立体选择性的亚胺烯化反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维蒂希反应是用三苯基磷叶立德和醛反应生成烯烃的重要反应之一。半稳定磷叶立德和醛反应主要生成z式和E式的混合烯烃产物,而不稳定磷叶立德则生成以Z式为主的烯烃产物。尽管化学家为了提高该反应的选择性对反应做出了一定的改进,但是对于底物范围的拓展和选择性的提高仍然有很大的空间。
     磺酰基活化的亚胺在有机合成化学中是一类重要的碳氮双键类化合物,它与醛相比有一些特殊的电子效应和立体位阻效应。关于亚胺和三苯基磷叶立德反应生成烯烃的文献报道比较少。基于我们课题小组在碳-氮键断裂以及烯烃合成方面所作出的研究工作,为了进一步深入研究碳-氮键断裂在选择性有机合成中的应用,我们尝试用磺酰基活化的亚胺取代维蒂烯反应中的醛,从而实现和半稳定或者不稳定磷叶立德反应高选择性合成烯烃。
     我们利用苄基和烯丙基三苯基磷叶立德分别和不同磺酰基活化的亚胺在温和的反应条件下可以得到高选择性的Z式和E式1,2-二取代烯烃以及共轭烯烃产物。对于芳香族亚胺、杂芳环亚胺、α,β-不饱和亚胺以及脂肪族亚胺都可以得到从良好到优秀收率的产物,选择性大于99:1。此外,我们还利用此方法成功合成了两种高选择性的抗癌药物分子DMU-212及其z式异构体。
     鉴于我们在选择性合成烯烃的工作基础上,我们用不稳定磷叶立德分别和合适的磺酰基活化的亚胺在温和的反应条件下得到高选择性的1,2-二取代烯烃产物。对于芳香族亚胺、杂芳环亚胺、αα,p-不饱和亚胺以及脂肪族亚胺都可以得到良好收率的产物,我们还利用此方法成功合成了高选择性的烯丙基胺和烯丙基醇类化合物,选择性大于99:1。通过对机理的研究我们发现产物的ZE选择性和叶立德对亚胺的非对映选择性加成以及氮原子上的磺酰基团的性质有关。
     最后对于溴代烯烃我们用半稳定磷叶立德分别和合适的磺酰基活化的亚胺在温和的反应条件下得到高选择性的烯烃产物,对于芳香族亚胺、杂芳环亚胺、α,β-不饱和亚胺以及脂肪族亚胺产物都可以得到良好的收率。除此之外,我们还以良好的收率选择性合成了单一构型的一系列的氯代和碘代烯烃产物。
The Wittig reaction involving direct olefination of triphenylphosphonium ylides (Ph3P=CHR) with aldehydes is arguably the most often used method for alkene synthesis. But in general, the Wittig reaction yields preferentially Z-alkenes for nonstabilized triphenylphosphonium ylides (R=alkyl) but mixtures of Z and E-alkenes for semistabilized triphenylphosphonium ylides (R=aryl or vinyl). Although a number of efforts have been devoted to the modification of the Wittig reaction, however, there remains big room for improvement with respect to the stereoselectivity and substrate scope.
     N-sulfonyl imines are important carbon-nitrogen double bond type compounds in organic synthesis chemisrtry. Comparing with aldehydes, the N-sulfonyl imines possess some distinct electronic and stereoselective properties. There is few report about the olefination of triphenylphosphonium ylides (Ph3P=CHR) with imines. In the course of exploring the synthetic applications of carbon-nitrogen double bond cleavage, together with our interest in stereoselective alkene synthesis, to apply carbon-nitrogen bond cleavage to selective organic synthesis, we planned to employ the sulfonyl group to activate an imine by replacing aldehydes and facilitate subsequent carbon-nitrogen bond cleavage for the highly stereoselective olefination of triphenylphosphonium ylides
     A broad range of aromatic, alpha, beta-unsaturated, and aliphatic imines bearing appropriate N-sulfonyl groups smoothly undergo olefination reaction with various benzylidenetriphenylphosphoranes or allylidenetriphenylphosphoranes under mild reaction conditions to afford an array of both Z-and E-isomers of conjugated alkenes in good to excellent yields and with greater than99:1stereoselectivity. Moreover, this tunable protocol has been successfully applied to the highly stereoselective synthesis of two anticancer agents. DMU-212and its Z-isomer。
     Together with our interest in stereoselective alkene synthesis, a broad range of N-sulfonyl aromatic, heteroaromatic, alpha, beta-unsaturated, and aliphatic imines react with various nonstabilized phosphonium ylides to afford anarray of both (Z)-and (E)-isomers of1,2-disubstituted alkenes. allylic alcohols, and allylic amines in good yields and with greater than99:1stereoseleetivity. The Z/E selectivity for alkene svnthesis has been demonstrated to originate from the diastereoseleetive addition of nonstabilized phosphonium ylides to N-sulfonyl imines, wherein the N-sulfonyl groups serve as powerful handles to finely tune stereoselectivity.
     Together with our interest in stereoselective alkenyl bromides synthesis, a broad range of N-sulfonyl aromatic, heteroaromatic, alpha, beta-unsaturated, and aliphatic imines react with semistabilized phosphonium ylides to afford anarray of both (Z)-and (E)-isomers of alkenyl bromides in good yields and with greater than99:1stereoselectivity. Moreover, this tunable protocol has been successfully applied to the highly stereoselective synthesis of alkenyl chloride,and alkenyl. iodides。
引文
1. Singh, V.; Prathap, S.; Ponnchu, M. J. Org. Chem. 1998, 63, 4011-4017.
    2. Pearce, B. C.; Parker, R. A.; Deason, M. E.; Qureshi, A. A.; Wright, J. J. K. J. Med. Chem. 1992, 35, 3595-3606.
    3. Murphy, P. J. Chem. Commun. 1992, 1096-1097.
    4. Rao, A. V. R.; Reddy, R. G. Tetrahedron Lett. 1992, 33,4061-4064.
    5. Congreve, M. S.; Holmes, A. B.; Hughes, A. B.; Looney, M. G. J. Am. Chem. Soc. 1993, 115,5815-5816.
    6. Yao, G.; Steliou, K. Org. Lett. 2002, 4, 485-488.
    7. Hale, K. J.; Frigerio, M.; Manaviazar, S.; Hummersone, M. G.; Fillingham, I. J.; Barsukov, I. G.; Damblon, C. F.; Gescher, A.; Roberts, G. C. K. Org. Lett. 2003, 5, 499-502.
    8. Porta, A.; Re, S.; Zanoni, G.; Vidari, G. Tetrahedron 2007, 63, 3989-3994.
    9. Sowerby, R. L.; Coates, R. M. J. Am. Chem. Soc. 1972, 94, 4758-4759.
    10. Trost, B. M.; Keeley, D. E. J. Am. Chem. Soc. 1976, 98, 248-250.
    11. Wittig, G.; Geissler, G. Liebigs Ann. Chem. 1953, 580, 44-57.
    12. (a)Vedejs, E.; Marth, C. F. J. Am. Chem. Soc. 1988, 110, 3948-3958; (b)Vedejs, E.; Meier, G. P.; Snoble, K. A. J. J. Am. Chem. Soc. 1981, 103, 2823-2831; (c)Vedejs, E.; Snoble, K. A. J. J. Am. Chem. Soc. 1973, 95, 5778-5780.
    13. Mari, F.; Lahti, P. M.; McEwen, W. E. J. Am. Chem. Soc. 1992, 114, 813-821.
    14. Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; de Vicente, J. J. Am. Chem. Soc. 2003, 125, 6034-6035.
    15. Huo, C. D.; He, X.; Chan, T. H. J. Org. Chem. 2008, 73, 8583-8586.
    16. Ackermann, M.; Berger, S. Tetrahedron 2005, 61, 676A-6771.
    17. McNulty, J.; Das, P. Eur. J. Org. Chem. 2009, 4031-4035.
    18. (a)Kojima, S.; Takagi, R.; Akiba, K. J. Am. Chem. Soc. 1997, 119, 5970-5971; (b)Jeganathan, S.; Tsukamoto, M.; Schlosser, M. Synthesis 1990, 109-111; (c)Yamataka, H.; Nagareda, K.; Ando, K.; Hanafusa, T. J. Org. Chem. 1992, 57, 2865-2869.
    19. (a)Ward, W. J.; McEwen, W. E. J. Org. Chem. 1990, 55, 493-500; (b)McEwen, W. E.; Ward, W. J. Phosphorus, Sulfur Silicon Relat. Elem. 1989, 41, 393-398.
    20. Aksnes, G.; Berg. T. J.; Gramstad, T. Phosphorus, Sulfur Silicon Relat. Elem. 1995, 106, 79-84.
    21. Vedejs, E.; Marth. C. Tetrahedron Lett. 1987. 28, 3445-3448.
    22. Vedejs, E.; Cabaj, J.; Peterson, M. J. J. Org. Chem. 1993, 58, 6509-6512.
    23. Lawrence, N. J.; Beynek, H. Synlett 1998, 497-498.
    24. Wang, Z.; Verkade, J. G. Tetrahedron Lett. 1998, 39, 9331-9334.
    25. Wang, Z. G.; Zhang, G. T.; Guzei, I.; Verkade, J. G. J. Org. Chem. 2001, 66, 3521-3524.
    26. Pachali, S.; Hofmann, C.; Rapp, G.; Schobert, R.; Baro, A.; Frey, W.; Laschat, S. Eur. J. Org. Chem. 2009, 2828-2835.
    27. (a)Bestmann, H. J.; Schobert, R. Angew. Chem. Int. Ed. 1985, 24, 791-792; (b)Bestmann, H. J.; Kellermann, W. Synthesis 1994, 1257-1261; (c)Chakor, N. S.; Musso, L.; Dallavalle, S. J. Org. Chem. 2009, 74, 844-849.
    28. Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927.
    29. (a)Schlosse.M; Christma.Kf Liebigs Ann. Chem. 1967, 708, 1-5; (b)Schlosser, M.; Tuong, H. B.; Schaub, B. Tetrahedron Lett. 1985, 26, 311-314; (c)Schlosse.M; Christma.Kf Angew. Chem. Int. Ed. 1966,5,126-126.
    30. Wang, Q.; Deredas, D.; Huynh, C.; Schlosser, M. Chem.-Eur. J. 2003, 9, 570-574.
    31. (a)Jiang, S. L.; Yang, K. F.; Yu, X. C. Synth. Commun. 2009, 39, 1759-1767; (b)Kinoshita, T.; Okada, S.; Park, S. R.; Matsunaga, S.; Shibasaki, M. Angew. Chem. Int. Ed. 2003, 42, 4680-4684; (c)Blackburn, L.; Kanno, H.; Taylor, R. J. K. Tetrahedron Lett. 2003, 44, 115-118; (d)House, H. O.; Jones, V. K.; Frank, G. A. J. Org. Chem. 1964, 29, 3327-3328.
    32. Welton, T. Chem. Rev. 1999, 99, 2071-2083.
    33. Le Boulaire, V.; Gree, R. Chem. Commun. 2000, 2195-2196.
    34. Westman, J. Org. Lett. 2001, 3, 3745-3747.
    35. Fodor, G.; Tomoskozi, I. Tetrahedron Lett. 1961, 579-582.
    36. (a)Isaacs, N. S.; Eldin, G. N. Tetrahedron Lett. 1987,28, 2191-2192; (b)Nonnenmacher, A.; Mayer, R.; Plieninger, H. Liebigs Ann. Chem. 1983, 2135-2140.
    37. (a)Hooper, D. L.; Garagan, S.; Kayser, M. M. J. Org. Chem. 1994, 59, 1126-1128; (b)Corey, E. J.; Albright, J. O.; Barton, A. E.; Hashimoto, S. I. J. Am. Chem. Soc. 1980, 102, 1435-1436; (c)Marriott, D. P.; Bantick, J. R. Tetrahedron Lett. 1981, 22, 3657-3658; (d)Stafford, J. A.; McMurry, J. E. Tetrahedron Lett. 1988, 29, 2531-2534; (e)Westman, G.; Wennerstrom, O.; Raston, I. Tetrahedron 1993, 49, 483-488.
    38. Spinella, A.; Fortunati, T.; Soriente, A. Synlett 1997, 93-94.
    39. Matikainen, J. K.; Kaltia, S.; Hase, T. Synlett 1994, 817-818.
    40. Silveira, C. C; Perin, G.; Braga, A. L. J. Chem. Res.,Synop. 1994. 492-493.
    41. Patil. V. J.: Mavers, U. Tetrahedron Lett. 1996, 37. 1281-1284.
    42. Dambacher. J.; Zhao, W.; El-Batta. A.; Anness, R.; Jiang. C. C: Bergdahl, M. Tetrahedron Lett. 2005, 46, 4473-4477.
    43. (a)Li, C. J. Chem. Rev. 1993, 93, 2023-2035; (b)Li, C. J. Chem. Rev. 2005,105, 3095-3165.
    44. Horvath, I. T.; Anastas, P. T. Chem. Rev. 2007, 107, 2167-2168.
    45. Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275-286.
    46. Molander, G. A.; Oliveira, R. A. Tetrahedron Lett. 2008, 49, 1266-1268.
    47. El-Batta, A.; Jiang, C. C.; Zhao, W.; Anness, R.; Cooksy, A. L.; Bergdahl, M. J. Org. Chem. 2007, 72, 5244-5259.
    48. Huang, Z. Z.; Ye, S.; Xia, W.; Tang, Y. Chem. Commun. 2001, 1384-1385.
    49. Huang, Z. Z.; Ye, S.; Xia, W.; Yu, Y. H.; Tang, Y. J. Org. Chem. 2002, 67, 3096-3103.
    50. Li, K.; Ran, L.; Yu, Y. H.; Tang, Y. J. Org. Chem. 2004, 69, 3986-3989.
    51. Liu, C. R.; Li, M. B.; Cheng, D. J.; Yang, C. F.; Tian, S. K. Org. Lett. 2009, 11, 2543-2545.
    52. Lee, E. Y.; Kim, Y.; Lee, J. S.; Park, J. Eur. J. Org. Chem. 2009, 2943-2946.
    53. Jain, S. L.; Joseph, J. K.; Kuhn, F. E.; Reiser, O. Adv. Synth. Catal. 2009, 351, 230-234.
    54. Chen, Y.; Huang, L.; Ranade, M. A.; Zhang, X. P. J. Org. Chem. 2003, 68, 3714-3717.
    55. Cao, P.; Li, C. Y.; Kang, Y. B.; Xie, Z. W.; Sun, X. L.; Tang, Y. J. Org. Chem. 2007, 72, 6628-6630.
    56. (a)Syukri, S.; Sun, W.; Kuhn, F. E. Tetrahedron Lett. 2007, 48, 1613-1617; (b)Pedro, F. M.; Santos, A. M.; Baratta, W.; Kuhn, F. E. Organometallics 2007, 26, 302-309; (c)Murelli, R. P.; Snapper, M. L. Org. Lett. 2007, 9, 1749-1752.
    57. Lebel, H.; Davi, M. Adv. Synth. Catal. 2008, 350, 2352-2358.
    58. (a)Horner, L.; Hoffmann, H.; Wippel, H. G. Chem. Ber. 1958, 91, 61-63; (b)Horner, L.; Hoffmann, H.; Wippel, H. G.; Klahre, G. Chem. Ber. 1959, 92, 2499-2505.
    59. Wadsworth, W.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733-1734.
    60. Rieger, R.; Michaelis, A. Mut. Res. 1964, 1, 109-112.
    61. Breuer, E.; Zbaida, S.; Segall, E. Tetrahedron Lett. 1979, 2203-2204.
    62. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
    63. Burri, K. F.; Cardone, R. A.; Chen, W. Y.; Rosen, P. J. Am. Chem. Soc. 1978, 100, 7069-7071.
    64. Peterson, D. J. J. Org. Chem. 1968, 33, 780-781.
    65. (a)Ager, D. J. Synthesis 1984, 384-398; (b)Barrett, A. G. M; Hill, J. M.; Wallace, E. M.; Flygare, J. A. Synlett 1991, 764-770; (c)van Staden, L. F.; Gravestock, D.; Ager, D. J. Chem. Soc. Rev. 2002. 31, 195-200.
    66. Gilman. H.; Tomasi, R. A. J. Org. Chem. 1962, 27, 3647-3650.
    67. Hudrlik, P. F.: Peterson. D. J. Am. Chem. Soc. 1975, 97, J464-146S.
    68. Ojima, I.; Kumagai, M.; Nagai, Y. Tetrahedron Lett. 1974, 4005-4008.
    69. Matsuda, I.; Murata, S.; Ishii, Y. J. Chem. Soc, Perkin Trans. 1 1979, 26-30.
    70. Rossiter, S. Tetrahedron Lett. 2002, 43, 4671-4673.
    71. Julia, M.; Paris, J. M. Tetrahedron Lett. 1973,4833-4836.
    72. (a)Kocienski, P. J.; Lythgoe, B.; Roberts, D. A. J. Chem. Soc., Perkin Trans. 1 1978, 834-837; (b)Kocienski, P. J.; Lythgoe, B.; Ruston, S. J. Chem. Soc., Perkin Trans. 1 1978, 829-834.
    73. Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetrahedron Lett. 1991, 32, 1175-1178.
    74. Blakemore, P. R.; Ho, D. K. H.; Nap, W. M. Org. Biomol. Chem. 2005, 3, 1365-1368.
    75. (a)Suzuki, Y.; Sato, M. Tetrahedron Lett. 2004, 45, 1679-1681; (b)Sano, S.; Saito, K.; Nagao, Y. Tetrahedron Lett. 2003, 44, 3987-3990; (c)Sano, S.; Teranishi, R.; Nagao, Y. Tetrahedron Lett. 2002, 43, 9183-9186; (d)Lin, J.; Welch, J. T. Tetrahedron Lett. 1998, 39, 9613-9616.
    76. Zajc, B.; Kake, S. Org. Lett. 2006, 8, 4457-4460.
    77. Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26-27.
    78. (a)Bestmann, H. J.; Seng, F. Angew. Chem. Int. Ed. 1963, 2, 393-393; (b)Bestamnn, H. J.; Seng, F. Tetrahedron 1965, 21, 1373-1380; (c)Bestmann, H. J. Angew. Chem. Int. Ed. 1965, 4, 830-830.
    79. Konakahara, T.; Takagi, Y. Tetrahedron Lett. 1980, 21, 2073-2076.
    80. Yan, Y. Z.; Xu, K.; Fang, Y.; Wang, Z. Y. J. Org. Chem. 2011, 76, 6849-6855.
    81. Fang, F.; Li, Y.; Tian, S. K. Eur. J. Org. Chem. 2011, 1084-1091.
    82. Shao, Y.-D.; Wu, X.-S.; Tian, S.-K. Eur. J. Org. Chem. 2012, 2012, 1590-1596.
    83. (a)Li, H. H.; Jin, Y. H.; Wang, J. Q.; Tian, S. K. Org. Biomol. Chem. 2009, 7, 3219-3221; (b)Xu, S.; Zhou, L.; Zeng, S.; Ma, R.; Wang, Z.: He, Z. Org. Lett. 2009, 11, 3498-3501; (c)Wang, S. R.; Zhu, C. Y.; Sun, X. L.; Tang, Y. J. Am. Chem. Soc. 2009, 131, 4192-4193; (d)Zhao, X.; Jing, J.; Lu, K.; Zhang, Y.; Wang, J. B. Chem. Commun. 2010, 46, 1724-1726; (e)Allen, C. L.; Williams, J. M. J. Angew. Chem. Int. Ed. 2010, 49, 1724-1725; (f)Hansen, J. H.; Parr, B. T.; Pelphrey, P.; Jin, Q.; Autschbach, J.; Davies, H. M. L. Angew. Chem. Int. Ed. 2011,50,2544-2548.
    1. (a)Bestmann, H. J.; Seng, F. Angew. Chem. Int. Ed. 1963, 2, 393-393; (b)Bestamnn, H. J.; Seng, F. Tetrahedron 1965, 21, 1373-1380; (c)Bestmann, H. J. Angew. Chem. Int. Ed. 1965, 4, 830-830.
    2. (a)Jiang, S. L.; Yang, K. F.; Yu, X. C. Synth. Commun. 2009, 39, 1759-1767; (b)Liu, C. R.; Li, M. B.; Cheng, D. J.; Yang, C. F.; Tian, S. K. Org. Lett. 2009, 11, 2543-2545; (c)Yang, F. L.; Ma, X. T.; Tian, S. K. Chem.-Eur. J. 2012,18, 1582-1585; (d)Jin, Y. H.; Fang, F.; Zhang, X.; Liu, Q. Z.; Wang, H. B.; Tian, S. K. J. Org. Chem. 2011, 76, 4163-4167; (e)Yang, B. L.; Tian, S. K. Chem. Commun. 2010, 46, 6180-6182; (f)Shao, Y.-D.; Wu, X.-S.; Tian, S.-K. Eur. J. Org. Chem. 2012,2012, 1590-1596.
    3. (a)Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927; (b)Robiette, R.; Richardson, J.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. 2006,128, 2394-2409.
    4. (a)Wu, X. S.; Tian, S. K. Chem. Commun. 2012, 48, 898-900; (b)Yang, C. F.; Wang, J. Y.; Tian, S. K. Chem. Commun. 2011, 47, 8343-8345; (c)Weng, Z. T.; Li, Y.; Tian, S. K. J. Org. Chem. 2011, 76, 8095-8099; (d)Li, M. B.; Tang, X. L.; Tian, S. K. Adv. Synth. Catal. 2011, 353, 1980-1984; (e)Liu, C. R.; Yang, F. L.; Jin, Y Z.; Ma, X. T.; Cheng, D. J.; Li, N.; Tian, S. K. Org. Lett. 2010, 12, 3832-3835; (f)Liu, C. R.; Li, M. B.; Yang, C. R; Tian, S. K. Chem.-Eur. J. 2009, 75, 793-797; (g)Liu, C. R.; Li, M. B.; Yang, C. P.; Tian, S. K. Chem. Commun. 2008, 1249-1251.
    5. (a)Sale, S.; Verschoyle, R. D.; Boocock, D.; Jones, D. J. L.; Wilsher, N.; Ruparelia, K. C.; Potter, G. A.; Farmer, R B.; Steward, W. P.; Gescher, A. J. British Journal of Cancer 2004, 90, 736-744; (b)Sale, S.; Tunstall, R. G.; Ruparelia, K. C.; Potter, G. A.; Steward, W. P.; Gescher, A. J. Int. J. Cancer 2005,115, 194-201; (c)Ma, Z. S.; Molavi, O.; Haddadi, A.; Lai, R.; Gossage, R. A.; Lavasanifar, A. Cancer Chemother. Pharmacol. 2008, 63, 27-35.
    6. Gosslau, A.; Pabbaraja, S.; Knapp, S.; Chen, K. Y. Eur. J. Pharmacol. 2008, 587, 25-34.
    7. (a)McNulty, J.; Das, P. Eur. J. Org. Chem. 2009, 4031-4035; (b)Moro, A. V.; Cardoso, F. S. P.; Correia, C. R. D. Tetrahedron Lett. 2008, 49, 5668-5671; (c)Alonso, R; Riente, P.; Yus, M. Tetrahedron Lett. 2009, 50, 3070-3073; (d)Robinson, J. E.; Taylor, R. J. K. Chem. Commun. 2007, 1617-1619; (e)Hilt, G.; Hengst, C. J. Org. Chem. 2007, 72, 7337-7342; (f)Cross, G. G.; Eisnor, C. R.; Gossage, R. A.; Jenkins, H. A. Tetrahedron Lett. 2006. 47, 2245-2247; (g)Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jager, W. Bioorg. Med. Chem 2004. 12, 5571-5578; (h)Azzena, U.; Dettori, G.; Idini. M. V.; Pisano, L.; Sechi, G. Tetrahedron 2003, 59, 7961-7966; (i)Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.; Hamel, E. J. Med. Chem. 1991, 34, 2579-2588.
    8. Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org. Chem. 2003, 68, 3112-3120.
    1. Negishi, E. I.; Huang, Z. H.; Wang, G. W.; Mohan, S.; Wang, C. Acc. Chem. Res. 2008, 41, 1474-1485.
    2. Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927.
    3. (a)Schlosse.M; Christma.Kf Liebigs Ann. Chem. 1967, 708, 1-5; (b)Schlosser, M.; Tuong, H. B.; Schaub, B. Tetrahedron Lett. 1985, 26, 311-314; (c)Wang, Q.; Deredas, D.; Huynh, C.; Schlosser, M. Chem.-Eur. J. 2003, 9, 570-574.
    4. Bestmann, H. J.; Seng, F. Angew. Chem. Int. Ed. 1963, 2, 393-393.
    5. (a)Bestamnn, H. J.; Seng, F. Tetrahedron 1965, 21, 1373-1380; (b)Bestmann, H. J. Angew. Chem. Int. Ed. 1965, 4, 830-830.
    6. (a)Yang, B. L.; Tian, S. K. Chem. Commun. 2010, 46, 6180-6182; (b)Liu, C. R.; Yang, F. L. Jin, Y. Z.; Ma, X. T.; Cheng, D. J.; Li, N.; Tian, S. K. Org. Lett. 2010,12, 3832-3835; (c)Liu, C. R.; Li, M. B.; Yang, C. F.; Tian, S. K. Chem.-Eur. J. 2009,15, 793-797; (d)Liu, C. R.; Li, M. B.; Cheng, D. J.; Yang, C. F; Tian, S. K. Org. Lett. 2009, 11, 2543-2545; (e)Liu, C. R.; Li, M. B.; Yang, C. F; Tian, S. K. Chem. Commun. 2008, 1249-1251; (f)Wu, X. S.; Tian, S. K. Chem. Commun. 2012, 48, 898-900; (g)Yang, C. F.; Wang, J. Y; Tian, S. K. Chem. Commun. 2011, 47, 8343-8345; (h)Weng, Z. T.; Li, Y.; Tian, S. K. J. Org. Chem. 2011, 76, 8095-8099; (i)Li, M. B.; Tang, X. L.; Tian, S. K. Adv. Synth. Catal. 2011, 353, 1980-1984.
    7. (a)Yang, F. L.; Ma, X. T; Tian, S. K. Chem.-Eur. J. 2012,18, 1582-1585; (b)Jin, Y. H.; Fang, F.; Zhang, X.; Liu, Q. Z.; Wang, H. B.; Tian, S. K. J. Org. Chem. 2011, 76, 4163-4167; (c)Fang, F.; Li, Y; Tian, S. K. Eur. J. Org. Chem. 2011, 1084-1091; (d)Dong, D. J.; Li, H. H.; Tian, S. K.J. Am. Chem. Soc. 2010, 132, 5018-5020; (e)Liu, D. N.; Tian, S. K. Chem.-Eur. J. 2009, 15, 4538-4542; (f)Li, H. H.; Jin, Y H.; Wang, J. Q.; Tian, S. K. Org. Biomol. Chem. 2009, 7, 3219-3221; (g)Shao, Y.-D.; Wu, X.-S.; Tian, S.-K. Eur. J. Org. Chem. 2012, 2012, 1590-1596.
    8. (a)Katritzky, A. R.; Cheng, D.; Li, J. Q. J. Org. Chem. 1998, 63, 3438-3444; (b)Maiti, S. N.; Singh, M. P.; Micetich, R. G. Tetrahedron Lett. 1986, 27, 1423-1424; (c)Johannsen, M.; Jorgensen, K. A. Chem. Rev. 1998, 98, 1689-1708; (d)Meyers, A. I.; Lawson, J. P.; Carver, D. R. J. Org. Chem. 1981, 46, 3119-3123; (e)Reddy, G. V. S.; Rao, G. V.; Subramanyam, R. V. K.; Iyengar, D. S. Synth. Commun. 2000, 30, 2233-2237; (f)Liu, Z. Q.; Cao, Z. P.; Du, H. F. Org. Biomol. Chem. 2011, 9, 5369-5372; (g)Bishop, J. A.; Lou, S.; Schaus, S. E. Angew. Chem. Int. Ed. 2009, 48, 4337-4340; (h)Klauber. E. G. Mittal, N.; Shah, T. K.; Seidel, D. Org. Lett. 2011,13, 2464-2467.
    9. (a)Vedejs, E.; Marth, C. F.; Ruggeri, R. J. Am. Chem. Soc. 1988,110, 3940-3948; (b)Vedejs, E.; Marth, C. F. J. Am. Chem. Soc. 1988,110, 3948-3958; (c)Vedejs, E.; Meier, G P.; Snoble, K. A. J. J. Am. Chem. Soc. 1981, 103, 2823-2831; (d)Vedejs, E.; Snoble, K. A. J. J. Am. Chem. Soc. 1973, 95, 5778-5780.
    10. (a)Appel, M.; Blaurock, S.; Berger, S. Eur. J. Org. Chem. 2002, 1143-1148; (b)Mazharul; Caughlan, C. N.; Ramirez, E; Pilot, J. F.; Smith, C. P. J. Am. Chem. Soc. 1971, 93, 5229-5230; (c)Kawashima, T.; Kato, K.; Okazaki, R. J. Am. Chem. Soc. 1992, 114, 4008-4010; (d)Kawashima, T.; Kato, K.; Okazaki, R. Angew. Chem. Int. Ed. 1993, 32, 869-870; (e)Kawashima, T.; Takami, H.; Okazaki, R. J. Am. Chem. Soc. 1994, 116, 4509-4510; (f)Bestmann, H. J.; Roth, K.; Wilhelm, E.; Bohme, R.; Burzlaff, H. Angew. Chem. Int. Ed. 1979, 18, 876-877; (g)Aly, H. A. E.; Barlow, J. H.; Russell, D. R.; Smith, D. J. H.; Swindles, M.; Trippett, S. Chem. Commun. 1976, 449-450.
    11. Zhang, Y.; Liu, Y. K.; Kang, T. R.; Hu, Z. K.; Chen, Y. C. J. Am. Chem. Soc. 2008, 130, 2456-2457.
    12. Yamanaka, M.;Nishida, A.;Nakagawa, M.J. Org. Chem. 2003,68,3112-3120.
    1. Guo, J. S.; Duffy, K. J.; Stevens, K. L.; Dalko, P. I.; Roth, R. M.; Hayward, M. M.; Kishi, Y. Angew. Chem. Int. Ed. 1998, 37, 187-192.
    2. (a)Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508-523; (b)Espinet, P.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 4704-4734.
    3. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
    4. (a)Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467-4470; (b)Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627-630; (c)Negishi, E.; Anastasia, L. Chem. Rev. 2003,103, 1979-2017.
    5. Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667-3669.
    6. (a)Baati, R.; Barma, D. K.; Krishna, U. M.; Mioskowski, C.; Falck, J. R. Tetrahedron Lett. 2002, 43, 959-961; (b)Taber, D. F.; Meagley, R. P.; Doren, D. J. J. Org. Chem. 1996, 61, 5723-5728; (c)Matsumoto, M.; Kuroda, K. Tetrahedron Lett. 1980, 21, 4021-4024; (d)Stork, G; Zhao, K. Tetrahedron Lett. 1989, 30, 2173-2174.
    7. (a)Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408-7410; (b)Takai, K.; Ichiguchi, T.; Hikasa, S. Synlett 1999, 1268-1270.
    8. (a)Trost, B. M.; Pinkerton, A. B. J. Am. Chem. Soc. 2002, 124, 7376-7389; (b)Hua, R. M.; Shimada, S.; Tanaka, M. J.Am. Chem. Soc. 1998,120, 12365-12366.
    9. Uenishi, J.; Kawahama, R.; Yonemitsu, O. J. Org. Chem. 1998, 63, 8965-8975.
    10. Brown, H. C.; Blue, C. D.; Nelson, D. J.; Bhat, N. G. J. Org. Chem. 1989, 54, 6064-6067.
    11. Concellon, J. M.; Bernad, P. L.; Perez-Andres, J. A. Angew. Chem. Int. Ed. 1999, 38, 2384-2386.
    12. (a)Hodgson, D. M.; Arif, T. J. Am. Chem. Soc. 2008, 130, 16500-16501; (b)Cox, D. G.; Gurusamy, N.; Burton, D. J. J. Am. Chem. Soc. 1985, 107, 2811-2812; (c)Shen, Y. C.; Gao, S.J. Chem. Soc, Perkin Trans. 1 1995, 1331-1332.
    13. Bestmann, H. J.; Seng, F. Angew. Chem. Int. Ed. 1963, 2, 393-393.
    14. (a)Bestamnn, H. J.; Seng, F. Tetrahedron 1965, 21, 1373-1380; (b)Bestmann, H. J. Angew. Chem. Int. Ed. 1965, 4, 830-830.
    15. (a)Yang, B. L.; Tian, S. K. Chem. Commun. 2010, 46, 6180-6182; (b)Liu, C. R.; Yang, F. L.; Jin, Y. Z.; Ma, X. T.; Cheng. D. J.; Li, N.; Tian, S. K. Org. Lett. 2010,12, 3832-3835; (c)Liu, C. R.; Li, M. B.; Yang, C. F.; Tian, S. K. Chem.-Eur. J. 2009,15, 793-797; (d)Liu, C. R.; Li, M. B.; Cheng, D. J.; Yang, C. F.; Tian, S. K. Org. Lett. 2009, 11, 2543-2545; (e)Liu, C. R.; Li, M. B.; Yang, C. F.; Tian, S. K. Chem. Commun. 2008, 1249-1251; (f)Wu, X. S.; Tian, S. K. Chem. Commun. 2012, 48, 898-900; (g)Yang, C. F.; Wang, J. Y.; Tian, S. K. Chem. Commun. 2011, 47, 8343-8345; (h)Weng, Z. T.; Li, Y.; Tian, S. K. J. Org. Chem. 2011, 76, 8095-8099; (i)Li, M. B.; Tang, X. L.; Tian, S. K. Adv. Synth. Catal. 2011, 353, 1980-1984.
    16. (a)Yang, F. L.; Ma, X. T.; Tian, S. K. Chem.-Eur. J. 2012,18, 1582-1585; (b)Jin, Y. H.; Fang, F.; Zhang, X.; Liu, Q. Z.; Wang, H. B.; Tian, S. K. J. Org. Chem. 2011, 76, 4163-4167; (c)Fang, F.; Li, Y.; Tian, S. K. Eur. J. Org. Chem. 2011, 1084-1091; (d)Dong, D. J.; Li, H. H.; Tian, S. K. J. Am. Chem. Soc. 2010, 132, 5018-5020; (e)Liu, D. N.; Tian, S. K. Chem.-Eur. J. 2009, 75, 4538-4542; (f)Li, H. H.; Jin, Y. H.; Wang, J. Q.; Tian, S. K. Org. Biomol. Chem. 2009, 7, 3219-3221; (g)Shao, Y.-D.; Wu, X.-S.; Tian, S.-K. Eur. J. Org. Chem. 2012, 2012, 1590-1596; (h)Dong, D. J.; Li, Y.; Wang, J. Q.; Tian, S. K. Chem. Commun. 2011, 47,2158-2160.
    17. Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org. Chem. 2003, 68, 3112-3120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700