硝基烷烃燃烧与热解过程的实验和动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃烧是人类最早掌握的能源利用技术之一。在给人类社会提供大量能源的同时,燃烧过程,尤其是化石燃料的燃烧也导致了能源危机和大气污染等一系列问题。为了解决这些问题就必须对燃烧过程的本质和具有代表性的燃烧体系进行深入细致的研究。
     氮氧化物(NOx)是燃烧过程中常见的大气污染物,给环境带来了严重危害。NOx可以由多种途径产生,但究其本质则有两类:一类是由于空气中的氮气被氧化生成的,而另一类则由自燃料中的氮元素在燃烧过程中经过复杂转化生成。其中,后者又称燃料型NOx,生成机理最为复杂,通常与燃料中氮元素的存在形式有关。硝基烷烃是一类具有代表性的含氮燃料,常被用作高能推进剂、燃料添加剂和有机合成原料等。前人对硝基烷烃燃烧体系中化学过程的研究主要集中在热解过程,这些研究中采用的诊断方法如光谱和色谱法,存在各自的缺陷,无法全面地探测各种中间产物,特别是不稳定的自由基,因而不利于相关动力学模型的建立和验证。
     本论文先后以三个不同当量的硝基甲烷、硝基乙烷的低压层流预混火焰和流动管中的低压热解为研究体系,进行了一系列实验和动力学研究,完善和发展了相应的动力学模型。
     在实验中,采用了同步辐射真空紫外光电离质谱结合分子束取样法(SVUV-PIMS)。该方法结合了同步辐射亮度高、波长连续的优势,和分子束取样可以冷却反应中间物的特点。与传统的燃烧诊断方法相比,可以全面检测燃烧中的物种,区别同分异构体,并探测不稳定的中间产物,是近年来被成功应用于燃烧诊断的新型技术。通过SVUV-PIMS独有的光电离效率谱扫描,全面地检测了目标体系的化学组成,鉴别了其中包括反应物、中间物和产物在内的大部分物种,分辨了同分异构体。硝基烷烃燃烧体系中主要存在碳氢化合物及其氧化产物和NOx两大类物种,另外,很多含氮物种的存在证明该体系中氮元素的转化是一个复杂的过程。特别是在硝基甲烷和硝基乙烷的低压热解中,探测到类似单分子脱水反应的产物,预示着未知反应通道的可能性,为相关动力学模型的发展和完善提供了依据。
     在固定光子能量的情况下,通过在燃烧实验中沿燃烧器轴向改变取样位置,和在热解实验中改变热解炉温度,分别得到了相应过程中,各物种信号沿燃烧器轴向的分布和随热解炉温度的变化;结合定量计算,在燃烧实验中,得到了各物种浓度的空间分布;在热解实验中,则得到了各热解产物的浓度随温度的变化。通过分析这些实验结果,可以推断各反应路径的重要程度,以及各物种生成的先后关系,为动力学模型的发展和验证提供了基础。
     在理论工作中,利用组合的高精度量化计算方法,对硝基甲烷和硝基乙烷的单分子解离过程进行了计算,得到了这一过程中反应物、中间物、过渡态和产物的信息;再根据RRKM理论通过动力学计算得到了其中主要反应的速率常数。另外,利用高精度的量化计算得出了硝基乙烷热解过程中未知产物的电离能。在量化计算和动力学计算的基础上,先后发展和验证了硝基甲烷、硝基乙烷燃烧体系的动力学模型。通过与实验结果的对比证明,这些模型可以较好地模拟燃烧和热解实验中探测到的大部分物种的摩尔分数曲线。但在热解实验中检测到的类似单分子脱水反应产物的摩尔分数曲线则未能得到较好的模拟,说明该过程中可能存在某些未知的反应通道,相应的动力学模型还需要在未来的工作中不断完善。
     通过生成速率分析,全面地展示了硝基烷烃燃烧体系的重要反应路径。结果表明,硝基烷烃的分解主要通过C-N键断裂的单分子解离反应发生,形成氮氧化物和碳氢自由基。在后续的反应过程中,氮氧化物和碳氢化合物分别被逐步还原和氧化,而它们的相互作用促进了彼此的还原和氧化过程。在这个过程中,氮氧化物最终大部分以NO的形式形成燃烧产物。另外,小分子碳氢化合物与氮氧化物的相互作用及其产物的进一步转化会生成多种含氮中间体,并最终导致了另一种含氮产物,N2的生成。
     对比硝基甲烷、硝基乙烷燃烧体系中的反应路径结构,以及部分重要过程中涉及的反应,可以发现两者分子结构上的相似性和差异性给相应的反应体系带来的显著影响。例如,主要的单分子解离路径、NOx在碳氢化合物氧化中的作用、含氮中间体的转化过程都具有相似性;而单分子解离反应的多样性、NOx与C1/C2碳氢化合物相互作用的差异、氮元素转化为N2的效率等又存在显著的差异。对这些异同点的认识不仅有助于深入理解硝基烷烃的燃烧机理,对结构更为复杂和多样的硝基燃料,以至含氮燃料的实验和动力学研究,也具有非常重要的指导意义。
Combustion is among the earliest technologies that developed by human. While providing over80%percent of the energy supply for modern world, the combustion of fossil fuels has led to a series of social and environmental problems such as the energy crisis and air pollution. To solve these problems, comprehensive understandings of the chemistry in combustion are required.
     Nitric oxides (NOx), as a major contributor of photochemical smog and ozone in the urban air, is an important air pollutant that largely produced from combustion processes, especially from internal combustion engines and high temperature furnaces. The formation of NOx has several different routes, among which the fuel-bond nitrogen has the most complex mechanism since NOx is produced through the conversion of N element in the fuel instead of N2in the air.
     Nitroalkanes are representative nitrogen-contained fuels, which are usually used as propellants and fuel additives. The former investigations on nitroalkane combustion have mainly focused on their pyrolysis, while the traditional diagnostic methods have been challenged by the complexity of the combustion system, which contains many instable intermediates such as radicals. Therefore the development of more precise kinetic models requires more comprehensive investigations.
     In this dissertation, experimental and kinetic studies are performed on nitromethane and nitroethane premixed flames with three different equivalence ratios at low pressure, as well as the pyrolysis of nitromethane and nitroethane in a flow tube reactor. Relevant kinetic models have been developed and validated against the experimental results.
     In the experiments, the method of synchrotron vacuum ultraviolet photo ionization mass spectrometry (SVUV-PIMS) combined with molecular beam sampling has been applied. This is a newly developed technology in combustion diagnostics, which enables the identification of unstable intermediates and isomers in combustion. By photoionization efficiency (PIE) scan, many species in the flame and pyrolysis have been identified, including radicals and isomers. Both hydrocarbons and NOx have been detected in the experiments. Besides, the identification of many nitrogenated species has implied the complexity of the N-chemistry. Additionally, species that appear to be produced from the unimolecular water elimination have been identified in the pyrolysis of both nitromethane and nitroethane, indicating the possibility of unknown reactions.
     Keeping the photon energies as constants, the signal intensities were measured while the sampling position is moved along the axial direction of the flame, from which the mole fraction profiles of the species identified were quantified. Similarly, in the pyrolysis experiments, the mole fraction profiles of the species were quantified as the function of the temperatures. These data can be used to evaluate the importance of relevant reactions, deduce the roles that different species play in the combustion system, and further more validate the kinetic models.
     In theoretical work, the potential energies of reactants, intermediates and transition states in the unimolecular decomposition process of nitromethane and nitroethane have been calculated. Base on the results, the rate constants for important reactions in these processes are derived through calculations with RRKM theory. Besides, the photoionization thresholds of the unknown species detected in the pyrolysis of nitroethane have also been obtained via quantum calculations. The kinetic models for the combustion of nitromethane and nitroethane are developed and validated against the experimental results. In general, the simulated results are in good agreement with most of the experimental observations. However, the mole fraction profiles of the species newly detected in the pyrolysis experiments, which appear to be from the unimolecular water elimination, are not well predicted. Therefore the models need to be improved by including potential new reaction pathways in the future work.
     By rate of production (ROP) analysis, the reaction pathway diagrams of nitroalkane combustion have been revealed. The decompositions of nitromethane and nitroethane are mainly through the C-N bond fission, forming hydrocarbons and NOx. Then the hydrocarbons are oxidized while the NOx enhancing this process is reduced. In this process, the fuel-bond nitrogen is converted mostly into NO as the final product. In addition, the reactions of C1and C2hydrocarbon radicals and NOx can lead to a series of nitrogenated species, the further reactions of which can produce N2as another final product and reduce NOx emission.
     Comparing the reaction pathways in nitromethane and nitroethane flames, both similarities and differences can be observed. For example, their main pyrolysis pathways, the effect of NOx in the oxidation of hydrocarbons and the conversion of nitrogenated intermediates are similar, while there are obvious differences in the contributions of unimolecular decomposition, the interactions of NOx with C1and C2hydrocarbons and the efficiencies of nitrogen conversion into NOx. These observations has reflected their similarities and differences in fuel structures, which can help to further understand the chemistry in the combustion of other nitrogenated fuels.
引文
[1]岑可法,姚强,骆仲泱,李绚天,高等燃烧学,杭州:浙江大学出版社,2002.
    [2]恩格斯,反杜林论,中共中央马克思恩格斯列宁斯大林著作编译局译.第一版,北京:人民出版社,1970.
    [3]N. Sullivan, A. Jensen, P. Glarborg, M.S. Day, J.F. Grcar, J.B. Bell, C.J. Pope, R.J. Kee, Combust. Flame 131 (2002) 285-298.
    [4]C.A. Taatjes, N. Hansen, A. Mcllroy, J.A. Miller, J.P. Senosiain, S.J. Klippenstein, F. Qi, L.S. Sheng, Y.W. Zhang, T.A. Cool, J. Wang, P.R. Westmoreland, M.E. Law, T. Kasper, K. Kohse-Hoinghaus, Science 308 (2005) 1887-1889.
    [5]J.H. Seinfeld, Atomospheric chemistry and physics of air pollution, New York:John Wiley and Sons,1986.
    [6]H.S. Johnston, Annu. Rev. Phys. Chem.43 (1992) 1-32.
    [7]C.T. Bowman, Proc. Comb. Inst.24 (1992) 859-878.
    [8]Y.B. Zeldovich, Acta Physicochim. URSS 21 (1946) 577-628.
    [9]C.P. Fenimore, Combust. Flame 26 (1976) 249-260.
    [10]J. Wolfram, Chemie-Ingenieur-Technik 44 (1972) 656-659.
    [11]P.C. Malte, D.T. Pratt, Proc. Combust. Inst.15 (1974) 1061-1070.
    [12]S.M. Correa, Comb. Sci. Technol.87 (1992) 329-362.
    [13]P. Glarborg, A.B. Bendtsen, J.A. Miller, Int. J. Chem. Kinet.31 (1999) 591-602.
    [14]T. Litzinger, M. Colket, M. Kahandawala, S.Y. Lee, D. Liscinsky, K. McNesby, R. Pawlik, M. Roquemore, R. Santoro, S. Sidhu, S. Stouffer, Combust. Sci. Technol.183 (2011) 739-754.
    [15]Anon, Ch.5 in:J.A.E. Hannum (Ed.), Hazards of Chemical Rockets and Propellants. vol.Ⅲ, Liquid Propellants. CPIA Publication 394, Chemical Propulsion Information Agency, Laurel, MD,1984.
    [16]S. Kelzenberg, N. Eisenreich, W. Eckl, V. Weiser, Propellants, Explosives, Pyrotechnics 24 (1999) 189-194.
    [17]J.A.E. Hannum, Hazards of Chemical Rockets and Propellants. vol. Ⅲ, Liquid Propellants, Laurel, MD:Chemical Propulsion Information Agency, 1984.
    [18]E. Boyer, K.K. Kuo, Proc. Combust. Inst.31 (2007) 2045-2053.
    [19]M.E. Jacox, J. Phys. Chem.88 (1984) 3373-3379.
    [20]M.E. Lacox, J. Phys. Chem.87 (1983) 3126-3135.
    [21]N.C. Blais, J. Chem. Phys.79 (1983) 1723-1731.
    [22]P.E. Schoen, M.J. Marrone, J.M. Schnur, L.S. Goldbert, Chem. Phys. Lett. 90 (1982) 272-276.
    [23]L.J. Butler, D. Krajnovich, Y.T. Lee, G. Ondrey, R. Bersohn, J. Chem. Phys.79(1983)1708-1722.
    [24]D.R. Hardesty, Combust. Flame 27 (1976) 229-251.
    [25]B. Leal-Crouzet, G. Baudin, H.N. Presles, Combust. Flame 122 (2000) 463-473.
    [26]V. Bouyer, I. Darbord, P. Herve, G. Baudin, C.L. Gallic, F. Clement, G. Chavent, Combust. Flame 144 (2006) 139-150.
    [27]K. Glanzer, J. Troe, Helv. Chim. Acta 55 (1972) 2884-2893.
    [28]D.S.Y. Hsu, M.C. Lin, J. Energ. Mater.3 (1985) 95-127.
    [29]A. Perche, M. Lucquin, J. Chem. Res., Synop. (1979) 306-307.
    [30]A. Perche, J.C. Tricot, M. Lucquin, J. Chem. Res., Synop. (1979) 304-305.
    [31]A. Perche, J.C. Tricot, M. Lucquin, J. Chem. Res., Synop. (1979) 116-117.
    [32]Y.X. Zhang, S.H. Bauer, J. Phys. Chem. B 101 (1997) 8717-8726.
    [33]P. Glarborg, M.U. Alzueta, K. Dam-Johansen, J.A. Miller, Combust. Flame 115 (1998) 1-27.
    [34]Z.Y. Tian, L.D. Zhang, Y.Y Li, T. Yuan, F. Qi, Proc. Combust. Inst.32 (2009)311-318.
    [35]A.M. Wodtke, E.J. Hintsa, Y.T. Lee, J. Phys. Chem.90 (1986) 3549-3558.
    [36]R.S. Zhu, M.C. Lin, Chem. Phys. Lett.478 (2009) 11-16.
    [37]T.L. Cottrell, T.E. Graham, T.J. Reid, Transactions of the Faraday Society 47(1951)1089-1092.
    [38]P.A. Denis, O.N. Ventura, H.T. Le, M.T. Nguyen, PCCP 5 (2003) 1730-1738.
    [39]Frkjacques, Compt. rend.231 (1950)
    [40]P. Gray, A.D. Yoffe, L. Roselaar, Trans. Faraday Soc.51 (1955) 1489-1497.
    [41]R. Shaw, Int. J. Chem. Kinet.5 (1973) 261-269.
    [42]G.N. Spokes, S.W. Benson, J. Am. Chem. Soc.89 (1967) 6030-6035.
    [43]Q. Wang, D. Ng, M.S. Mannan, Ind. Eng. Chem. Res.48 (2009) 8745-8751.
    [1]N. Hansen, T.A. Cool, P.R. Westmoreland, K. Kohse-Hoinghaus, Prog. Energy Combust. Sci.35 (2009) 168-191.
    [2]M. Bachmann, W. Wiese, K.H. Homann, Combust Flame 101 (1995) 548-550.
    [3]Y.J. Zhang, J.H. Cai, L. Zhao, J.Z. Yang, H.F. Jin, Z.J. Cheng, Y.Y. Li, L.D. Zhang, F. Qi, Combust. Flame 159 (2012) 905-917.
    [4]K.C. Smyth, D.R. Crosley, Detection of minor species with laser techniques, in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, Eds., New York:Taylor & Francis,2002, pp.9-30.
    [5]A. Mcllroy, Chem. Phys. Lett.296 (1998) 151-158.
    [6]A. Mcllroy, J.B. Jeffries, Cavity ringdown spectroscopy for concentration measurements, in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, Eds., New York:Taylor & Francis,2002, pp.98-126.
    [7]L.A. Melton, Appl. Opt.23 (1984) 2201-2208.
    [8]T. Dreier, P. Ewart, Coherent techniques for measurements with intermediate concentrations, in Applied Combustion Diagnostics, K. Kohse-Hoinghaus and J. B. Jeffries, Eds., New York:Taylor & Francis, 2002, pp.69-97.
    [9]M.S. Akhter, A.R. Chughtai, D.M. Smith, Appl. Spectrosc.39 (1985) 143-153.
    [10]Y.Y. Li, F. Qi, Acc. Chem. Res.43 (2010) 68-78.
    [11]齐飞,物理35(2006)1-6.
    [12]C.S. McEnally, L.D. Pfefferle, B. Atakan, K. Kohse-Hoinghaus, Prog. Energy Combust. Sci.32 (2006) 247-294.
    [13]D. Stepowski, D. Puechberty, M.J. Cottereau, Proc. Combust. Inst.18 (1981)1567-1573.
    [14]R.M. Fristrom, A. A. Westenberg, Flame Structure, New York: McGraw-Hill,1965.
    [15]C.P. Lazzara, J.C. Biordi, J.F. Papp, Combust. Flame 21 (1973) 371-382.
    [16]P. Gerhardt, K.H. Homann, Combust Flame (1990) 289-303.
    [17]A. Kantrowitz, J. Grey, Rev. Sci. Instr.22 (1951) 328-332.
    [18]R.E. Smalley, L. Wharton, D.H. Levy, Acc. Chem. Res.10 (1977) 139-145.
    [19]D. Zhan, J. Rosell, J.B. Fenn, J. Am. Soc. Mass Spectrom 9 (1998) 1241-1247.
    [20]杨锐,”低压预混苯/氧气火焰的同步辐射光电离研究”,博士博士论文,国家同步辐射实验室,中国科学技术大学,合肥,2005.
    [21]J.C. Biordi, Prog. Energy Combust. Sci.3 (1977) 151-173.
    [22]F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, H.D. Pollack, Phys. Rev.71 (1947) 829-830.
    [23]马礼敦,杨福家,同步辐射应用概论,第一版,上海:复旦大学出版社,2001.
    [24]C.A. Taatjes, N. Hansen, A. Mcllroy, J.A. Miller, J.P. Senosiain, S.J. Klippenstein, F. Qi, L.S. Sheng, Y.W. Zhang, T.A. Cool, J. Wang, P.R. Westmoreland, M.E. Law, T. Kasper, K. Kohse-Hoinghaus, Science 308 (2005) 1887-1889.
    [25]F. Qi, R. Yang, B. Yang, C.Q. Huang, L.X. Wei, J. Wang, L.S. Sheng, Y.W. Zhang, Rev. Sci. Instrum.77 (2006)
    [26]F. Battin-Leclerc, O. Herbinet, P.-A. Glaude, R. Fournet, Z.Y. Zhou, L.L. Deng, H.J. Guo, M.F. Xie, F. Qi, Angew. Chem. Int. Ed.49 (2010) 3169-3172.
    [27]国家同步辐射实验室燃烧与火焰实验站.仪器设备Available:http://flame.nsrl.ustc.edu.cn/cn/facility.htm
    [28]单晓斌,张允武,盛六四,黄超群,杨斌,齐飞,原子与分子物理学报22(2005)414-418.
    [29]P.J. Linstrom, W.G. Mallard. NIST Chemistry Webbook. Available:http://webbook.nist.gov
    [30]M. Tamura, J. Luque, J.E. Harrington, P.A. Berg, G.P. Smith, J.B. Jeffries, D.R. Crosley, Appl. Phys. B Laser. Optic.66 (1998) 503-510.
    [31]J.H. Kent, Combust. Flame 14 (1970) 279-281.
    [32]R.A. Shandross, J.P. Longwell, J.B. Howard, Combust. Flame 85 (1991) 282-284.
    [33]A.T. Hartlieb, B. Atakan, K. Kohse-Hoinghaus, Combust. Flame 121 (2000) 610-624.
    [34]T.A. Cool, K. Nakajima, C.A. Taatjes, A. Mcllroy, P.R. Westmoreland, M.E. Law, A. Morel, Proc. Combust. Inst.30 (2005) 1681-1688.
    [35]I.N. Levine, Quantum Chemistry,5th Edition, Upper Saddle River, NJ: Prentice Hall,2000.
    [36]P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864-871.
    [37]W. Kohn, Rev. Mod. Phys.71 (1999) 1253-1266.
    [38]C. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789.
    [39]A.D. Becke, J. Chem. Phys.98 (1993) 5648-5652.
    [40]M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr.;, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Munnucci, C. Pomelli, C. Adamo, S. Clliford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Pikorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nakayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzales, M. Head-Gordon, E.S. Replogle, J.A. Pople, "Gaussian 03", Revision C.02 ed. Pittsburgh, PA:Gaussian, Inc,2004.
    [41]Gaussian 09, Revision A.I, M. J. Frisch, et. al, Inc., Wallingford CT,2009.
    [42]J.V. Ortiz, J. Chem. Phys.104 (1996) 7599-7605.
    [43]L.D. Zhang, Y. Pan, F. Qi, J. Theor. Comp. Chem.8 (2009) 1103-1115.
    [44]R.A. Marcus, J. Chem. Phys.20 (1952) 352-354.
    [45]R.A. Marcus, J. Chem. Phys.43 (1965) 2658-2661.
    [46]R.A. Marcus, O.K. Rice, J. Phys. Chem.55 (1951) 894-908.
    [47]V. Mokrushin, V. Bedanov, W. Tsang, M.R. Zachariah, V.D. Knyazev, "ChemRate", Version 1.5.8 ed. Gaithersburg, MD:National Institute of Standards and Testing,2009.
    [48]S.J. Klippenstein, A.F. Wagner, R.C. Dunbar, D.M. Wardlaw, S.H. Robertson, "Variflex", version 1.0 ed:Argonne National Laboratory,1999.
    [49]"CHEMKIN-PRO 15092", ed. San Diego, CA:Reaction Design,2009.
    [1]J.A.E. Hannum, Hazards of Chemical Rockets and Propellants. vol.Ⅲ, Liquid Propellants, Laurel, MD:Chemical Propulsion Information Agency, 1984.
    [2]E.J. Wucherer, S.S. Christofferson, B. Reed, Report No.2000.
    [3]K. Glanzer, J. Troe, Helv. Chim. Acta 55 (1972) 2884-2893.
    [4]A. Perche, M. Lucquin, J. Chem. Res., Synop. (1979) 306-307.
    [5]A. Perche, J.C. Tricot, M. Lucquin, J. Chem. Res., Synop. (1979) 304-305.
    [6]A. Perche, J.C. Tricot, M. Lucquin, J. Chem. Res., Synop. (1979) 116-117.
    [7]D.S.Y. Hsu, M.C. Lin, J. Energ. Mater.3 (1985) 95-127.
    [8]Y.X. Zhang, S.H. Bauer, J. Phys. Chem. B 101 (1997) 8717-8726.
    [9]P. Glarborg, M.U. Alzueta, K. Dam-Johansen, J.A. Miller, Combust. Flame 115 (1998) 1-27.
    [10]P. Glarborg, A.B. Bendtsen, J.A. Miller, Int. J. Chem. Kinet.31 (1999) 591-602.
    [11]E. Boyer, K.K. Kuo, Proc. Combust. Inst.31 (2007) 2045-2053.
    [12]Z.Y. Tian, Y.Y. Li, L.D. Zhang, P. Glarborg, F. Qi, Combust. Flame 156 (2009) 1413-1426.
    [13]R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, Report No.1985.
    [14]R.J. Kee, F.M. Rupley, J.A. Miller, Report No.1989.
    [15]C.L. Rasmussen, J.G. Jakobsen, P. Glarborg, Int. J. Chem. Kinet.40 (2008) 778-807.
    [16](?). Skreiberg, P. Kilpinen, P. Glarborg, Combust. Flame 136 (2004) 501-518.
    [17]P. Dagaut, P. Glarborg, M.U. Alzueta, Prog. Energy Combust. Sci.34 (2008) 1-46.
    [18]C.L. Rasmussen, A.E. Rasmussen, P. Glarborg, Combust. Flame 154 (2008) 529-545.
    [19]A.B. Bendtsen, P. Glarborg, K. Dam-Johansen, Combust. Sci. Technol. 151(2000)31-71.
    [20]J.C. Tricot, A. Perche, M. Lucquin, Combust. Flame 40 (1981) 269-291.
    [21]G.K. Moortgat, F. Slemr, P. Warneck, Int. J. Chem. Kinet.9 (1977) 249-265.
    [22]J.A:Davidson, B.A. Thrush, J. Chem. Soc, Faraday Trans.171 (1975) 2413-2420.
    [23]J.J. Liu, Y.H. Ding, Y.G. Tao, J.K. Feng, C.C. Sun, J. Comput. Chem.23 (2002) 1031-1044.
    [24]A.M. Dean, J.W. Bozzelli, Gas Phase Combustion Chemistry, chapter 2: Combustion Chemistry of NitrogenSpringer-Verlag,2000.
    [25]P.J. Linstrom, W.G. Mallard, NIST Standard Reference Database Number 692003, http://webbook.nist.gov/chemistry
    [26]Z.Y. Tian, L.D. Zhang, Y.Y. Li, T. Yuan, F. Qi, Proc. Combust. Inst.32 (2009)311-318.
    [27]R.A. Shandross, J.P. Longwell, J.B. Howard, Combust. Flame 85 (1991) 282-284.
    [28]J.H. Kent, Combust. Flame 14 (1970) 279-281.
    [29]T.A. Cool, J. Wang, K. Nakajima, C.A. Taatjes, A. McIlroy, Int. J. Mass spectrom.247(2005)18-27.
    [30]G.N. Haddad, J.A.R. Samson, J. Chem. Phys.84 (1986) 6623-6626.
    [31]D.M.P. Holland, S.M.M. D. A. Shaw, M.A. MacDonald, A. Hopkirk, M.A. Hayes, Chem. Phys.173 (1993) 315-331.
    [32]J.A.R. Samson, W.C. Stolte, J. Electron. Spectrosc. Relat. Phenom.123 (2002) 265-276.
    [33]N. Wainfan, W.C. Walker, G.L. Weissler, Physical Review 99 (1955) 542-549.
    [34]J. Wang, B. Yang, T.A. Cool, N. Hansen, T. Kasper, Int. J. Mass spectrom. 269(2008)210-220.
    [35]N. Hansen, T.A. Cool, P.R. Westmoreland, K. Kohse-Hoinghaus, Prog. Energy Combust. Sci.35 (2009) 168-191.
    [36]D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, T. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker, J. Warnatz, J. Phys. Chem. Ref. Data 34 (2005) 757-1397.
    [1]S. Borman, Chem. Eng. News 72 (1994) 18-22.
    [2]P. Glarborg, A.B. Bendtsen, J.A. Miller, Int. J. Chem. Kinet.31 (1999) 591-602.
    [3]T. Litzinger, M. Colket, M. Kahandawala, S.Y. Lee, D. Liscinsky, K. McNesby, R. Pawlik, M. Roquemore, R. Santoro, S. Sidhu, S. Stouffer, Combust. Sci. Technol.183 (2011) 739-754.
    [4]C.L. Rasmussen, A.E. Rasmussen, P. Glarborg, Combust. Flame 154 (2008) 529-545.
    [5]H.A. Taylor, V.V. Vesselovsky, J. Phys. Chem.39 (1935) 1095-1102.
    [6]E. Boyer, K.K. Kuo, Proc. Combust. Inst.31 (2007) 2045-2053.
    [7]Z.Y. Tian, L.D. Zhang, Y.Y. Li, T. Yuan, F. Qi, Proc. Combust. Inst.32 (2009)311-318.
    [8]J.C. Tricot, A. Perche, M. Lucquin, Combust. Flame 40 (1981) 269-291.
    [9]Y.X. Zhang, S.H. Bauer, J. Phys. Chem. B 101 (1997) 8717-8726.
    [10]T.L. Cottrell, T.E. Graham, T.J. Reid, Trans. Faraday Soc.47 (1951) 1089-1092.
    [11]P.A. Denis, O.N. Ventura, H.T. Le, M.T. Nguyen, PCCP 5 (2003) 1730-1738.
    [12]Frkjacques, Compt. rend.231 (1950)
    [13]P. Gray, A.D. Yoffe, L. Roselaar, Trans. Faraday Soc.51 (1955) 1489-1497.
    [14]R. Shaw, Int. J. Chem. Kinet.5 (1973) 261-269.
    [15]G.N. Spokes, S.W. Benson, J. Am. Chem. Soc.89 (1967) 6030-6035.
    [16]Q. Wang, D. Ng, M.S. Mannan, Ind. Eng. Chem. Res.48 (2009) 8745-8751.
    [17]"CHEMKIN-PRO 15092", ed. San Diego, CA:Reaction Design,2009.
    [18]Z.Y. Tian, Y.Y. Li, L.D. Zhang, P. Glarborg, F. Qi, Combust. Flame 156 (2009) 1413-1426.
    [19]K. Zhang, Y. Li, T. Yuan, J. Cai, P. Glarborg, F. Qi, Proc. Combust. Inst.33 (2011)407-414.
    [20]J. Gimenez, C.L. Rasmussen, M.U. Alzueta, P. Marshall, P. Glarborg, Proc. Combust. Inst.32 (2009) 367-375.
    [21]J. Gimenez-Lopez, M.U. Alzueta, C.L. Rasmussen, P. Marshall, P. Glarborg, Proc. Combust. Inst.33 (2011) 449-457.
    [22]C.L. Rasmussen, J.G. Jakobsen, P. Glarborg, Int. J. Chem. Kinet.40 (2008) 778-807.
    [23]0. Skreiberg, P. Kilpinen, P. Glarborg, Combust. Flame 136 (2004) 501-518.
    [24]J.L. Sprung, H. Akimoto, J.N. Pitts, J. Am. Chem. Soc.96 (1974) 6549-6554.
    [25]G. Pratt, I. Veltman, J. Chem. Soc. Faraday Trans.172 (1976) 2477-2483.
    [26]N.M. Marinov, Int. J. Chem. Kinet.31 (1999) 183-220.
    [27]K. Glanzer, J. Troe, Helv. China. Acta 56 (1973) 577-584.
    [28]V.V. Dubikhin, G.M. Nazin, G.B. Manelis, Bull. Acad. Sci. USSR Div. Chem. Sci.20 (1971) 1452-1454.
    [29]K.A. Wilde, Ind. Eng. Chem.48 (1956) 769-773.
    [30]K.A. Wilde, J. Phys. Chem.61 (1957) 385-388.
    [31]J.C. Biordi, Prog. Energy Combust. Sci.3 (1977) 151-173.
    [32]V. Mokrushin, V. Bedanov, W. Tsang, M.R. Zachariah, V.D. Knyazev, "ChemRate", Version 1.5.8 ed. Gaithersburg, MD:National Institute of Standards and Testing,2009.
    [33]L.F. Salter, B.A. Thrush, J. Chem. Soc, Faraday Trans.173 (1977) 1098-1103
    [34]R. Liu, R.E. Huie, M.J. Kurylo, O.J. Nielsen, Chem. Phys. Lett.167 (1990) 519-523.
    [35]O.J. Nielsen, H.W. Sidebottom, D.J. O'Farrell, M. Donlon, J. Treacy, Chem. Phys. Lett.156 (1989) 312-318.
    [36]P.J. Linstrom, W.G. Mallard, NIST Standard Reference Database Number 692003, http://webbook.nist.gov/chemistry
    [37]R.A. Shandross, J.P. Longwell, J.B. Howard, Combust. Flame 85 (1991) 282-284.
    [38]J.H. Kent, Combust. Flame 14 (1970) 279-281.
    [39]H. Koizumi, J. Chem. Phys.95 (1991) 5846-5852.
    [40]P. Glarborg, M.U. Alzueta, K. Dam-Johansen, J.A. Miller, Combust. Flame 115 (1998) 1-27.
    [1]K. Glanzer, J. Troe, Helv. Chim. Acta 55 (1972) 2884-2893.
    [2]A. Perche, M. Lucquin, J. Chem. Res., Synop. (1979) 306-307.
    [3]A. Perche, J.C. Tricot, M. Lucquin, J. Chem. Res., Synop. (1979) 304-305.
    [4]A. Perche, J.C. Tricot, M. Lucquin, J. Chem. Res., Synop. (1979) 116-117.
    [5]D.S.Y. Hsu, M.C. Lin, J. Energ. Mater.3 (1985) 95-127.
    [6]Y.X. Zhang, S.H. Bauer, J. Phys. Chem. B 101 (1997) 8717-8726.
    [7]P. Glarborg, A.B. Bendtsen, J.A. Miller, Int. J. Chem. Kinet.31 (1999) 591-602.
    [8]P. Glarborg, M.U. Alzueta, K. Dam-Johansen, J.A. Miller, Combust. Flame 115 (1998) 1-27.
    [9]M.L. McKee, J. Am. Chem. Soc.108 (1986) 5784-5792.
    [10]R.P. Saxon, M. Yoshimine, Can. J. Chem.70 (1992) 572-579.
    [11]R.S. Zhu, M.C. Lin, Chem. Phys. Lett.478 (2009) 11-16.
    [12]A.M. Wodtke, E.J. Hintsa, Y.T. Lee, J. Phys. Chem.90 (1986) 3549-3558.
    [13]J.H. Cai, L.D. Zhang, J.Z. Yang, Y.Y. Li, L. Zhao, F. Qi, Energy (2012) in press, doi:10.1016/j.energy.2011.12.024.
    [14]Z.D. Wang, Z.J. Cheng, W.H. Yuan, J.H. Cai, L.D. Zhang, F. Qi, Combust. Flame (2012) in press, doi:10.1016/j.combustflame.2012.02.019.
    [15]Y.J. Zhang, J.H. Cai, L. Zhao, J.Z. Yang, H.F. Jin, Z.J. Cheng, Y.Y. Li, L.D. Zhang, F. Qi, Combust. Flame 159 (2012) 905-917.
    [16]K.W. Zhang, Y.Y. Li, T. Yuan, J.H. Cai, P. Glarborg, F. Qi, Proc. Combust. Inst.33(2011)407-414.
    [17]P.J. Linstrom, W.G. Mallard, NIST Standard Reference Database Number 692003, http://webbook.nist.gov/chemistr-y
    [18]H. Koizumi,95 (1991). (1991) 5846-5852.
    [19]Z.Y. Tian, L.D. Zhang, Y.Y. Li, T. Yuan, F. Qi, Proc. Combust. Inst.32 (2009)311-318.
    [20]W.F. Hu, T.J. He, D.M. Chen, F.C. Liu, J. Phys. Chem. A 106 (2002) 7294-7303.
    [21]M.T. Nguyen, H.T. Le, B. Hajgato, T. Veszpremi, M.C. Lin, J. Phys. Chem. A 107 (2003) 4286-4291.
    [22]A.D. Becke, J. Chem. Phys.97 (1992) 9173-9177.
    [23]A.D. Becke, J. Chem. Phys.96 (1992) 2155-2160.
    [24]A.D. Becke, J. Chem. Phys.98 (1993) 5648-5652.
    [25]W.J. Hehre, L. Radom, P.V. Schleyer, J. Pople, Ab Initio Molecular Orbital Theory, New York:Wiley-Interscience,1986.
    [26]'W.T. Yang, R.G. Parr, C.T. Lee, Phys. Rev. A 34 (1986) 4586-4590.
    [27]C. Gonzalez, H.B. Schlegel, J. Chem. Phys.90 (1989) 2154-2161.
    [28]M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr.;, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Munnucci, C. Pomelli, C. Adamo, S. Clliford, J. Ochterski, G.A. Petersson, P.Y, Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Pikorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nakayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzales, M. Head-Gordon, E.S. Replogle, J.A. Pople, "Gaussian 03", Revision C.02 ed. Pittsburgh, PA:Gaussian, Inc,2004.
    [29]S.J. Klippenstein, A.F. Wagner, R.C. Dunbar, D.M. Wardlaw, S.H. Robertson, "Variflex", version 1.0 ed:Argonne National Laboratory,1999.
    [30]C. Eckart, Phys. Rev 35 (1930) 1303-1309.
    [31]"CHEMKIN-PRO 15092", ed. San Diego, CA:Reaction Design,2009.
    [32]A.G. Suits, Ace. Chem. Res.41 (2008) 873-881.
    [1]Frkjacques, Compt. rend.231 (1950)
    [2]T.L. Cottrell, T.E. Graham, T.J. Reid, Trans. Faraday Soc.47 (1951) 1089-1092.
    [3]P. Gray, A.D. Yoffe, L. Roselaar, Trans. Faraday Soc.51 (1955) 1489-1497.
    [4]R. Shaw, Int. J. Chem. Kinet.5 (1973) 261-269.
    [5]P.A. Denis, O.N. Ventura, H.T. Le, M.T. Nguyen, PCCP 5 (2003) 1730-1738.
    [6]Q. Wang, D. Ng, M.S. Mannan, Ind. Eng. Chem. Res.48 (2009) 8745-8751.
    [7]J.H. Cai, L.D. Zhang, J.Z. Yang, Y.Y. Li, L. Zhao, F. Qi, Energy (2012) in press, doi:10.1016/j.energy.2011.12.024.
    [8]Z.D. Wang, Z.J. Cheng, W.H. Yuan, J.H. Cai, L.D. Zhang, F. Qi, Combust. Flame (2012) in press, doi:10.1016/j.combustflame.2012.02.019.
    [9]Y.J. Zhang, J.H. Cai, L. Zhao, J.Z. Yang, H.F. Jin, Z.J. Cheng, Y.Y. Li, L.D. Zhang, F. Qi, Combust. Flame 159 (2012) 905-917.
    [10]P.J. Linstrom, W.G. Mallard, NIST Standard Reference Database Number 692003, http://webbook.nist.gov/chemistry
    [11]J.V. Ortiz, J. Chem. Phys.104 (1996) 7599-7605.
    [12]L.D. Zhang, Y. Pan, F. Qi, J. Theor. Comp. Chem.8 (2009) 1103-1115.
    [13]M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr.;, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Munnucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Pikorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nakayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzales, M. Head-Gordon, E.S. Replogle, J.A. Pople, "Gaussian 03", Revision C.02 ed. Pittsburgh, PA:Gaussian, Inc,2004.
    [14]V. Mokrushin, V. Bedanov, W. Tsang, M.R. Zachariah, V.D. Knyazev, "ChemRate", Version 1.5.8 ed. Gaithersburg, MD:National Institute of Standards and Testing,2009.
    [15]K.W. Zhang, L.D. Zhang, M.F. Xie, L.L. Ye, F. Zhang, P. Glarborg, F. Qi, Proc. Combust. Inst.34 (2012), in press.
    [16]"CHEMKIN-PRO 15092", ed. San Diego, CA:Reaction Design,2009.
    [17]K.W. Zhang, Y.Y. Li, T. Yuan, J.H. Cai, P. Glarborg, F. Qi, Proc. Combust. Inst.33 (2011) 407-414.
    [18]P. Glarborg, M.U. Alzueta, K. Dam-Johansen, J.A. Miller, Combust. Flame 115 (1998) 1-27.
    [19]P. Glarborg, A.B. Bendtsen, J.A. Miller, Int. J. Chem. Kinet.31 (1999) 591-602.
    [20]A.G. Suits, Acc. Chem. Res.41 (2008) 873-881.
    [1]P.J. Linstrom, W.G. Mallard. NIST Chemistry Webbook. Available: http://webbook.nist.gov
    [2]Johnson, R. D.,Ⅲ, ed. NIST Computational Chemistry Comparison and Benchmark Database 2010, NIST Standard Reference Database Number 101, Release 15a, April 2010, (http://cccbdb.nist.gov/).
    [3]I.F. Shishkov, V.A. Sipachev, P.I. Dem, O.V. Dorofeeva, N. Vogt, Y.V. Vishnevskiy, L.V. Vilkov, J. Mol. Struct.978 (2010) 41-47.
    [4]K.W. Zhang, Y.Y. Li, T. Yuan, J.H. Cai, P. Glarborg, F. Qi, Proc. Combust. Inst.33 (2011) 407-414.
    [5]K.W. Zhang, L.D. Zhang, M.F. Xie, L.L. Ye, F. Zhang, P. Glarborg, F. Qi, Proc. Combust. Inst.34 (2012), in press.
    [6]Q. Wang, D. Ng, M.S. Mannan, Ind. Eng. Chem. Res.48 (2009) 8745-8751.
    [7]M.T. Nguyen, H.T. Le, B. Hajgato, T. Veszpremi, M.C. Lin, J. Phys. Chem. A 107 (2003) 4286-4291.
    [8]A.G. Suits, Acc. Chem. Res.41 (2008) 873-881.
    [9]P. Glarborg, M.U. Alzueta, K. Dam-Johansen, J.A. Miller, Combust. Flame 115 (1998) 1-27.
    [10]P. Glarborg, A.B. Bendtsen, J.A. Miller, Int. J. Chem. Kinet.31 (1999) 591-602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700