aryl Iodides byPrimary and Secondary Alkylzinc Reagents [J]. Adv. Synth. Catal.2008,350(9):1349-1354.
    [45] Liu, H., Chen, C., Wang, L., et al. Pd(0)-Catalyzed Iodoalkynation of NorborneneScaffolds: The Remarkable Solvent Effect on Reaction Pathway [J]. Org.Lett.2011,13(19):5072-5075.
    [46] Liu. C. H., Kuo. C. J., Cheng. S. J. Palladium-Catalyzed1,2-Addition of Organic Halidesand Terminal Alkynes to7-Oxabenzonorbornadiene: An Efficient Route to PolyaromaticHydrocarbons[J]. Eur. J. Org. Chem.,2008,485-491.
    [47] Chen, X.; Kong, W.; Cai, H., et al. Palladium-catalyzed highly regio-and stereoselectivesynthesis of (1E)-or (1Z)-1,2-dihalo-1,4-dienes via haloallylation of alkynyl halides [J]. Chem.Commun.,2011,47(7):2164-2166.
    [48] Chen, D., Chen, X., Lu, Z., et al. Palladium-Catalyzed Dienylation of Haloalkynes using2,3-Butadienyl Acetates: A Facile Access to(1Z)-1,2-Dihalo-3-vinyl-1,3-dienes [J]. Adv.Synth. Catal.2011,353(9):1474-1478.
    [49](a) Chen, D., Cao, Y., Yuan, Zet al. Synthesis of cis-1,2-Dihaloalkenes FeaturingPalladium-Catalyzed Coupling of Haloalkynes and r, β-Unsaturated Carbonyls [J]. J. Org.Chem.2011,76(10):4071-4074;(b)Xiaoyi Chen, Dongxu Chen, Zenghui Lu, Lichun Kong,and Gangguo Zhu, Palladium-Catalyzed Coupling of Haloalkynes with Allyl Acetate:ARegio-and Stereoselective Synthesis of (Z)-β-Haloenol Acetates [J]. J. Org. Chem.2011,76(15):6338-6343.
    [50] Dudnik, A. S., Gevorgyan, V., Formal Inverse Sonogashira Reaction: Direct Alkynylationof Arenes and Heterocycles with Alkynyl Halides [J]. Angew. Chem. Int. Ed.,2010,49(12):2096-2098.
    [51](a) Kalinin, V. K., Pashchenko, D. N., She, F. M., Palladium-catalysed Synthesis of4-Heteroaryl and4-Alkynyl-substituted Sydnones.5-Oxido-3-phenyl-1,2,3-oxadiazol-3-ium-4-ylzinc Chloride [J]. Mendeleev Commun.1992,2(2):60-61;(b) Rodriguez, A., Fennesy, R. V., Moran, W. J., Palladium-catalysed directalkenylation of sydnones [J]. Tetrahedron Lett.2009,50(27):3942-3944.
    [52] Trofimov, B. A., Stepanova, Z. V., Sobenina, L. N., et al. Ethynylation of pyrroles with1-acyl-2-bromoacetylenes on alumina: a formal ‘inverse Sonogashira coupling [J].Tetrahedron Lett.2004,45(34):6513-6516.
    [53] Tobisu, M.; Ano, Y.; Chatani, N. Palladium-catalyzed direct alkynylation of C-H bonds inbenzenes [J]. Org. Lett.,2009,11(15):3250-3252.
    [54] Ano, Y., Tobisu, M., Chatani, N., Palladium-Catalyzed Direct Ethynylation of C(sp3)–HBonds in Aliphatic Carboxylic Acid Derivatives [J]. J. Am. Chem. Soc.,2011,133(33):12984-12986.
    [55] Ano, Y., Tobisu, M., Chatani, N., Palladium-Catalyzed Direct ortho-Alkynylation ofAromatic Carboxylic Acid Derivatives [J]. Org. Lett.,2012,14(1):354-357.
    [56] Besselièvre, F.; Piguel, S. Copper as a powerful catalyst in the direct alkynylation ofazoles [J]. Angew. Chem. Int. Ed.,2009,48(50):9553-9556.
    [57] Brand, J. P., Charpentier, J., Waser, J., Direct Alkynylation of Indole and PyrroleHeterocycles [J]. Angew. Chem. Int. Ed.,2009,48(49):9346-9349.
    [59] Gu, Y. H.; Wang, X. M. Direct palladium-catalyzed C-3alkynylation of indoles [J].Tetrahedron Lett.,2009,50(7):763-766.
    [59] Matsuyama, N.; Hirano, K.; Satoh, T., et al. Nickel-catalyzed direct alkynylation ofazoles with alkynyl bromides [J]. Org. Lett.,2009,11(18):4156-4159.
    [60] Kawano, T.; Matsuyama, N.; Hirano, K., et al. Room temperature direct alkynylation of1,3,4-oxadiazoles with alkynyl bromides under copper catalysis [J]. J. Org. Chem.,2010,75(5):1764-1766.
    [61] Liu, C. R.; Yang, F. L.; Jin, Y. Z., et al. Catalytic regioselective synthesis of structurallydiverse indene derivatives from N-benzylic sulfonamides and disubstituted alkynes [J]. Org.Lett.,2010,12(17):3832-3835.
    [62](a) Feldman, K. S.; Kraebel, C. M.; Parvez, M. Tetraethynylmethane [J]. J. Am. Chem.Soc.1993,115(9):38463847;(b) Feldman, K. S.; Weinreb, C. K.; Youngs, W. J.;et al. NovelProducts Derived from Unprecedented Transformations of3,3,3-TrialkynylpropionaldehydeDerivatives [J]. J. Org. Chem.1994,59(5):1213-1215;(c) Feldman, K. S.; Weinreb, C. K.;Youngs, W. J.; et al. Preparation and Some Subsequent Transformations ofTetraethynylmethane [J]. J. Am. Chem. Soc.1994,116(20):9019-9026.
    [63] Amemiya, R.; Suwa, K.; Toriyama, J., et al. One-step synthesis oftriethynylvinylmethanes and tetraethynylmethanes by GaCl3-promoted diethynylation of1,4-enynes and1,4-diynes [J]. J. Am. Chem. Soc.,2005,127(23):8252-8253.
    [64] Nishimura, Y., Amemiya, R., Yamaguchi,M., a-Ethynylation reaction of ketones usingcatalytic amounts of trialkylgallium base [J]. Tetrahedron Lett.2006,47(11):1839-1843.
    [65] See:[42] and (a) Amemiya, R.; Yamaguchi, M. Gallium trichloride-catalyzed exhaustiveα-ethynylation reaction of1-silylacetylenes [J]. Adv. Synth. Catal.,2007,349(7):1011-1014;(b) Nishimura, Y.; Kiryu, M.; Suwa, K., et al. Gallium trichloride-promoted ethynylationreaction of1,4-dienes [J]. Adv. Synth. Catal.,2008,350(9):1271-1274.
    [66] Poulsen, T. B., Bernardi, L., Aleman, J. Organocatalytic Asymmetric Directγ-Alkynylation of Cyclic β-Ketoesters [J]. J. Am. Chem. Soc.,2007,129(2):441-449.
    [67] Tsuji, H.; Fujimoto, T.; Endo, K., et al. Stereoselective synthesis of trisubstitutedE-iodoalkenes by indium-catalyzed syn-addition of1,3-dicarbonyl compounds to1-iodoalkynes [J]. Org. Lett.,2008,10(6):1219-1221.
    [68](a) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; et al. Recent advances in the chemistryof ynamines and ynamides [J]. Tetrahedron2001,57(36):7575-7606;(b) Himbert, G. InMethoden Der Organischen Chemie (Houben-Weyl); Kropf, H., Schaumann, E., Eds.; GeorgThieme Verlag: Stuttgart,1993;3267-3443;(c) Collard-Motte, J.; Janousek, Z. Top. Curr.Chem.1986,130,89-131.
    [69] For the first examples of ynamides, see: Janousek, Z.; Collard, J.; Viehe, H. G. Reactionof Secondary Acetamides with N-Dichloromethylene-N,N-dimethylammonium Chloride [J].Angew. Chem., Int. Ed. Engl.1972,11(10):917-918.
    [70](a) Rainier, J. D.; Imbriglio, J. E. The Synthesis and Chemoselective Reactivity of3-Aminocyclopentadienones [J]. J. Org. Chem.2000,65(22):7272-7276;(b) Rainier, J. D.;Imbriglio, J. E. Synthesis and Chemoselective Reactivity of3-Aminocyclopentadienones [J].Org. Lett.1999,1(12):2037-2039;(c) Witulski, B.; Stengel, T. N-Functionalized1-Alkynylamides: New Building Blocks for Transition Metal Mediated Inter-andIntramolecular [2+2+1] Cycloadditions [J]. Angew. Chem., Int. Ed.1998,37(4):489-492;(d)Witulski, B.; Stengel, T. Rhodium(I)-Catalyzed [2+2+2] Cycloadditions withN-Functionalized1-Alkynylamides: A Conceptually New Strategy for the RegiospecificSynthesis of Substituted Indolines [J]. Angew. Chem., Int. Ed.1999,38(16):2426-2430;(e)Saito, N.; Sato, Y.; Mori, M. Synthesis of Cyclic Dienamide Using Ruthenium-CatalyzedRing-Closing Metathesis of Ene-Ynamide [J]. Org. Lett.2002,4(5):803-805;(f) Huang, J.;Xiong, H.; Hsung, R. P.; et al. The First Successful Base-Promoted Isomerization ofPropargyl Amides to Chiral Ynamides. Applications in Ring-Closing Metathesis ofEne-Ynamides and Tandem RCM of Diene Ynamides [J]. Org. Lett.2002,4(14):2417-2420.(g) Mulder, J. A.; Hsung, R. P.; Frederick, M. O.; et al. The First StereoselectiveFicini Claisen Rearrangement Using Chiral Ynamides [J]. Org. Lett.2002,4(8):1383-1386;(h) Hsung, R. P.; Zificsak, C.; Wei, L.-L.; et al. Lewis Acid Promoted Hetero [2+2]Cycloaddition Reactions of Aldehydes with10-Propynyl-9(10H)-acridone. A HighlyStereoselective Synthesis of Acrylic Acid Derivatives and1,3-Dienes Using an ElectronDeficient Variant of Ynamine [J]. Org. Lett.1999,1(8):1237-1240.
    [71](a) Saalfrank, R. W.; Lurz, C. J. In Methoden Der Organischen Chemie (Houben-Weyl);(b) Kropf, H., Schaumann, E., Eds.; Georg Thieme Verlag: Stuttgart,1993; p3093;(c) Wei,L.-L.; Mulder, J. A.; Xiong, H.; et al. Efficient preparations of novel ynamides andallenamides [J]. Tetrahedron2001,57(3):459-466.
    [72](a) Hartwig, J. F., Kawatsura, M., Hauck, S. I. Room-Temperature Palladium-CatalyzedAmination of Aryl Bromides and Chlorides and Extended Scope of Aromat icN CBondFormation with a Commercial Ligand [J]. J. Org. Chem.,1999,64(15):5575-5580;(b)Stauffer, S. R., Lee, S., Stambuli, J. P., High Turnover Number and Rapid, Room-TemperatureAmination of Chloroarenes Using Saturated Carbene Ligands [J]. Org. Lett.,2000,2(10):1423-1426;(c) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; et al. Efficient Catalyst System for thePalladium-Catalyzed Amination of Aryl Chlorides, Bromides, and Triflates [J]. J. Org. Chem.2000,65(4):1158-1174;(d) Yin, J.; Buchwald, S. L. Pd-Catalyzed Intermolecular Amidationof Aryl Halides:The Discovery that Xantphos Can Be Trans-Chelating in a PalladiumComplex [J]. J. Am. Chem. Soc.2002,124(21):6043-6048;(e) Hamann, B. C.; Hartwig, J. F.Systematic Variation of Bidentate Ligands Used in Aryl Halide Amination. UnexpectedEffects of Steric, Electronic, and Geometric Perturbations [J]. J. Am. Chem. Soc.1998,120(15):3694-3703;(f) Mann, G.; Hartwig, J. F.; Driver, M. S.; Ferna′ndez-Rivas, C.Palladium-Catalyzed C N(sp2) Bond Formation: N-Arylation of Aromatic and UnsaturatedNitrogen and the Reductive Elimination Chemistry of Palladium Azolyl and MethyleneamidoComplexes [J]. J. Am. Chem. Soc.1998,120(4):827-828.
    [73] Zhang, Y. S.; Hsung, R. P.; Tracey, M. R., et al. Coppersulfate-pentahydrate-1,10-phenanthroline catalyzed amidations of alkynyl bromides.Synthesis of heteroaromatic amine substituted ynamides [J]. Org. Lett.,2004,6(7):1151-1154.
    [74] Zhang, X. J.; Zhang, Y. S.; Huang, J., et al. Copper(II)-catalyzed amidations of alkynylbromides as a general synthesis of ynamides and z-enamides. An intramolecular amidation forthe synthesis of macrocyclic ynamides [J]. J. Org. Chem.,2006,71(11):4170-4177.
    [75] Yao, P. Y.; Zhang, Y.; Hsung, R. P., et al. A sequential metal-catalyzed C-N bondformation in the synthesis of2-amido-indoles [J]. Org. Lett.,2008,10(19):4275-4278.
    [76] Hirano, S.; Tanaka, R.; Urabe, H., et al. Practical preparation ofN-(1-alkynyl)sulfonamides and their remote diastereoselective addition to aldehydes viatitanation [J]. Org. Lett.,2004,6(5):727-729.
    [77] Istrate, F. M.; Buzas, A. K.; Jurberg, I. D., et al. Synthesis of functionalized oxazolonesby a sequence of Cu(II)-and Au(I)-catalyzed transformations [J]. Org. Lett.,2008,10(5):925-928.
    [78] Laroche, C.; Li, J.; Freyer, M. W., et al. Coupling reactions of bromoalkynes withimidazoles mediated by copper salts: Synthesis of novel N-alkynylimidazoles [J]. J. Org.Chem.,2008,73(16):6462-6465.
    [79] Burley, G. A.; Davies, D. L.; Griffith, G. A., et al. Cu-catalyzed N-alkynylation ofimidazoles, benzimidazoles, indazoles, and pyrazoles using PEG as solvent medium [J]. J.Org. Chem.,2010,75(3):980-983.
    [80] Yao, B. B.; Liang, Z. J.; Niu, T. M., et al. Iron-catalyzed amidation of alkynyl bromides:A facile route for the preparation of ynamides [J]. J. Org. Chem.,2009,74(12):4630-4633.
    [81] Chen, Z., jiang, H., Pan, X., et al. Practical synthesis of amides from alkynyl bromides,amines, and water.[J] Tetrahedron.2011,67(33):5920-5929.
    [82] Fukudome, Y.; Naito, H.; Hata, T., et al. Copper-catalyzed1,2-double amination of1-halo-1-alkynes. concise synthesis of protected tetrahydropyrazines and related heterocycliccompounds [J]. J. Am. Chem. Soc.,2008,130(6):1820-1821.
    [83] Naito, H.; Hata, T.; Urabe, H., et al. Facile preparation of N-protected2-alkylidene-1,3-imidazolidines [J]. Tetrahedron Lett.,2008,49(14):2298-2301.
    [84] Yamagishi, M., Nishigai, K., Hata, T., et al. Nucleophilic Addition of Sulfonamides toBromoacetylenes: Facile Preparation of Pyrroles [J]. Org. Lett.,2011,13(18):4873-4875.
    [85]Yamagishi, M., Okazaki, J., Nishigai, K., et al. Additive-Free Nucleophilic Addition ofImidazolines and Imidazoles to Haloacetylenes [J]. Org. Lett.,2012,14(1):34-37.
    [86] wang, S., li, P., Yu, L., et al. Sequential and One-Pot Reactions of Phenols withBromoalkynes for the Synthesis of (Z)-2-Bromovinyl Phenyl Ethers and Benzo[b]furans.[J].Org. Lett.,2011,13(22):5968-5971.
    [87] Xu, H., Gu, S., Chen, W., et al., TBAF-Mediated Reactions of1,1-Dibromo-1-alkeneswith Thiols and Amines and Regioselective Synthesis of1,2-Heterodisubstituted Alkenes [J].J. Org. Chem.,2011,76(8):2448-2458.
    [88] Chen, Z., Li, J., Jiang, H., et al. Silver-catalyzed difunctionalization of terminal alkynes:highly regio-and stereoselective synthesis of (Z)-β-haloenol acetates.[J]. Organic Letters,2010,12(14):3262-3265.
    [89] Chen, Z., Huang, G., Jiang, H., Huang, H., Pan, X., Synthesis of2,5-disubstituted3-iodofurans via palladium-catalyzed coupling and iodocyclization of terminal alkynes [J]. J.Org. Chem.2011,76(4):1134-1139.
    [90] Chen, Z., Jiang, H., Li, Y., et al. Highly efficient two-step synthesis of(Z)-2-halo-1-iodoalkenes from terminal alkynes.[J]. Chem. Commom.2010,46,8049-8051.
    [91] William. T., Karine. V., Nicole. R., et al. Ruthenium-Catalyzed [2+2] Cycloadditionsbetween Bicyclic Alkenes and Alkynyl Halides [J].Org. Lett,2004,6(24):4543-4546.
    [92] Jordan, R. W.; Villeneuve, K.; Tam, W. Study on the reactivity of the alkyne componentin ruthenium-catalyzed [2+2] cycloadditions between an alkene and an alkyne [J]. J. Org.Chem.,2006,71(15):5830-5833.
    [93] Letourneau, J. J.; Riviello, C.; Ohlmeyer, M. H. J. A novel and convenient synthesis of5-aryl-4-bromo-3-carboxyisoxazoles: useful intermediates for the solid-phase synthesis of4,5-diarylisoxazoles [J]. Tetrahedron Lett.,2007,48(10):1739-1743.
    [94] Crossley, J. A.; Browne, D. L. An alkynyliodide cycloaddition strategy for theconstruction of iodoisoxazoles [J]. J. Org. Chem.,2010,75(15):5414-5416.
    [95] Delaunay, T.; Genix, P.; Es-Sayed, M., et al. A modular sydnonecycloaddition/Suzuki-Miyaura cross-coupling strategy to unsymmetrical3,5-bis(hetero)aromatic pyrazoles [J]. Org. Lett.,2010,12(15):3328-3331.
    [96] Xu, W.; Chen, Q. Y.3,3-Difluoro-1-iodocyclopropenes: a simple synthesis and theirreactions [J]. J. Org. Chem.,2002,67(26):9421-9427.
    [97](a) H. C. Kolb, M. G. Finn and K. B. Sharpless (2001)."Click Chemistry: DiverseChemical Function from a Few Good Reactions". Angew. Chem. Int. Ed.40(11):2004-2021;(b) R. A. Evans. The Rise of Azide–Alkyne1,3-Dipolar 'Click' Cycloaddition and itsApplication to Polymer Science and Surface Modification. Australian J of Chem.2007,60(6):384-395.
    [98](a) Kolb, H. C., Sharpless, K. B., The growing impact of click chemistry ondrugdiscovery [J]. Drug Discovery Today2003,8(24):1128-1137;(b) Whiting, M., Tripp, J.C., Lin, Y. C., et al. Rapid Discovery and Structure Activity Profiling of Novel Inhibitors ofHuman Immunodeficiency Virus Type1Protease Enabled by the Copper(I)-CatalyzedSynthesis of1,2,3-Triazoles and Their Further Functionalization [J]. J. Med. Chem.2006,49(26):7697-7710;(c) Wilkinson, B. L., Bornaghi, L. F., Houston, T. A., et al. Poulsen, in DrugDesign Research Perspectives (Ed.: S. P. Kaplan), Nova, Hauppauge,2007, p.57.
    [99] Hawker, C. J., Fokin, V. V., Finn, M. G., et al. Bringing Efficiency to Materials Synthesis:The Philosophy of Click Chemistry [J]. Aust. J. Chem.2007,60,381-383.
    [100] a) Evans, R. A. The Rise of Azide–Alkyne1,3-Dipolar ‘Click’ Cycloaddition and itsApplication to Polymer Science and Surface Modification [J]. Aust. J. Chem.2007,60(6):384-395; b) Johnson, J. A., Koberstein, J. T., Finn, M. G., et al. Construction of LinearPolymers, Dendrimers, Networks, and Other Polymeric Architectures by Copper-CatalyzedAzide-Alkyne Cycloaddition “Click” Chemistry [J]. Macromol. Rapid Commun.2008,29(12-13):1052-1072.
    [101] Miura, T.; Iwasawa, N. Reactions of iodinated vinylidene complexes generated from1-iodo-1-alkynes and W(CO)5(thf)[J]. J. Am. Chem. Soc.,2002,124(4):518-519.
    [102] Lin, M. Y.; Maddirala, S. J.; Liu, R. S. Solvent-dependent chemoselectivity inruthenium-catalyzed cyclization of iodoalkyne-epoxide functionalities [J]. Org. Lett.,2005,7(9):1745-1748.
    [103] Yamamoto, Y.; Hattori, K.; Nishiyama, H. Synthesis of bicyclic p-diiodobenzenes viasilver-catalyzed Csp-H iodination and ruthenium-catalyzed cycloaddition [J]. J. Am. Chem.Soc.,2006,128(25):8336-8340.
    [104](a) Harada, T.; Mizunashi, K.; Muramatsu, K. Novel cyclization reaction of1,ω-diiodo-1-alkynes without the loss of iodine atoms [J]. Chem. Commun.,2006,(6):638-639;(b) Harada, T.; Muramatsu, K.; Mizunashi, K., et al. Carbocyclization reaction ofω-iodo-and1,ω-diiodo-1-alkynes without the loss of iodine atoms through a carbenoid-chainprocess [J]. J. Org. Chem.,2008,73(1):249-258.
    [105] F rstner, A.; Schlecker, A.; Lehmann, C. W. Facile formation of iodocyclobutenes by aruthenium-catalyzed enyne cycloisomerization [J]. Chem. Commun.,2007,(41):4277-4279.
    [106] Koldobskii, A. B.; Solodova, E. V.; Godovikov, I. A., et al. Synthesis and unusual[2+2]-cycloaddition reactions of ethyl4-chloro-2-oxobut-3-ynoate with unactivated alkenes[J]. Tetrahedron,2008,64(40):9555-9560.
    [107] S derberg, B. C. G.; Gorugantula, S. P.; Howerton, C. R., et al. A palladium-catalyzedsynthesis of isatins (1H-indole-2,3-diones) from1-(2-haloethynyl)-2-nitrobenzenes [J].Tetrahedron,2009,65(36):7357-7363.
    [108] Truong, J.; Caze, V.; Akhani, R. K., et al. Halogenated catechols from cycloadditionreactions of η4-(2-ethoxyvinylketene)iron(0) complexes with1-haloalkynes [J]. TetrahedronLett.,2010,51(6):921-923.
    [109] Takahashi, K.; Honda, T. Diastereoselective syntheses of functionalized five-memberedcarbocycles and heterocycles by a SmI2-promoted intramolecular coupling of bromoalkynesand α,β-unsaturated esters [J]. Org. Lett.,2010,12(13):3026-3029.
    [110] Xu, H.; Zhang, Y.; Huang, J. Q., et al. Copper-catalyzed synthesis of N-fusedheterocycles through regioselective1,2-aminothiolation of1,1-dibromoalkenes [J]. Org. Lett.,2010,12(16):3704-3707.
    [111](a) Augé, J.; Lubin-Germain, N.; Seghrouchni, L. Indium-mediated carbonylalkynylation [J]. Tetrahedron Lett.,2002,43(30):5255-5256; Augé, J.; Lubin-Germain, N.;Seghrouchni, L. Indium-mediated formation of propargyl ketones from aldehydes or acylchlorides [J]. Tetrahedron Lett.,2003,44(4):819-821.
    [112] Srihari, P.; Singh, V. K.; Bhunia, D. C., et al. Zinc-mediated alkynylation of carbonylcompounds with iodoalkynes: A facile synthesis of propargyl alcohols [J]. Tetrahedron Lett.,2008,49(50):7132-7134.
    [113] Takai, K.; Kuroda, T.; Nakatsukasa, S.; et al. Aldehyde-selective addition ofalkynylchromium compounds prepared by reduction of alkynyl halides with chromium(II)reagent [J]. Tetrahedron Lett.1985,26(45):5585-5588.
    [114] Suginome, M., Shirakura,M., Yamamoto, A., Nickel-Catalyzed Addition ofAlkynylboranes to Alkynes [J]. J. Am. Chem. Soc.2006,128(45):14438-14439.
    [115](a) Shirakawa, E., Yoshida, H., Kurahashi, T., et al. Carbostannylation of AlkynesCatalyzed by an Iminophosphine Palladium Complex [J]. J. Am. Chem. Soc.1998,120(12):2975-2976;(b) Yoshida, H., Shirakawa, E., Kurahashi, T., et al.Palladium-Iminophosphine-Catalyzed Alkynylstannylation of Alkynes [J]. Organometallics2000,19(26):5671-5678;(c) Shirakawa, E., Yamamoto, Y., Nakao, Y, et al. Nickel-CatalyzedTandem Carbostannylation of Alkynes and1,2-Dienes with Alkynylstannanes [J]. Angew.Chem. Int. Ed.2004,43(26):3448-3451.
    [116] Nakao, Y., Hirata,Y., Tanaka, M., et al. Nickel/BPh3-Catalyzed Alkynylcyanation ofAlkynes and1,2-Dienes: An Efficient Route to Highly Functionalized Conjugated Enynes [J].Angew. Chem. Int. Ed.2008,47(2):385-387.
    [117] Martín, R., Rivero, R. M., Buchwald, S. L., Domino Cu-Catalyzed C N-Coupling/Hydroamidation: A Highly Efficient Synthesis of Nitrogen Heterocycles [J]. Angew. Chem. Int.Ed.2006,45(42):7079–7082.
    [118] Levi, Z. U., Tilley, T. D., Versatile Synthesis of Pentalene Derivatives via thePd-Catalyzed Homocoupling of Haloenynes [J]. J. Am. Chem. Soc.2009,131(8):2796-2797.
    [119]Wang, Y., Liao, Q., Zhao, P., et al. Palladium-Catalyzed Tandem N-Vinylation andCyclization of Anilines and Haloenynes: An Efficient Approach to Substituted Quinolines [J].Advanced Synthesis&Catalysis,2009,353,(14-15):659–2664.
    [120] Wang, H. H., Luo, Y., Zhu, B., et al. Generation of cyclopenta[c]chromenes via apalladium-catalyzed reaction of2-alkynylphenol with2-alkynylvinyl bromide [J]. ChemCommon.2012,
    [121] Liu, Y., Zhong, Z., Nakajima, K., et al. Alkynylzirconation of Alkynes and Applicationto One-Pot Bisalkynylation of Alkynes [J]. J. Org. Chem.2002,67(21):74517456.
    [122](a) Yin, G., Liu, G., Palladium-Catalyzed Oxidative Cyclization of Enynes withHydrogen Peroxide as the Oxidant [J]. Angew. Chem. Int. Ed.2008,47(29):5442-5445;(b)Gericke, K. M., Chai, D. I., Bieler, N., et al. The Norbornene Shuttle: MulticomponentDomino Synthesis of Tetrasubstituted Helical Alkenes through Multiple C-HFunctionalization [J]. Angew. Chem. Int. Ed.2009,48(8):1447-1451;(c) Trost, B. M., Chan,C., Ruhter, G., Metal-Mediated Approach to Enynes [J]. J. Am. Chem. Soc.1987,109(11):3486-3487;(d) Kessler, F., Szesni, N., P hako, K., et al. Synthesis of the First StablePalladium Allenylidene Complexes [J]. Organometallics2009,28(1):348-354,(e) Muňiz, K.,High-Oxidation-State Palladium Catalysis: New Reactivity for Organic Synthesis [J]. Angew.Chem. Int. Ed.2009,48(50):9412-9423;(f) Canty, A. J., Rodemann, T., Skelton, B. W., et al.Access to Alkynylpalladium(IV) and-Platinum(IV) Species, IncludingTriorgano(diphosphine)metal(IV) Complexes and the Structural Study of anAlkynyl(pincer)platinum(IV) Complex, Pt(O2CArF)I(CCSiMe3)(NCN)(ArF=4-CF3C6H4,NCN=[2,6-(dimethylaminomethyl)phenyl-N,C,N]-)[J]. Organometallics2006,25(16):3996-4001.
    [123](a) Littke, A. E.; Fu, G. C. Palladium-Catalyzed Coupling Reactions of Aryl Chlorides[J]. Angew. Chem. Int. Ed.,2002,41(22):4176-4211;(b) Grigg, R.; Sridharan, V.; Stevenson,P., et al. The synthesis of fused ring nitrogen heterocycles via regiospecific intramolecularheck reactions [J]. Tetrahedron1990,46(11):4003-4018;(c) Owczarczyk, Z.; Lamaty, F.;Vdwter, E. J.; et al. Apparent endo-mode cyclic carbopalladation with inversion of alkeneconfiguration via exo-mode cyclization-cyclopropanation rearrangement [J]. J. Am. Chem.Soc.1992,114(25):10091-10092;(d) Dounay, A. B.; Overman, L. E. The AsymmetricIntramolecular Heck Reaction in Natural Product Total Synthesis [J]. Chem. Rev.2003,103(8):2945-2946.
    [124](a) Roy, A. H.; Hartwig, J. F. Reductive Elimination of Aryl Halides from Palladium(II)[J]. J. Am. Chem. Soc.2001,123(6):1232-1233;(b) Roy, A. H.; Hartwig, J. F. DirectlyObserved Reductive Elimination of Aryl Halides from Monomeric Arylpalladium(II) HalideComplexes [J]. J. Am. Chem. Soc.2003,125(46):13944-13945.
    [125](a) Klapars, A.; Buchwald, S. L. Copper-Catalyzed Halogen Exchange in Aryl Halides:An Aromatic Finkelstein Reaction [J]. J. Am. Chem. Soc.2002,124(50):14844-14845;(b)Watson, D. A.; Su M. S.; Teverovskiy, G.; et al. Formation of ArF from LPdAr(F):CatalyticConversion of Aryl Triflates to Aryl Fluorides [J]. Science,2009,325,1661-1664;(c) Shen,X.; Hyde, A. M., Buchwald, S. L. Palladium-Catalyzed Conversion of Aryl and Vinyl Triflatesto Bromides and Chlorides [J]. J. Am. Chem. Soc.2010,132(40):14076-14078.
    [126] Kalyani, D.; Satterfield, A. D.; Sanford, M. S. Palladium-Catalyzed OxidativeArylhalogenation of Alkenes: Synthetic Scope and Mechanistic Insights [J]. J. Am. Chem. Soc.2010,132(24):8419-8427.
    [127] Newman, S. G.; Lautens, M. The Role of Reversible Oxidative Addition in SelectivePalladium(0)-Catalyzed Intramolecular Cross-Couplings of Polyhalogenated Substrates:Synthesis of Brominated Indoles [J]. J. Am. Chem. Soc.2010,132(33):11416-11417.
    [128](a) Newman, S. G.; Lautens, M. Palladium-Catalyzed Carboiodination of Alkenes:Carbon Carbon Bond Formation with Retention of Reactive Functionality [J]. J. Am. Chem.Soc.2011,133(6):1778-1780.
    [129] Liu, H.; Li, C.; Qiu, D.; Tong, X. Palladium-Catalyzed Cycloisomerizations of(Z)-1-Iodo-1,6-dienes: Iodine Atom Transfer and Mechanistic Insight to Alkyl IodideReductive Elimination [J]. J. Am. Chem. Soc.2011,133(16):6187-6193.
    [130](a) Catellani, M., Novel Methods of Aromatic Functionalization Using Palladium andNorbornene as a Unique Catalytic System [J]. Top. Organomet. Chem.2005,14:21-53;(b)Catellani, Motti, M., Cá, N. D., Catalytic Sequential Reactions InvolvingPalladacycle-Directed Aryl Coupling Steps [J]. Acc. Chem. Res.2008,41(11):1512-1522;(c)Martins, A., Mariampillai, B., Lautens, M., Synthesis in the Key of Catellani:Norbornene-Mediated ortho C–H Functionalization [J]. Top. Curr. Chem.2010,292:1-33;(d)Nicolaou, K. C., Ortiz, A., Zhang, H., et al. Total Synthesis and Structural Revision ofVannusals A and B:Synthesis of the Originally Assigned Structure of Vannusal B [J]. J. Am.Chem. Soc.2010,132(20):7138-7152; e) Cho, Y., Zunic, V., Senboku, H., et al.Rhodium-Catalyzed Ring-Opening Reactions of N-Boc-Azabenzonorbornadienes with AmineNucleophiles [J]. J. Am. Chem. Soc.2006,128(21):6837-6846;(f) Kinsella, M. A., Kalish, V.J., Weinreb, S. M., Approaches to the Total Synthesis of the Antitumor AntibioticEchinosporin [J]. J. Org. Chem.1990,55(1):105-111;(g) Castagner, B., Leighton, J. L., Amodified approach to the phomoidrides: synthesis of a late-stage intermediate containing akey carbon quaternary stereocenter [J]. Tetrahedron2007,63,5895-5902;(h) Yoshida, Y.,Mohri, J., Ishii, S., et al. Living Copolymerization of Ethylene with Norbornene Catalyzed byBis(Pyrrolide Imine) Titanium Complexes with MAO [J]. J. Am. Chem. Soc.2004,126(38):12023-12032;(i) Holtsclaw, J., Koreeda, M., A Ring-Rearrangement Metathesis Approachtoward the Synthesis of Cyclopenta-and Cyclohexa[c]indene Systems [J]. Org. Lett.2004,6(21):3719-3722;(j) Tsubata, A., Uchiyama, T., Kameyama, A., et al. Synthesis ofPoly(ester-amide)s Containing Norbornadiene (NBD) Residues by the Polyaddition of NBDDicarboxylic Acid Derivatives with Bis(epoxide)s and Their Photochemical Properties [J].Macromolecules1997,30(19):5649-5654;(k) Nishimura, I., Kameyama, A., Nishikubo, T.,Synthesis of Self-Photosensitizing Polyesters Carrying Pendant Norbornadiene (NBD)Moieties and Benzophenone Groups and Their Photochemical Reactions [J]. Macromolecules1998,31(9):2789-2796.
    [131] Lautens, M., Hiebert, S., Scope of Palladium-Catalyzed Alkylative Ring Opening [J]. J.Am. Chem. Soc.2004,126(5):1437-1447.
    [132] Larraufie, M. H., Maestri, G., Beaume, A., et al. Exception to the ortho Effect inPalladium/Norbornene Catalysis [J]. Angew. Chem. Int. Ed.,2011,50(51):12253-12256.
    [133](a) Roberts, J. D., Lee, C. C., Saunders, W. H., Rearrangements in Carbonium Ion-TypeReactions of C14-Labeled Norbornyl Derivatives [J]. J. Am. Chem. Soc.1954,76(18):4501-4510;(b) Winstein, S., Trifan, D. S., The Structure of the Bicyclo[2,2,1]2-heptyl(Norbornyl) Carbonium Ion [J]. J. Am. Chem. Soc.1949,71(8):2953-2953;(c) Arnett, E. M.,Rienta, N., Petro, C., Stabilities of carbonium ions in solution.10. A thermochemicalcomparison of the relative stabilities of long-lived2-norbornyl and butyl cations in sulfurylchloride fluoride/antimony pentafluoride [J]. J. Am. Chem. Soc.1980,102(1):398-400.
    [134](a) Baird Jr, W. C., Metal-Olefin Complexes. A Convenient Synthesis ofSyn-7-Norbornenol [J]. J. Org. Chem.1966,31(7):2411–2414;(b) Chauvet, F., Heumann, A.,Waegell, B., Oxygen-Transfer Reactions Catalyzed by Nitropalladium(I1) Complexes.Reactivity of Bis(p-chloro)bis[exo-3-(nitrosooxy)bicyclo[2.2.1]-hept-2-yl-C,N]dipalladium:Cleavage of the C-Pd Bond [J]. J. Org. Chem.1987,52(10):1916-1922;(c) Gültekin, D. D.,Ta kesenligil, Y., Da tan, A. et al. Bromination of norbornene derivatives: synthesis ofbrominated norbornanes and norbornenes [J]. Tetrahedron Lett.2008,64(19):4377-4383;(d)Lourie, L. F., Serguchev, Y. A., Shevchenko, G. V., et al. Fluorolactonization ofnorbornenecarboxylic acids and their methyl esters with F-TEDA-BF4and XeF2[J]. J.Fluorine Chem.2006,127(3):377-385.
    [135](a) Lautens, M., Klute, W., Tam, W., Transition Metal-Mediated CycloadditionReactions [J]. Chem. Rev.1996,96(1):49;(B) Treutwein, J., Hilt, G., Cobalt-Catalyzed [2+2]Cycloaddition [J]. Angew. Chem. Int. Ed.2008,47(36):6811-6813;(c) Hilt, G., Paul, A.,Treutwein, J., Cobalt Catalysis at the Crossroads: Cobalt-Catalyzed Alder-Ene Reactionversus [2+2] Cycloaddition [J]. Org. Lett.2010,12(7):1536-1539;(d) López-Carrillo, V.,Echavarren, A. M., Gold(I)-Catalyzed Intermolecular [2+2] Cycloaddition of Alkynes withAlkenes [J]. J. Am. Chem. Soc.2010,132(27):9292-9294;(e) Chao, K. C., Rayabarapu, D.K., Wang, C. C., et al. Cross [2+2] Cycloaddition of Bicyclic Alkenes with Alkynes Mediatedby Cobalt Complexes: A Facile Synthesis of Cyclobutene Derivatives [J]. J. Org. Chem.2001,66(26):8804-8810;(f) Shibata, T., Takami, K., Kawachi, A., Rh-Catalyzed Enantioselective[2+2] Cycloaddition of Alkynyl Esters and Norbornene Derivatives [J]. Org. Lett.2006,8(7):1343-1345;(g) Fan, B. M., Li, X. J., Peng, F. Z., et al. Ligand-ControlledEnantioselective [2+2] Cycloaddition of Oxabicyclic Alkenes with Terminal Alkynes UsingChiral Iridium Catalysts [J]. Org. Lett.2010,12(2):304-306;(h) Villeneuve, K., Tam, W.,Asymmetric Induction in Ruthenium-Catalyzed [2+2] Cycloadditions between BicyclicAlkenes and a Chiral Acetylenic Acyl Sultam [J]. Angew. Chem., Int. Ed.2004,43:610-613;(i) Riddle, N., Tam, W., Ruthenium-Catalyzed [2+2] Cycloadditions of Alkynyl Sulfides andAlkynyl Sulfones [J]. J. Org. Chem.2006,71,(5):1934-1937;(j) Jordan, R. W., Villeneuve,K., Tam, W., Study on the Reactivity of the Alkyne Component in Ruthenium-Catalyzed [2+2] Cycloadditions between an Alkene and an Alkyne [J]. J. Org. Chem.2006,71(15):5830-5833;(k) Cockburn, N., Karimi, E., Tam, W., Ruthenium-Catalyzed [2+2]Cycloadditions of Bicyclic Alkenes with Alkynyl Phosphonates [J]. J. Org. Chem.2009,74(15):5762-5765.
    [136] See [9c]、[30]、[50]、[133]、[134c]、[137]、[142] and Kalyani, D., Sanford, M. S.,Oxidatively Intercepting Heck Intermediates: Pd-Catalyzed1,2-and1,1-Arylhalogenation ofAlkenes [J]. J. Am. Chem. Soc.2008,130(7):2150-2151.
    [137] For selected examples of difunctionalization of terminal alkyne to constructionC(sp2)-X bonds, see:(a) Trost, B. M., Pinkerton, A. B., Formation of Vinyl Halides via aRuthenium-Catalyzed Three-Component Coupling [J]. J. Am. Chem. Soc.2002,124(25):7376-7389;(b) Kabalka, G. W., Wu, Z., Ju, Y., A New Reaction of Aryl Aldehydes with ArylAcetylenes in the Presence of Boron Trihalides [J]. Org. Lett,2002,4(9):1491-1493;(c)Goo en, L. J., Rodríguez, N., Goo en, K., Angew. Chem. Int. Ed.2009,48(51):9592-9594;(d) Ren, K., Wang, M., Wang, L., FeX3-Promoted Intermolecular Addition of BenzylicAlcohols to Aromatic Alkynes: A Mild and Efficient Strategy for the Synthesis of AlkenylHalides [J]. Eur. J. Org. Chem.2010,565-571;(e) Murai, M., Hatano, R., Kitabata, S., et al.Gallium (III)-catalysed bromocyanation of alkynes: regio-and stereoselective synthesis ofb-bromo-a,b-unsaturated nitrilesw [J]. Chem. Commun.,2011,47,2375-2377;(f) Liu, X. Y.,Gao, P., Shen, Y. W., et al. Adv. Synth. Catal.2011,353(17):3157-3160.
    [138] Huang J., Zhou, L., Jiang, H., Palladium-catalyzed allylation of alkynes with allylalcohol in aqueous media: Highly regio and stereoselective synthesis of1,4-dienes [J]. Angew.Chem. Int. Ed.2006,45(12):1945-1949.
    [139] Jiang, H. F., Liu, X. H., Zhou, L., First Synthesis of1‐Chlorovinyl Allenes viaPalladium‐Catalyzed Allenylation of Alkynoates with Propargyl Alcohols [J]. Chem-Eur J,2008,14(36):11305–11309.
    [140] Li, Y. B., Liu, X. H., Jiang, H. F., et al. Expedient Synthesis of FunctionalizedConjugated Enynes: Palladium-Catalyzed Bromoalkynylation of Alkynes [J]. Angew. Chem.Int. Ed.2010,49(19):3338-3341.
    [141] Jiang, H., Qiao, C., Liu, W., Palladium(II)-Catalyzed Highly Regio-and StereoselectiveSynthesis of2-Chloro-1,3-diene Derivatives from Alkynols and Alkenes [J]. Chem-Eur J,2010,16(36):10968-10970.
    [142] Li, Y. B., Liu, X. H., Jiang, H. F., et al. Palladium-Catalyzed Bromoalkynylation of C-CDouble Bonds: Ring-Structure-Dependent Synthesis of7-Alkynyl Norbornanes andCyclobutenyl Halides [J]. Angew. Chem. Int. Ed.2011,50(28):6341-6345.
    [143] Li, Y. B., Zhao,J., Chen, H. J., et al. Pd-catalyzed and CsF-promoted reaction ofbromoalkynes with isocyanides: regioselective synthesis of substituted5-iminopyrrolones [J].Chem. Commun.,2012,48,3545–3547.
    [144] Huang, L. B., Jiang, H. F., Qi, C., et al. Copper-Catalyzed Intermolecular Oxidative [3+2] Cycloaddition between Alkenes and Anhydrides: A New Synthetic Approach to γ-Lactones[J]. J. Am. Chem. Soc.2010,132(50):17652-17654.
    [145] For selective examples, see: a) Purser, S., Moore, P. R., Swallow, S., et al. Fluorine inmedicinal chemistry [J]. Chem. Soc. Rev.2008,37(2):320-330;(b) Nie, J., Guo, H-C.,Cahard, D. et al. Asymmetric Construction of Stereogenic Carbon Centers Featuring aTrifluoromethyl Group from Prochiral Trifluoromethylated Substrates [J]. Chem. Rev.2011,111(2):455-529;(c) S. Rozen, Selective Reactions of Bromine Trifluoride in OrganicChemistry [J]. Adv. Synth. Catal.2010,352(16):2691-2707;(d) Ball, N. D., Kampf, J. W.,Sanford, M. S., Aryl-CF3Bond-Forming Reductive Elimination from Palladium(IV)[J]. J.Am. Chem. Soc.2010,132(9):2878;(e) Wang, X., Truesdale, L., Yu, J-Q., Pd(II)-Catalyzedortho-Trifluoromethylation of Arenes Using TFA as a Promoter [J]. J. Am. Chem. Soc.2010,132(11):3648-3649;(f) Shimizu, M., Hiyama, T., Modern Synthetic Methods forFluorine-Substituted Target Molecules [J]. Angew. Chem., Int. Ed.2005,44(2):214-231;(g)Furuya, T., Benitez, D., Tkatchouk, E., et al. Mechanism of C-F Reductive Elimination fromPalladium(IV) Fluorides [J]. J. Am. Chem. Soc.2010,132(11):3793.
    [146] Furuya, T., Kamlet, A. S., Ritter, T., Catalysis for fluorination and trifluoromethylation[J]. Nature2011,473,470-477.
    [147](a) O’Hagan, D., Understanding organofluorine chemistry. An introduction to the C–Fbond [J]. Chem. Soc. Rev.2008,37,308-319;(b) Zhang, W., Huang, W., Hu, J., Angew. Chem.Int. Ed.2009,48(52):9858-9861;(c) de Haro, T., Nevado, C., Gold-Catalyzed Synthesis ofα-Fluoro Acetals and α-Fluoro Ketones from Alkynes [J]. Adv. Synth. Catal,2010,352(16):2767;(d) Chan, K. S. L., Wasa, M., Wang, X., et al. Palladium(II)-Catalyzed SelectiveMonofluorination of Benzoic Acids Using a Practical Auxiliary: A Weak-CoordinationApproach [J]. Angew. Chem., Int. Ed.2011,50(39):9081-9084;(e) Tang, P., Wang, W., Ritter,T., Deoxyfluorination of Phenols [J]. J. Am. Chem. Soc.2011,133(30):11482-11484;(f)Yanai, H., Taguchi, T., Synthetic Methods for Fluorinated Olefins [J]. Eur. J. Org. Chem,2011,5939-5954;(g) Peng, H., Liu, G., Palladium-Catalyzed Tandem Fluorination and Cyclizationof Enynes [J]. Org. Lett,2011,13(4):772-775;(h) Zhang, H., Zhou, C-B., Chen, Q-Y., et al.Monofluorovinyl Tosylate: A Useful Building Block for the Synthesis of Terminal VinylMonofluorides via Suzuki Miyaura Coupling [J]. Org. Lett,2011,13(4):560-563.
    [148](a) Albert, P., Cousseau, J., Tetrabutylammonium and Polymer-supportedDihydrogentrifluoride: New Hydrofluorinating Reagents for Electrophilic Alkynes PatriceAlbert and Jack Cousseau [J]. J. Chem. Soc., Chem. Commun.,1985,961-962;(b) Gorgues,A., Stéphan, D., Cousseau, J., Mono-hydrofluorination of Electrophilic Alkynes by the LiquidBiphasic CsF-H20-DMF System (DMF=N,N-dimethylformamide [J]. J. Chem. Soc., Chem.Commun.,1989,1493-1494.
    [149] J. A. Akana, K. X. Bhattacharyya, P. Müller, J. P. Sadighi, Reversible C-F BondFormation and the Au-Catalyzed Hydrofluorination of Alkynes [J]. J. Am. Chem. Soc.2007,129(25):7736-7737.
    [150](a) Uneyama, K., Organofluorine Chemistry, Blackwell, Oxford,2006;(b) Bégué, J.-P.,Bonnet-Delpon, D., Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken,2008.
    [151](a) Lewandos, G. S., Maki, J. W., Ginnebaugh, J. P., Kinetics of Terminal Alkyne spCarbon-Hydrogen Bond Activation Catalyzed by Silver(I)[J]. Organometallics1982,1(12):1700-1705;(b) Leyva-Pérez, A., Rubio-Marqués, P., Al-Deyab, S. S., et al. Cationic GoldCatalyzes ω-Bromination of Terminal Alkynes and Subsequent Hydroaddition Reactions [J].ACS catal.2011,1(6):601-606;(c) Xu, T., Mu, X., Peng, H., et al. Silver-CatalyzedIntramolecular Aminofluorination of Activated Allene [J]. Angew. Chem. Int. Ed.2011,50(35):8176-8179;(d) Amatore, C., Jutand, A., Le Duc, G., The Triple Role of Fluoride Ions inPalladium-Catalyzed Suzuki–Miyaura Reactions: Unprecedented Transmetalation from[ArPdFL2] Complexes [J]. Angew. Chem. Int. Ed.2011,51(6):1379-1411.
    [152]诸平,张文根,敬云,吡咯研究史探析[J].渭南师范学院学报,1998,13(5):11-15.
    [153](a) Guilder, T. A. M., Moore, B. S., Salinosporamide Natural Products: Potent20SProteasome Inhibitors as Promising Cancer Chemotherapeutics [J]. Angew. Chem., Int. Ed.,2010,49(49):9346–9367;(b) Stadler, M., Bitzer, J., Bartschmid, A. M., et al.Cinnabaramides A G: Analogues of Lactacystin and Salinosporamide from a TerrestrialStreptomycete [J]. J. Nat. Prod.,2007,70(2):246–252;(c) Masse, C. E., Morgan, A. J.,Adams J., et al. Syntheses and Biological Evaluation of (+)-Lactacystin and Analogs [J]. Eur.J. Org. Chem.,2000,2000(14):2513–2528.
    [154](a) Onyango, O., Tsurumoto, J., Imai, N., et al. Total Synthesis of Neooxazolomycin etal. Angew. Chem., Int. Ed.,2007,46(35):6703–6705;(b) P. G. Bulger, M. G. Moloney and P.C. Trippier, A multicomponent coupling strategy suitable for the synthesis of the trienecomponent of the oxazolomycin antibiotics [J]. Org. Biomol. Chem.,2003,1,3726–3737;(c)Wang, Z., Moloney, M. G., Synthesis of the middle fragment of oxazolomycin [J].Tetrahedron Lett.,2002,43(52):9629–9632;(d) Papillon, J. P. N., Taylor, R. J. K., The FirstSyntheses of the1-Oxo-2-oxa-5-azaspiro[3.4]octane Ring System Found in Oxazolomycin [J].Org. Lett.,2000,2(14):1987–1990.
    [155](a) Knorr, L. Chem. Ber,1884,17,1635-1642;(b) Fischer, H. Organic Syntheses; Wiley:New York,1943; Colleet. VOI.11, P202.
    [156](a) Paal, C. Ber,1885,18,367-371;(b) Bishop, W. S. New2,5-DimethylpyrroleDerivatives [J]. J. Am. Chem. Soc.1945,67(12):2261-2262.
    [157](a) Hantzsch, A. Chem. Ber,1890,23,1474-1476;(b) Hantzsch, A. Ueber die Synthesepyridinartiger Verbindungen aus Acetessig ther und Aldehydammoniak [J]. Justus LiebigsAnnalen der Chemie,1882,215(1):1-82.
    [158](a) Lash, T. D., Wijesinghe, C., Osuma, A. T., et al. Synthesis of novel porphyrinchromophores from nitroarenes: Further applications of the Barton-Zard pyrrole condensation[J]. Tetrahedron Lett.,1997,38(12):2031-2034.
    [159] Li, Y., Xu, X., Tan, J., et al. Double Isocyanide Cyclization: A Synthetic Strategy forTwo-Carbon-Tethered Pyrrole/Oxazole Pairs [J]. J. Am. Chem. Soc.2011,133(6):1775-1777.
    [160](a) Kamijo, S., Kanazawa, C., Yamamoto, Y., Copper-or Phosphine-Catalyzed Reactionof Alkynes with Isocyanides. Regioselective Synthesis of Substituted Pyrroles Controlled bythe Catalyst [J]. J. Am. Chem. Soc.2005,127(25):9260-9266;(b) Kanazawa, C., Kamijo,S., Yamamoto, Y., Synthesis of Imidazoles through the Copper-CatalyzedCross-Cycloaddition between Two Different Isocyanides [J]. J. Am. Chem. Soc.2006,128(33):10662-10663.
    [161] Lygin, A. V., Larionov, O. V., Korotkov, V. S., et al. Oligosubstituted PyrrolesDirectly from Substituted Methyl Isocyanides and Acetylenes [J]. Chem. Eur. J,2009,15(1):227-236.
    [162] Jiang, H., Liu, B., Li, Y., Synthesis of Amides via Palladium-Catalyzed Amidation ofAryl Halides [J]. Org. Lett,2011,13(5):1028-1031.
    [163](a) Boissarie, P. J., Hamilton, Z. E., Lang, S., et al. Org. Lett,2011,13,6256;(b) Baelen,G. V., Kuijer, S., Rycek, L., et al. Synthesis of4-Aminoquinazolines by Palladium-CatalyzedIntramolecular Imidoylation of N-(2-Bromoaryl)amidines [J]. Chem. Eur. J.2011,17(52):15039-15044;(c) Vicente, J., Chicote, M. T., Martínez-Martínez, A. J., et al. Reactivity ofortho-β-Enaminone-phenyl Palladium Complexes. Insertion of CO into the Pd-C Bond toGive the First Acyl C,N,O-Pincer Complexes. Sequential Insertion ofDimethylacetylenedicarboxylate into the Enaminone C-H Bond and of Isocyanide into thePd-C Bond. A New Photooxigenation/Cyclization Process [J]. Organometallics2010,29(21):5693-5707;(d) Vicente, J., Saura-Llamas, I., García-López, J. A., Insertion of Isocyanides,Isothiocyanates, and Carbon Monoxide into the Pd-C Bond of Cyclopalladated ComplexesContaining Primary Arylalkylamines of Biological and Pharmaceutical Significance.Synthesis of Lactams and Cyclic Amidinium Salts Related to the Isoquinoline,Benzo[g]isoquinoline, and-Carboline Nuclei [J]. Organometallics2009,28(2):448-464;(e) Zhu, C., Xie, W., Falck, J. Rhodium-Catalyzed Annulation of N-Benzoylsulfonamide withIsocyanide through C-H Activation [J]. Chem. Eur. J.2011,17(45):12591-12595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700