硅胶负载三氟甲烷磺酸在碳水化合物合成化学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强酸性催化剂在现代有机合成化学尤其是工业生产中有着十分广泛的应用,但是由于它们自身固有的强酸性以及强腐蚀性,使得它们在储存、使用以及后处理过程中均存在一定风险,因而给人们的使用尤其是工业生产带来诸多不便。伴随着当今“绿色化学”发展要求以及社会可持续发展需要,人们将其负载于固体无机载体制成相应的固体负载酸能够有效地解决以上弊端。最近十多年来,固体负载酸在有机合成化学中的应用研究开展的如火如荼,但其在碳水化合物合成化学中的应用研究相对滞后。本文首次将硅胶负载三氟甲烷磺酸应用于糖水化合物的合成研究,着重研究了它在羟基保护、羟基脱保护、官能团转化以及糖苷化方面的应用。本论文主要包括以下三个方面的工作:
     一、硅胶负载三氟甲烷磺酸选择性脱除叔丁基二苯基硅基方法学研究
     本文报道了一种快速、高效、化学选择性的脱除叔丁基二苯基硅基的新方法。50℃下,以乙腈为反应溶剂,10mol%TfOH-SiO2为催化剂,糖类、甾体、烷基以及芳基衍生物中的叔丁基二苯基硅基可被化学选择性脱除以非常理想的收率得到其相应的母体化合物。
     二、硅胶负载三氟甲烷磺酸催化碳水化合物邻二醇选择性保护方法学研究及其在天然产物全合成中的应用
     1:室温条件下,以无水丙酮为溶剂、2,2-二甲氧基丙烷为异丙叉基化试剂、5mol%TfOH-SiO2为催化剂可以快速、高效、化学选择性的异丙叉基化保护“裸露”单糖或部分保护单糖及双糖衍生物1,2-二醇或1,3-二醇。
     2:室温条件下,以无水乙腈为溶剂、苯甲醛二甲醚为苄叉基化试剂、5mol%TfOH-SiO2为催化剂可以快速、高效、化学选择性的苄叉基化保护部分保护单糖衍生物的1,3-二醇。
     3:利用硅胶负载三氟甲烷磺酸作为催化剂制备得到的相应单糖异丙叉基化或苄叉基化产物为基本反应砌块,NIS/TfOH-SiO2催化硫苷供体糖苷化,我们成功合成了从Salmonella enterica O59中分离得到的O-抗原四糖重复单元的对甲氧基苯基苷类似物,为其进一步的相关生物学研究奠定了基础。
     三、硅胶负载三氟甲烷磺酸催化O-苷制备S-苷方法学研究
     本文报道了一种有效的催化氧苷键转化为硫苷键的新方法。加热回流条件下,以10mol%TfOH-SiO2为催化剂、1.2个当量的硫醇或硫酚作为亲核试剂、二氯甲烷为反应溶剂,可以高收率其得到相应的官能团转化产物;该催化体系底物适用范围广,端基由甲基、正辛基、正十二烷基、苄基、炔丙基以及对甲氧基苯基等封闭的糖类衍生物均可适用。
Strong acidic catalysts have been used widely in the modern organic synthesis,especially in the industrial manufacture. But due to their intrinsic strong acidity andcausticity, there are some potential risks in their storage, usage and disposal, and thissomewhat reduces their application especially in industry. Following the urgentdemand of green chemistry and social sustainable development, people prepare thesolid supported acids with the strong acids adsorbed on inorganic supports to avoidthe disadvantages. In recent years, solid supported acids have received considerableattentions in organic synthesis, but their application research in the syntheticcarbohydrate chemistry is relative slow. We study the application of silica gelsupported triflic acid in the synthetic carbohydrate chemistry in this thesis for the firsttime, mainly focused on the glycosylation, functional group transformation and thecarbohydrate hydroxyl group protection and deprotection.
     1. Study on the deprotection of TBDPS ethers catalyzed by TfOH-SiO_2
     A rapid, efficient, chemoselective and environment-friendly method for thedeprotection of tert-butyldiphenylsilyl ethers mediated by triflic acid supported onsilica gel is reported. A wide range of tert-butyldiphenylsilyl ethers derived fromcarbohydrate, saponin, alkyl and aryl residues can be smoothly cleaved in thepresence of various types of other protecting groups in good to excellent yields inacetonitrile at50℃.
     2. Study on the protection of diols catalyzed by TfOH-SiO2and its application
     to the synthesis of natural products
     1) Triflic acid immobilized on silica gel has been identified as an excellentcatalyst for the chemoselective O-isopropylidenation of free sugars and functionalizedcarbohydrates with2,2-dimethoxylpropane in acetone at room temperature.
     2) Silica gel supported triflic acid has been used as an remarkable catalyst for thechemoselective O-benzylidenation of functionalized carbohydrates with benzaldehydedimethylacetal in acetonitrile at room temperature.
     3) A tetrasaccharide related to the repeating unit of the O-polysaccharide isolatedfrom Salmonella enterica O59is prepared by using NIS/TfOH-SiO2as glycosylationcatalyst and O-isopropylidenated and O-benzylidenated monosaccharide derivativeswhich are synthesized as described before as building blocks.
     3. Study on the conversion of glycosides into their corresponding thioglycosidescatalyzed by TfOH-SiO_2
     A new method for the conversion of glycosides into their correspondingthioglycosides mediated by triflic acid supported on silica gel is reported. Thethioglycosides can be obtained by treating a wide range of glycosides derived frommethyl, n-octyl, n-dodecyl, propargyl, and p-methoxyphenyl residues with1.2equiv. thiol in dichloromethane at reflux condition.
引文
[1] A. Corma. Current Opinion in Solid State&Materials Science Current Chemistry Ltd,1997,2,63-75.
    [2](a) S. K. Sikdar, S. G. J. Howell. Cleaner Production.1998,6:253;(b) R. S. Varma. GreenChem.1999,1:43.
    [3](a) B. Baghernejad. Silica sulfuric acid (SSA): an efficient and heterogeneous catalyst for organictransformations. Mini-Rev. in Org. Chem.2011,8:91-102;(b) P. Salehi, M. A. Zolfigol, F.Shirinic, M. Baghbanzadeh. Silica sulfuric acid and silica chloride as efficient reagents fororganic reactions. Curr. Org. Chem.2006,10:2171-2189;(c) A. P. Rauter, N. M. Xavier, S. D.Lucas, M. Santos. Zeolites and other silicon-based promoters in carbohydrate chemistry. Adv.Carbohydr. Chem. and Biochem.2010,63:29-99.
    [4] E. Fischer. Ueber die glucoside der alkohole. Ber. Deutsch. Chem. Ges.1893,26:2400–2412.
    [5](a) K. Toshima, K. Tatsuta. Recent progress in O-glycosylation methods and its applicationto natural products synthesis. Chem. Rev.1993,93:1503–1531;(b) S. Hanessian, B. Lou.Stereocontrolled glycosyl transfer reactions with unprotected glycosyl donors. Chem. Rev.2000,100:4443–4463;(c) K. J. Jensen. O-Glycosylations under natural or basic conditions. J. Chem.Soc., Perkin Trans.12002,2219–2233;(d) K. Toshima. Novel glycosylation methods and theirapplication to natural products synthesis. Carbohydr. Res.2006,341:1282–1297;(e) K. Toshima,K. Sasaki. Comprehensive Glycoscience, Vol.1. Amsterdam: Elsevier,2007.261–311.
    [6] Y.-i. Matsushita, K. Sugamoto, Y. Kita, T. Matsui. Silica gel-catalyzed β-O-glucosylation ofalcohols with1,2-anhydro-3,4,6-tri-O-pivaloyl-α-D-glucopyranose. Tetrahedron Lett.1997,38:8709–8712.
    [7] A. K. Chakraborti, R. Gulhane. Perchloric acid adsorbed on silica gel as a new, highly efficient,and versatile catalyst for acetylation of phenols, thiols, alcohols, and amines. Chem. Commun.2003,1896-1897.
    [8] A. Agarwal, S. Rani, Y. D. Vankar. Protic acid (HClO4supported on silica gel)-mediatedsynthesis of2,3-unsaturated-O-glucosides and a chiral furan diol from2,3-glycals. J. Org. Chem.2004,69:6137–6140.
    [9] A. K. Misra, P. Tiwari, G. Agnihotri. Ferrier rearrangement catalyzed by HClO4–SiO2: synthesisof2,3-unsaturated glycopyranosides. Synthesis.2005,260–266.
    [10] P. Tiwari, G. Agnihotriand, A. K. Misra. Synthesis of2,3-unsaturated C-glycosides byHClO4–SiO2catalyzed Ferrier rearrangement of glycals. Carbohydr. Res.2005,340:749–752.
    [11] P. A. Colinas, N. A. Nu′n ez, R. D. Bravo. Sulfonamidoglycosylation of methyl glycosidesemploying perchloric acid supported on silica gel. J. Carbohydr. Chem.2008,27:141–147.
    [12] B. Mukhopadhyay, B. Collet, R. A. Field. Glycosylation reactions with disarmed thioglycosidedonors promoted by N-iodosuccinimide and HClO4–silica. Tetrahedron Lett.2005,46:5923–5925.
    [13] B. Mukhopadhyay, S. V. Maurer, N. Rudolph, R. M. van Well, D. A. Russell, R. A. Field. Fromsolution phase to “on-column” chemistry: trichloroacetimidate-based glycosylation promoted byperchloric acid-silica. J. Org. Chem.2005,70(22):9059–9062.
    [14] Y. Du; G. Wei; S. Cheng; Y. Hua; R. J. Linhardt. HClO4–SiO2catalyzed glycosylation usingsugar trichloroacetimidates as glycosyl donors. Tetrahedron Lett.2006,47:307–310.
    [15] O. R. Ludek, W. Gu, J. C. Gildersleeve. Activation of glycosyl trichloroacetimidates withperchloric acid on silica (HClO4–SiO2) provides enhanced a-selectivity. Carbohydr. Res.2010,345:2074–2078.
    [16] G. Agnihotri, A. K. Misra. Synthesis of a di-and a trisaccharide related to the O-antigen ofEscherichia coli O83:K24:H31. Carbohydr. Res.2006,341:2420–2425.
    [17] B. Roy, B. Mukhopadhyay. Sulfuric acid immobilized on silica: An excellent catalyst for Fischertype glycosylation. Tetrahedron Lett.2007,48:3783–3787.
    [18] N. Shaikh, L. Russo, L. Cipolla, F. Nicotra. Ultrasonic assisted Fischer glycosylation: generatingdiversity for glycochemistry. Mol Divers.2011,15:341-345.
    [19] A. Richel, P. Laurent, B. Wathelet, J.-P. Wathelet, M. Paquot. Microwave-assisted synthesis ofD-glucuronic acid derivatives using cost-effective solid acid catalysts. Tetrahedron Lett.2010,51:1356–1360.
    [20] J. F. Zhou, X. Chen, Q. B. Wang, B. Zhang, L. Y. Zhang, A. Yusulf, Z. F. Wang, J. B. Zhang, J.Tang. H2SO4-SiO2: Highly efficient and novel catalyst for the Ferrier-type glycosylation. ChineseChem. Lett.2010,21:922-926.
    [21](a) S. Dasgupta, K. Pramanik, B. Mukhopadhyay. Oligosaccharides through reactivity tuning:Convergent synthesis of the trisaccharides of the steroid glycoside Sokodoside B isolated frommarine sponge Erylus placenta. Tetrahedron.2007,63:12310–12316;(b) S. Mandaland, B.Mukhopadhyay. Concise synthesis of two trisaccharides related to the saponin isolated fromCentratherum anthelminticum. Tetrahedron.2007,63:11363–11370;(c) V. K. Rajput, B.Mukhopadhyay. Concise synthesis of a pentasaccharide related to the anti-leishmanialtriterpenoid saponin isolated from Maesa balansae. J. Org. Chem.2008,73:6924–6927;(d) B.Roy, K. Pramanik, B. Mukhopadhyay. Synthesis of a tetra-and a trisaccharide related to ananti-tumor saponin,‘‘Julibroside J28’’ from Albizia julibrissin. Glycoconj. J.2008,25:157–166;(e) S. Dasgupta, B. Mukhopadhyay. Synthesis of oligosaccharides related to abiodynamic saponin from Calamus Insignis as their propargyl Glycosides. Eur. J. Org. Chem.2008,5770–5777;(f) B. Roy, R. A. Field, B. Mukhopadhyay. Synthesis of a tetrasacchariderelated to the repeating unit of the O-antigen from Escherichia coli K-12. Carbohydr.Res.2009,344,2311–2316;(g) P. Verma, B. Mukhopadhyay. Concise synthesis of two trisaccharidesrelated to the cytotoxic triterpenoid saponin isolated from Pithecellobium lucidum.. Carbohydr.Res.2009,344,2554–2558.
    [22] Y. Wu, J. G. Yu, X. F. Ma, J. S. Zhang, An efficient and facile procedure for synthesis of octylpolyglucoside. Chinese Chem. Lett.2007,18:1173–1175.
    [23] O. M. Rodríguez, P. A. Colinas, R. D. Bravo. Synthesis of2,3-unsaturated O-and N-glycosidesby HBF4-SiO2catalyzed Ferrier rearrangement of D-glycals. Synlett.2009,1154–1156.
    [24] H. H. Kinfe, F. M. Mebrahtu, K. Sithole. NaHSO4supported on silica gel: an alternative catalystfor Ferrier rearrangement of glycals. Carbohydr. Res.2011,346:2528–2532.
    [25] A. K. Misra, P. Tiwari, S. K. Madhusudan. HClO4–SiO2catalyzed per-O-acetylation ofcarbohydrates. Carbohydr. Res.2005,340:325–329.
    [26] B. Mukhopadhyay, D. A. Russell, R. A. Field. One-pot acetalation–acetylatio of sugarderivatives employing perchloric acid immobilised on silica. Carbohydr. Res.2005,340:1075–1080.
    [27] A. Agarwal, Y. D. Vankar. Selective deprotection of terminal isopropylidene acetals and tritylethers using HClO4supported on silica gel. Carbohydr. Res.2005,340:1661–1667.
    [28] G. Agnihotri, A. K. Misra. Mild and efficient method for the cleavage of benzylidene acetalsusing HClO4–SiO2and direct conversion of acetals to acetates. Tetrahedron Lett.2006,47:3653–3658.
    [29] G. Agnihotri, P. Tiwari, A. K. Misra. Unprecedented transformation of thioglycosides to theircorresponding1-O-acetates in the presence of HClO4-SiO2. J. Carbohydr. Chem.2006,25:491–498.
    [30] H. X. Liu, Q. P. Wu, Y. N. Shu, X. Chen, X. D. Xi, T. J. Du, Q. S. Zhang. A mild, efficient, andselective procedure for transprotection of acetonides to acetates catalyzed with HClO4–SiO2.Carbohydr. Res.2009,344:2342–2348.
    [31] T. J. Du, Q. P. Wu, H. X. Liu, X. Chen, Y. N. Shu, X. D. Xi, Q. S. Zhang, Y. Z. Li. Anatom-efficient and powerful method for direct esterification of silyl ethers catalyzed byHClO4-SiO2. Tetrahedron.2011,67:1096-1101.
    [32] H. Wu, Y. Shen, L. Y. Fan, Y. Wan, D. Q. Shi. Solid silica sulfuric acid (SSA) as a novel andefficient catalyst for acetylation of aldehydes and sugars. Tetrahedron.2006,62:7995–7998.
    [33] B. Mukhopadhyay. Sulfuric acid immobilized on silica: An efficient promoter for one-potacetalation–acetylation of sugar derivatives. Tetrahedron Lett.2006,47:4337–4341.
    [34] V. K. Rajput, B. Mukhopadhyay. Sulfuric acid immobilized on silica: An effcient reusablecatalyst for the synthesis of O-isopropylidene sugar derivatives. Tetrahedron Lett.2006,47:5939–5941.
    [35] V. K. Rajput, B. Roy, B. Mukhopadhyay. Sulfuric acid immobilized on silica: An efficientreusable catalyst for selective hydrolysis of the terminal O-isopropylidene group of sugarderivatives. Tetrahedron Lett.2006,47:6987–6991.
    [36] B. Roy, P. Verma, B. Mukhopadhyay. H2SO4-silica-promoted ‘on-column’ removal ofbenzylidene, isopropylidene, trityl and tert-butyldimethylsilyl groups. Carbohydr. Res.2009,344:145–148.
    [37] G. D. K. Kumar, S. Baskaran. A facile, catalytic, and environmentally benign method forselective deprotection of tert-butyldimethylsilyleEther mediated by phosphomolybdic acidsupported on silica gel. J. Org. Chem.2005,70,4520-4523.
    [38] P. S. Kumar, G. D. K. Kumar, S. Baskaran. Truly catalytic and chemoselective cleavage ofbenzylidene acetal with phosphomolybdic acid supported on silica gel. Eur. J. Org. Chem.2008,6063–6067.
    [39] J. S. Yadav, S. Raghavendra, M. Satyanarayana, E. Balanarsaiah. Phosphomolybdic acidsupported on silica gel: An efficient, mild and reusable catalyst for the chemoselective hydrolysisof acetonides. Synlett.2005,2461–2464.
    [40] B. Das, G. Mahender, V. S. Kumar, N. Chowdhury. Chemoselective deprotection of trityl ethersusing silica-supported sodium hydrogen sulfate. Tetrahedron Lett.2004,45:6709–6711.
    [41] Y. Niu, N. Wang, X. Cao, X. S. Ye. Efficient formation and cleavage of benzylidene acetals bysodium hydrogen sulfate supported on silica gel. Synlett.2007,2116–2120.
    [42] G. Mahender, R. Ramu, C. Ramesh, B. Das. A simple and facile chemo-and regioselectivedeprotection of acetonides using silica supported sodium hydrogen sulfate as a heterogeneouscatalyst. Chem. Lett.2003,734-735.
    [43] P. Tiwari, A. K. Misra. Selective removal of anomeric O-acetate groups in carbohydrates usingHClO4–SiO2. Tetrahedron Lett.2006,47:3573–3576.
    [44] S. Dasgupta, B. Roy, B. Mukhopadhyay. NIS/H2SO4–Silica: A mild and efficient reagent systemfor the hydrolysis of thioglycosides. Carbohydr. Res.2006,341:2708–2713.
    [45] A. Rauter, M. Ferreira, C. Borges, T. Duarte, F. Piedade, M. Silva, H. Santos. Construction of abranched chain at C-3of a hexopyranoside. Synthesis of miharamycin sugar moiety analogues.Carbohydr. Res.2000,325:1–15.
    [46] T. K. M. Shing, W. F. Wong, H. M. Cheng, W. S. Kwok, K. H. So. Intramolecular nitrile
    oxide–alkene cycloaddition of sugar derivatives with unmasked hydroxyl group(s). Org. Lett.
    2007,9:753–756.
    [1](a) Green, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis,4th ed.; JohnWiley&Sons, New York,2007,306-315;(b) Jarowicki, K.; Kocienski, P. J. Chem. Soc., PerkinTrans.11999,1589-1616;(c) Nelson, T. D.; Crouch, R. D. Synthesis1996,1031-1069.
    [2] Hanessian, S.; Lavallee, P. Can. J. Chem.1975,53,2975-2977.
    [3](a) Stern, A.; Swenton, J. S. J. Org. Chem.1987,52,2763-2768;(b) Overman, L. E.; Okazaki, M.E.; Mishra, P. Tetrahedron Lett.1986,27,4391-4394.
    [4] Rucker, C. Chem. Rev.1995,95,1009-1064;(b) Lalonde, M.; Chan, T. H. Synthesis1985,817-845;(c) Schelhaas, M.; Waldmann, H. Angew. Chem., Int. Ed.1996,35,2056-2083;(d)Jarowicki, K.; Kocienski, P. J. Chem. Soc., Perkin Trans.12001,2109-2135.
    [5](a) Bothwell, J. M.; Angeles, V. V.; Carolan, J. P.; Olson, M. E.; Mohan, R. S. Tetrahedron Lett.2010,51,1056-1058and references cited therein;(b) Kumar, G. D. K.; Baskaran, S. J. Org.Chem.2005,70,4520-4523and references cited therein;(c) Wang, B.; Sun, H. X.; Chen, B.; Sun,Z. H. Green Chem.2009,11,1112-1114.
    [6](a) Shah, S. T. A.; Singh, S.; Guiry, P. J. J. Org. Chem.2009,74,2179-2182;(b) Shah, S. T. A.;Guiry, P. J. Org. Biomol. Chem.2008,6,2168-2172;(c) Barros, M. T.; Maycock, C. D.;Thomassigny, C. Synlett2001,1146-1148;(d) Kim, S.; Jacobo, S. M.; Chang, C. T.; Bellone, S.;Powell, W. S.; Rokach, J. Tetrahedron Lett.2004,45,1973-1976;(e) Crouch, R. D.; Romany, C.A.; Kreshock, A. C.; Menconi, K. A.; Zile, J. L. Tetrahedron Lett.2004,45,1279-1281;(f)Matsuo, I.; Wada, M.; Ito, Y. Tetrahedron Lett.2002,43,3273-3275;(g) Lee, A. S. Y.; Yeh, H. C.;Shie, J. J. Tetrahedron Lett.1998,39,5249-5252;(h) Shekhani, M. S.; Khan, K. M.; Mahmood,K.; Shah, P. M.; Lenera, S. T. Tetrahedron Lett.1990,31,1669-1670.
    [7](a) Du, Y. G.; Wei, G. H.; Cheng, S. H.; Hua, Y. X.; Linhardt, R. J. Tetrahedron Lett.2006,47,307-310;(b) Clark, J. H. Green Chem.1999,1,1-8;(c) Hegner, J.; Pereira, K. C.; DeBoef, B.;Lucht, B. L. Tetrahedron Lett.2010,51,2356-2358;(d) Kassrin, T.; Supannee, S.; Somsak, R.;Poonsakdi, P. Tetrahedron2009,65,4316-435;(e) Reddy, C. R.; Srikanth, B.; Narsimha Rao, N.;Shin, D. S. Tetrahedron2008,64,11666-11672.
    [8](a) Misono, M.; Ono, I.; Koyano, G.; Aoshima, A. Pure Appl.Chem.2000,72,1305-1311;(b)Wilson, K.; Clark, J. H. Pure Appl. Chem.2000,72,1313-1319.
    [9] Pizzio, L. R.; Va′zquez, P. G.; Ca′ceres, C. V.; Blanco, M. N. Appl. Catal., A2003,256,125-139.
    [10](a) P arvulescu, A. N.; Gagea, B. C.; P arvulescu, V. I.; Vos, D. D.; Jacobs, P. A. Appl. Catal., A,2006,306,159-164;(b) P arvulescu, A. N.; Gagea, B. C.; Poncelet, G.; P arvulescu, V. I. Appl.Catal., A,2006,301,133-137;(c) Gagea, B. C.; P arvulescu, A. N.; Poncelet, G.; P arvulescu, V.I. Catal. Lett.,2005,105,219-222;(d) Gagea, B. C.; P arvulescu, A. N.; P arvulescu, V. I.;Auroux, A.; Grange, P.; Poncelet, G. Catal. Lett.,2003,91,141-144.
    [11](a) Liu, P. N.; Xia, F.; Wang, Q. W.; Ren, Y. J.; Chen, J. Q. Green Chem.,2010,12,1049-1055;(b)de Angelis, A.; Flego, C.; Ingallina, P.; Montanari, L.; Clerici, M. G.; Carati C.; Perego, C. Catal.Today,2001,65,363-371.
    [12](a) Song, G. P.; Yang, S.; Zhang, W.; Cao, Y. L.; Wang, P.; Ding, N.; Zhang, Z. H.; Guo, Y.; Li, Y.X. Discovery of the first series of small molecule H5N1entry inhibitors. J. Med. Chem.2009,52,7368-7371;(b) Liu, Q. C.; Zhang, L.; Li, X. P.; Guo, T. T.; Wang, P.; Li, Y. X. Efficient synthesisof Flaccidoside II, a bioactive component of Chinese folk medicine Di Wu. J. CarbohydrateChem.2009,28,506-519;(c) Guo, T. T.; Liu, Q. C.; Wang, P.; Zhang, L.; Zhang, W.; Li, Y. X.Facile synthesis of three bidesmosidic oleanolic acid saponins with strong inhibitory activity onpancreatic lipase. Carbohydrate Res.2009,344,1167-1174;(d) Liu, Q. C.; Wang, P.; Zhang, L.;Guo, T. T.; Lv, G. K.; Li, Y. X. Concise synthesis of two natural triterpenoid saponins, oleanolicacid derivatives isolated from the roots of Pulsatilla chinensis. Carbohydrate Res.2009,344,1276-1281;(e) Zhu, S. L.; Li, Y. X.; Yu, B. Synthesis of Betavulgaroside III, a representativetriterpene seco-glycoside. J. Org. Chem.2008,73,4978-4985.
    [13](a) Roy, B.; Verma, P.; Mukhopadhyay, B. H2SO4-silica-promoted ‘on-column’ removal ofbenzylidene, isopropylidene, trityl and tert-butyldimethylsilyl groups. Carbohydrate Res.2009,344,145-148;(b) Vidadala, S. R.; Thadke, S. A.; Hotha, S. Orthogonal activation of propargyland n-pentenyl glycosides and1,2-orthoesters. J. Org. Chem.2009,74,9233-9236.
    [14] Verma, P.; Mukhopadhyay, B. Concise synthesis of two trisaccharides related to the cytotoxictriterpenoid saponin isolated from Pithecellobium lucidum. Carbohydrate Res.2009,344,2554-2558.
    [15] Fairweather, J. K.; Karoli, T.; Ferro, V. The synthesis of phosphorylated disaccharide componentsof the extracellular phosphomannan of Pichia (Hansenula) holstii NRRL Y-2448. Bioorg. Med.Chem.2004,12,6063-6075.
    [16] Wang, P.; Wang, J.; Guo, T. T.; Li, Y. X. Synthesis and cytotoxic activity of theN-acetylglucosamine-bearing triterpenoid saponins. Carbohydrate Res.2010,345,607-620.
    [17] Kamijo, S.; Matsumura, S.; Inoue, M. CCl3CN: A crucial promoter of mCPBA-mediated directether oxidation. Org. Lett.2010,12,4195-4197.
    [18] Nunes, R. M. D.; Peixoto, A. F.; Axet, M. R.; Pereira, M. M.; Moreno, M. J.; Koll′ar, L.; Claver,C.; Castill′on, S. Selective hydrogenation of-unsaturated oxosteroids with homogeneousrhodium catalysts. J. Molecular Catal. A: Chem.2006,247,275–282.
    [19] Calogeropoulou, T.; Avlonitis, N.; Minas, V.; Alexi, X.; Pantzou, A.; Charalampopoulos, I.;Zervou, M.; Vergou, V.; Katsanou, E. S.; Lazaridis, I.; Alexis, M. N.; Gravanis, A. NovelDehydroepiandrosterone Derivatives with Antiapoptotic, Neuroprotective Activity. J. Med. Chem.2009,52,6569-6587.
    [20] Cheng, M. S.; Yan, M. C.; Liu, Y.; Zheng, L. G.; Liu, J. Synthesis of b-hederin andHederacolchiside A1: triterpenoid saponins bearing a unique cytotoxicity-inducing disaccharidemoiety. Carbohydrate Res.2006,341,60-67.
    [21] Cheng, M. S.; Wang, Q. L.; Tian, Q.; Song, H. Y.; Liu, Y. X.; Qiang Li, Q.; Xu, X.; Miao, H. D.;Yao, X. S.; Yang, Z. Total synthesis of methyl protodioscin: A potent agent with antitumoractivity. J. Org. Chem.2003,68,3658-3662.
    [22] Yu, G. F.; Mulabagal, V.; Diyabalanage, T.; Hurtada, W. A.; DeWitt, D. L.; Nair, M. G.Non-nutritive functional agents in rattan-shoots, a food consumed by native people in thePhilippines. Food Chem.2008,110,991-996.
    [23] Jiang, B.; Shi, H. P.; Tian, W. S.; Zhou, W. S. The convergent synthesis of novel cytotoxiccertonardosterol D2from diosgenin. Tetrahedron2008,64,469-476.
    [1] Green, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis,4th ed.; Wiley&Sons: NewYork,2007; pp306.
    [2] H Clode, D. M. Chem. Rev.1979,79,491.
    [3] a) Yamanoi, T.; Oda, Y.; Matsuda, S.; Yamazaki, I.; Matsumura, K.; Katsuraya, K.; Watanabe, M.;Inazu, T. Tetrahedron2006,62,10383; b) Xavier, N. M.; Rauter, A. P. Carbohydr. Res.2008,343,1523.
    [4] a) Alam, M. A.; Vankar, Y. D. Tetrahedron Lett.2008,49,5534; b) Garegg, P. J. In PreparativeCarbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York,1997; pp3.
    [5] Behling, J.; Farid, P.; Medich, J. R.; Scaros, M. G.; Prunier, M. Synth. Commun.1991,21,1383.
    [6] Pattenden, G.; González, M. A.; Little, P. B.; Millan, D. S.; Plowright, A. T.; Tornos, J. A.; Ye, T.Org. Biomol. Chem.2003,1,4173.
    [7] Yadav, V. K.; Agrawal, D. Chem. Commun.2007,48,5232.
    [8] Goi, A.; Bruzzese, T.; Notarianni, A. F.; Riva, M.; Ronchini, A. Arzneim.-Forsch./Drug Res.1979,29,986.
    [9] a) Tsuda, T.; Arihara, R.; Sato, S.; Koshiba, M.; Nakamura, S.; Hashimoto, S. Direct andstereoselective synthesis of β-D-mannosides using4,6-O-benzylidene-protected mannosyl diethylphosphate as a donor. Tetrahedron2005,61,10719–10733; b) Crich, D.; Li, H.; Yao, Q.; Wink, D.J.; Sommer, R. D.; Rheingold, A. L. Direct synthesis of β-Mannans. A hexameric [→3)-β-D-Man-(1→4)-β-D-Man-(1]3subunit of the antigenic polysaccharides from Leptospira biflexaand the octameric (1→2)-Linked β-D-Mannan of the Candida albicans phospholipomannan. X-raycrystal structure of a protected tetramer. J. Am. Chem. Soc.2001,123,5826-5828; c) Crich, D.;Dudkin, V. Why are the hydroxy groups of partially protected N-acetylglucosamine derivativessuch poor glycosyl acceptors, and what can be done about it? A comparative study of the reactivityof N-acetyl-, N-phthalimido-, and2-azido-2-deoxy-glucosamine derivatives in glycosylation.2-Picolinyl ethers as reactivity-enhancing replacements for benzyl ethers. J. Am. Chem. Soc.2001,123,6819-6825; d) Crich, D.; Smith, M.1-Benzenesulfinyl piperidine/trifluoromethanesulfonicanhydride: A potent combination of shelf-stable reagents for the low-temperature conversion ofthioglycosides to glycosyl triflates and for the formation of diverse glycosidic linkages. J. Am.Chem. Soc.2001,123,9015-9020; e) Crich, D.; Dudkin, V. Confirmation of the connectivity of4,8,12,16,20-pentamethylpentacosylphoshoryl-β-D-mannopyranoside, an unusual β-mannosylphosphoisoprenoid from Mycobacterium avium, through synthesis. J. Am. Chem. Soc.2002,124,2263-2266; f) Crich, D.; Smith, M. Solid-phase synthesis of β-mannosides. J. Am. Chem. Soc.2002,124,8867-8869; g) Crich, D.; Banerjee, A.; Yao, Q. Direct Chemical Synthesis of the β-D-mannans:The β-(1→2) and β-(1→4) series. J. Am. Chem. Soc.2004,126,14930-14934; h) Crich, D.; Li, W.;Li, H. Direct chemical synthesis of the β-mannans: linear and block syntheses of the alternating β-(1→3)-β-(1→4)-mannan common to Rhodotorula glutinis, Rhodotorula mucilaginosa, andLeptospira biflexa. J. Am. Chem. Soc.2004,126,15081-15086; i) Crich, D.; Jayalath, P.; Hutton, T.K. Enhanced diastereoselectivity in β-mannopyranosylation through the use of sterically minimalpropargyl ether protecting groups. J. Org. Chem.2006,71,3064-3070; j) Crich, D.; Vinogradova,O. On the influence of the C2-O2and C3-O3bonds in4,6-O-benzylidene-directedβ-mannopyranosylation and α-Glucopyranosylation. J. Org. Chem.2006,71,8473-8480; k) Crich,D.; Li, L.4,6-O-Benzylidene-directed β-mannopyranosylation and α-glucopyranosylation: The2-deoxy-2-fluoro and3-deoxy-3-fluoro series of donors and the importance of the O2-C2-C3-O3interaction. J. Org. Chem.2007,72,1681-1690; l) Crich, D.; Xu, H. Direct stereocontrolledsynthesis of3-amino-3-deoxy-β-mannopyranosides: Importance of the nitrogen protecting group onstereoselectivity. J. Org. Chem.2007,72,5183-5192; m) Crich, D.; Karatholuvhu, M. S.Application of the4-trifluoromethylbenzenepropargyl ether group as an unhindered, electrondeficient protecting group for stereoselective glycosylation. J. Org. Chem.2008,73,5173-5176; n)Crich, D.; Li, M. Block synthesis of tetra-and hexasaccharides (β-D-glycero-D-manno-Hepp-(1→4)-[α-L-Rhap-(1→3)-β-D-glycero-D-manno-Hepp-(1→4)]n-α-L-Rhap-OMe (n=1and2))corresponding to multiple repeat units of the glycan from the surface-layer glycoprotein fromBacillus. J. Org. Chem.2008,73,7003-7010; o) Crich, D.; Li, L.; Shirai, M. The4-(tert-Butyldiphenylsiloxy)-3-fluorobenzyl group: A new alcohol protecting group, fullyorthogonal with the p-methoxybenzyl group and removable under desilylation conditions. J. Org.Chem.2009,74,2486-2493; p) Crich, D.; Sharma, I. Influence of the O3protecting group onstereoselectivity in the preparation of C-mannopyranosides with4,6-O-benzylidene protecteddonors. J. Org. Chem.2010,75,8383-8391.
    [10] a) Sherman, A. A.; Mironov, Y. V.; Yudina, O. N.; Nifantiev, N. E. The presence of waterimproves reductive openings of benzylidene acetals with trimethylaminoborane and aluminiumchloride. Carbohydr. Res.2003,338,697–703; b) Zinin, A. I.; Malysheva, N. N.; Shpirt, A. M.;Torgov, V. I.; Kononov, L. O. Use of methanesulfonic acid in the reductive ring-opening ofO-benzylidene acetals. Carbohydr. Res.2007,342,627–630; c) Tanaka, N.; Ogawa, I.; Yoshigase,S.; Nokami, J. Regioselective ring opening of benzylidene acetal protecting group(s) ofhexopyranoside derivatives by DIBAL-H. Carbohydr. Res.2008,343,2675–2679; d) Rao, K. V.;Patil, P. R.; Atmakuri, S.; Kartha, K. P. R. Iodine–sodium cyanoborohydride-mediated reductivering opening of4,6-O-benzylidene acetals of hexopyranosides. Carbohydr. Res.2010,345,2709–2713; e) Balakumar, V.; Aravind, A.; Baskaran, S. A highly regio-and chemoselectivereductive cleavage of benzylidene acetals with EtAlCl2–Et3SiH. Synlett,2004,647–650; f) Tanaka,K.; Fukase, K. Efficient procedure for reductive opening of sugar4,6-O-benzylidene acetals in amicrofluidic system. Synlett,2007,164–167; g) Panchadhayee, R.; Misra, A. K. Regioselectivereductive ring opening of benzylidene acetals using triethylsilane and iodine. Synlett,2010,1193–1196; h) Sakagami, M.; Hamana, H. A selective ring opening reaction of4,6-O-benzylideneacetals in carbohydrates using trialkylsilane derivatives. Tetrahedron Lett.,2000,41,5547-5551; i)Zheng, B.; Yamauchi, M.; Dei, H.; Kusaka, S.; Matsui, K.; Yonemitsu, O. Facilechelation-controlled reductive opening of methoxybenzylidene acetals with Bu3SnH and MgBr2.Regioselective protection strategy as MPM ethers. Tetrahedron Lett.,2000,41,6441-6445; j) Tani,S.; Sawadi, S.; Kojima, M.; Akai, S.; Sato, K. A novel method for regioselective ring-openingreduction of4,6-O-benzylidene hexopyranoside derivatives using CoCl2and BH3.THF.Tetrahedron Lett.,2007,48,3103-3104; k) Daragics, K.; Fügedi, P. Regio-and chemoselectivereductive cleavage of4,6-O-benzylidene-type acetals of hexopyranosides using BH3.THF–TMSOTf.Tetrahedron Lett.,2009,50,2914-2916; l) Shie, C.; Tzeng, Z.; Kulkarni, S. S.; Uang, B.; Hsu, C.;Hung, S. Cu(OTf)2as an efficient and dual-purpose catalyst in the regioselective reductive ringopening of benzylidene acetals, Angew. Chem. Int. Ed.,2005,44,1665–1668; m)Herna′ndez-Torres, J. M.; Achkar, J.; Wei, A. Temperature-controlled regioselectivity in thereductive cleavage of p-methoxybenzylidene acetals. J. Org. Chem.2004,69,7206-7211; n) Wang,C.; Luo, S.; Shie, C.; Hung, S. Metal trifluoromethanesulfonate-catalyzed regioselectiveborane-reductive ring opening of benzylidene acetals: A concise synthesis of1,4-dideoxy-1,4-imino-L-xylitol. Org. Lett.,2002,4,847-849.
    [11] a) Franais, A.; Urban, D.; Beau, J. Tandem catalysis for a one-pot regioselective protection ofcarbohydrates: The example of glucose. Angew. Chem. Int. Ed.2007,46,8662–8665; b) Kumar, P.S.; Banerjee, A.; Baskaran, S. Regioselective oxidative cleavage of benzylidene acetals: Synthesisof α-and β-benzoyloxy carboxylic acids. Angew. Chem. Int. Ed.2010,49,804-807; c) Zhang, Z.;Magnusson, G. DDQ-mediated oxidation of4,6-O-methoxybenzylidene-protected saccharides inthe presence of various nucleophiles: Formation of4-OH,6-Cl, and6-Br derivatives. J. Org. Chem.1996,61,2394-2400; d) Stevenin, A.; Boyer, F.; Beau, J. Regioselective control in the oxidativecleavage of4,6-O-benzylidene acetals of glycopyranosides by dimethyldioxirane. J. Org. Chem.2010,75,1783-1786; e) Adinolfi, M.; Barone, G.; Guariniello, L.; Iadonisi, A. Facile cleavage ofcarbohydrate benzyl ethers and benzylidene acetals using the NaBrO3/Na2S2O4reagent undertwo-phase conditions. Tetrahedron Lett.,1999,40,8439-8441; f) Chen, Y.; Wang, P. G. Facileoxidative cleavage of benzylidene acetals using molecular oxygen catalyzed byN-hydroxyphthalimide/Co(OAc)2. Tetrahedron Lett.,2001,42,4955–4958; g) Senthilkumar, P. M.;Aravind, A.; Baskaran, S. Regioselective oxidative cleavage of benzylidene acetals: synthesis ofhighly functionalized chiral intermediates. Tetrahedron Lett.,2007,48,1175–1178; h) Mycock, D.K.; Sherlock, A. E.; Glossop, P. A.; Hayes, C. J. Studies on DMDO-mediated benzylidene acetaloxidation. Tetrahedron Lett.,2008,49,6390–6392; i) Karimi, B.; Rajabi, J. Efficient aerobicoxidation of acetals to esters catalyzed by N-Hydroxy phthalimide (NHPI) and Co(II) under mildconditions. Synlett,2003,2373-2377.
    [12] a) Singh, P. P.; Gharia, M. M.; Dasgupta, F.; Srivastava, H. C. Tetrahedron Lett.1977,18,439; b)Kartha, K. P. R. Tetrahedron Lett.1986,27,3415; c) Rauter, A. P.; Ramo a-Ribeiro, F.; Fernandes,A. C.; Figueiredo, J. A. Tetrahedron1995,51,6529; d) Pedatella, S.; Guaragna, A.; D’Alonzo, D.;DeNisco, M.; Palumbo, G. Synthesis2006,305; e) Rajput, V. K.; Mukhopadhyay, B. TetrahedronLett.2006,47,5939; f) Lin, C.-C.; Jan, M.-D.; Weng, S.-S.; Lin, C.-C.; Chen, C.-T. Carbohydr. Res.2006,341,1948; g) Khan, A. T.; Khan, M. M. Carbohydr. Res.2010,345,154; h) Khan, A. T.;Khan, M. M.; Adhikary, A. Carbohydr. Res.2011,346,673; i) Lal, B.; Gidwani, R. M.; Rupp, R. H.Synthesis1989,711; j) Manzo, E.; Barone, G.; Parrilli, M. Synlett2000,887; k) Schmid, C. R.;Bryant, J. D.; Dowlatzedah, M.; Phillips, J. L.; Prather, D. E.; Schautz, R. D.; Sear, N. L.; Vianco, C.S. J. Org. Chem.1991,56,4056; l) Shim, J.-G.; Nakamura, H.; Yamamoto, Y. J. Org. Chem.1998,63,8470; m) Hering, K. W.; Karaveg, K.; Moremen, K. W.; Pearson, W. H. J. Org. Chem.2005,70,9892.
    [13] For instance see: a) Du, Y.; Wei, G.; Cheng, S.; Hua, Y.; Linhardt, R. J. Tetrahedron Lett.2006,47,307; b) Mukhopadhyay, B.; Maurer, S. V.; Rudolph, N.; van Well, R.; Russell, D. A.; Field, R. A. J.Org. Chem.2005,70,9059; c) Mukhopadhyay, B.; Russell, D. A.; Field, R. A. Carbohydr. Res.2005,340,1075; d) Mukhopadhyay, B.; Collet, B.; Field, R. A. Tetrahedron Lett.2005,46,5923; e)Dasgupta, S.; Pramanik, K.; Mukhopadhyay, B. Tetrahedron2007,63,12310; f) Dasgupta, S.;Mukhopadhyay, B. Eur. J. Org. Chem.2008,34,5770; g) Verma, P. R.; Mukhopadhyay, B.Carbohydr. Res.2010,345,432; h) Verma, P.; Raj, R.; Roy, B.; Mukhopadhyay, B. Tetrahedron:Asymmetry2010,21,2413; i) Agarwal, A.; Rani, S.; Vankar, Y. D. J. Org. Chem.2004,69,6137; j)Misra, A. K.; Tiwari, P.; Agnihotri, G. Synthesis2005,2,260; k) Iranpoor, N.; Firouzabadi, H.;Jamalian, A.; Kazemi, F. Tetrahedron2005,61,5699; l) Iranpoor, N.; Firouzabadi, H.; Jamalian, A.Synlett2005,1447.
    [14] a) Tamaki, Y.; Narimatsu, H.; Miyazoto, T.; Nakasone, N.; Higa, N.; Toma, C.; Iwanaga, M. Jpn.J. Infect. Dis.2005,58,65–69; b) Lindberg, A. A.; Karnell, A.; Weintraub, A. Rev. Infect. Dis.1991,13, S279–S284.
    [15] a) Roy, R. Drug Discovery Today: Technol.2004,1,327–336; b) Tamborrini, M.; Werz, D. B.;Frey, J.; Pluschke, G.; Seeberger, P. H. Angew. Chem., Int. Ed.2006,45,6581–6582; c)Verez-Bencomo, V.; Fernández-Santana, V.; Hardy, E.; Toledo, M. E.; Rodríguez, M. C.;Heynngnezz, L.; Rodriguez, A.; Baly, A.; Herrera, L.; Izquierdo, M.; Villar, A.; Valdés, Y.; Cosme,K.; Deler, M. L.; Montane, M.; Garcia, E.; Ramos, A.; Aguilar, A.; Medina, E.; Tora, G.; Sosa, I.;Hernandez, I.; Martínez, R.; Muzachio, A.; Carmenates, A.; Costa, L.; Cardoso, F.; Campa, C.;Diaz, M.; Roy, R. Science,2004,305,522–525; d) Snippe, H.; van Dam, J. E. G.; van Houte, A. J.;Willers, J. M. N.; Kamerling, J. P.; Vliegenthart, J. F. G. Infect. Immun.1983,42,842–844.
    [16] Mead, P. S.; Slutsker, L.; Dietz, V.; McCaig, L. F.; Bresee, J. S.; Shapiro, C.; Griffin, P. M.;Tauxe, R. V. Emerg. Infect. Dis.1999,5,607–625.
    [17] a) Knirel, Y. A.; Kochetkov, N. K. Biochemistry (Moscow)1994,59,1325–1383; Jansson, P.-E.In Endotoxin in Health and Disease; Brade, H., Opal, S. M., Vogel, S. N., Morrison, D. C., Eds.;Marcel Dekker: NY,1999;155–178; b) Gajdus, J.; Glosnicka, R.; Szafranek, J. Wiadomosci Chem.2006,60,621–653.
    [18] Perepelov, A. V.; Liu, B.; Senchenkova, S. N.; Shashkov, A. S.; Guo, D.; Feng, L.; Knirel, Y. A.;Wang, L. Carbohydr. Res.2011,346,381–383.
    [1] Garegg, P.J. Thioglycosides as glycosyl donors in oligosaccharide synthesis. Adv. Carbohydr.Chem. Biochem.1997,52,179–205.
    [2] Toshima, K.; Tatsuta, K. Recent progress in O-glycosylation methods and its application to naturalproducts synthesis. Chem. Rev.1993,93,1503–1531.
    [3] Ferrier, R.J.; Furneaux, R.H.1,2-trans-1-thioglycosides. Methods Carbohydr. Chem.1980,8,251–253.
    [4] Kartha, K.P.R.; Field, R.A. Synthesis and activation of carbohydrate donors: thioglycosides andsulfoxides. In Best Synthetic Methods: Carbohydrates; Osborn, H.M.I. Ed.; Academic Press,Oxford, UK,2003; pp121–145.
    [5] Nicolaou, K.C.; Dolle, R.E.; Papahatjis, D.P.; Randall, L.J. Reactions of glycosyl fluorides.Synthesis of O-, S-, and N-glycosides. J. Chem. Soc. Chem. Commun.1984,1155–1156.
    [6] Crich, D.; Sun, S. Direct synthesis of β-mannopyranosides by the sulfoxide method. J. Org. Chem.1997,62,1198–1199.
    [7] Yan, L.; Kahne, D. Generalizing glycosylation: synthesis of the blood group antigens Lea, Leb, andLex using a standard set of reaction conditions. J. Am. Chem. Soc.1996,118,9239–9248.
    [8] Jaramillo, C.; Corrales, G.; Fern′andez-Mayoralas, A. Glycosyl phenyl sulfoxides as a source ofglycosyl carbanions: stereoselective synthesis of C-fucosides. Tetrahedron Lett.1998,39,7783–7786.
    [9] Vlahov, I.R.; Vlahova, P.I.; Linhardt, R.J. Diastereocontrolled synthesis of carbon glycosides ofN-acetylneuraminic acid via glycosyl samarium(III) intermediates. J. Am. Chem. Soc.1997,119,1480–1481.
    [10] Codee, J.D.C.; Litjens, R.E.J.N.; van den Bos, L.J.; Overkleeft, H.S.; van der Marel, G.A.Thio-glycosides in sequential glycosylation strategies. Chem. Soc. Rev.2005,34,769–782.
    [11] Kanie, O.; Ito, Y.; Ogawa, T. Orthogonal glycosylation strategy in oligosaccharide synthesis. J.Am. Chem. Soc.1994,116,12073–12074.
    [12] L¨onn, H. Synthesis of a tri-and a hepta-saccharide which contain α-Lfucopyranosyl groups andare part of the complex type of carbohydrate moiety of glycoproteins. Carbohydr. Res.1985,139,105–114.
    [13] Das, S.K.; Roy, N. An improved method for the preparation of some ethyl1-thioglycosides.Carbohydr. Res.1996,296,1079–1091.
    [14] Kihlberg, J.O.; Leigh, D.A.; Bundle, D.R. The in situ activation of thioglycosides with bromine:an improved glycosylation method. J. Org. Chem.1990,55,2860–2863.
    [15] Pozsgay, V.; Jennings, H.J. A new, stereoselective synthesis of methyl1,2-trans-1-thioglycosides.Tetrahedron Lett.1987,28,1375–1376.
    [16] Nambiar, S.; Daueble, J.F.; Doyle, R.J.; Taylor, K.G. Facile synthesis of silylated thioglycosides.Tetrahedron Lett.1989,30,2179–2182.
    [17] Agnihotri, G.; Tiwari, P.; Misra, A.K. One-pot synthesis of per-O-acetylated thioglycosides fromunprotected reducing sugars. Carbohydr. Res.2005,340,1393–1396.
    [18] Tai, C.A.; Kulkarni, S.S.; Hung, S.C. Facile Cu(OTf)2-catalyzed preparation of per-O-acetylatedhexopyranoses with stoichiometric acetic anhydride and sequential onepot anomeric substitution tothioglycosides under solvent-free conditions. J. Org. Chem.2003,68,8719–8722.
    [19] Weng, S.S.; Lin, Y.D.; Chen, C.T. Highly diastereoselective thioglycosylation o functionalizedperacetylated glycosides catalyzed by MoO2Cl2. Org. Lett.2006,8,5633–5636.
    [20] Tiwari, P.; Agnihotri, G.; Misra, A.K. Modified one-pot protocol for the preparation ofthioglycosides from unprotected aldoses via S-glycosyl isothiouronium salts. J. Carbohydr. Chem.2005,24,723–732.
    [21] Ibatullin, F.M.; Shabalin, K.A.; Janis, J.V.; Shavva, A.G. Reaction of1,2-transglycosyl acetateswith thiourea: a new entry to1-thiosugars. Tetrahedron Lett.2003,44,7961–7964.
    [22] Mukherjee, C.; Tiwari, P.; Misra, A.K. Synthesis of thio-and selenoglycosides by cleavage ofdichalconides in the presence of zinc/zinc chloride and reaction with glycosyl bromides.Tetrahedron Lett.2006,47,441–445.
    [23] Zhang, Z.; Magnusson, G. Conversion of p-methoxyphenyl glycosides into the correspondingglycosyl chlorides and bromides, and into thiophenyl glycosides. Carbohydr. Res.1996,925,41-55.
    [1](a) Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology1993,3,97–130;(b) Varner, J. A. Isolation of a sponge-derived extracellular matrix adhesion protein. J.Biol. Chem.1996,271,16119-16125;(c) Dwek, R. A. Glycobiology: toward understanding thefunction of sugars. Chem. Rev.1996,96,683-720.
    [2](a) Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B. Armed and disarmed n-pentenylglycosides in saccharide couplings leading to oligosaccharides. J. Am. Chem. Soc.1988,110,5583–5584;(b) Fraser-Reid, B.; Wu, Z.; Udodong, U. E.; Ottosson, H. Armed/disarmed effects inglycosyl donors: rationalization and sidetracking. J. Org. Chem.1990,55,6068–6070;(c)Fraser-Reid, B.; Lu, J.; Jayaprakash, K. N.; Cristo′bal Lo′pez, J. Synthesis of a28-meroligosaccharide core of Mycobacterial lipoarabinomannan (LAM) requires only two n-pentenylorthoester progenitors. Tetrahedron: Asymmetry2006,17,2449–2463.
    [3](a) Kanie, O.; Ito, Y.; Ogawa, T. Orthogonal glycosylation strategy in oligosaccharide synthesis. J.Am. Chem. Soc.1994,116,12073–12074;(b) Demchenko, A. V.; de Meo, C. Semi-orthogonality ofO-pentenyl and S-ethyl glycosides: application for the oligosaccharide synthesis. Tetrahedron Lett.2002,43,8819–8822.
    [4] Huang, X.-F.; Huang, L.; Wang, H.; Ye, X.-S. Iterative one-pot synthesis of oligosaccharides.Angew. Chem., Int. Ed.2004,43,5221–5224.
    [5](a) Lee, H.-K.; Scanlan, C. N.; Huang, C.-Y.; Chang, A. Y.; Calarese, D. A.; Dwek, R. A.; Rudd, P.M.; Burton, D. R.; Wilson, I. A.; Wong, C.-H. Reactivity-based one-pot synthesis of oligomannoses:defining antigens recognized by2G12, a broadly neutralizing anti-HIV-1antibody. Angew. Chem.,Int. Ed.2004,43,1000–1003;(b) Mong, K.-K. T.; Wong, C.-H. Reactivity-based one-pot synthesisof a Lewis Y carbohydrate hapten: a colon–rectal cancer antigen determinant. Angew. Chem., Int.Ed.2002,41,4087–4090.
    [6] Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides.Science (New York, N. Y.)2001,291,1523–1527.
    [7](a) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. Programmableone-pot oligosaccharide synthesis. J. Am. Chem. Soc.1999,121,734-753;(b) Ye, X.-S.; Wong,C.-H. Anomeric reactivity-based one-pot oligosaccharide synthesis: a rapid route tooligosaccharide libraries. J. Org. Chem.2000,65,2410-2431.
    [8] Yu, B.; Xie, J.-M.; Deng, S.-J.; Hui, Y.-Z. First synthesis of a bidesmosidic triterpene saponin by ahighly efficient procedure. J. Am. Chem. Soc.1999,121,12196-12197.
    [9] Tai, C.-A.; Kulkarni, S. S.; Hung, S.-C. Facile Cu(OTf)2-catalyzed preparation of per-O-acetylatedhexopyranoses with stoichiometric acetic anhydride and sequential one-pot anomeric substitution tothioglycosides under solvent-free conditions. J. Org. Chem.2003,68,8719-8722.
    [10] Dasgupta, S.; Rajput, V. K.; Roy, B.; Mukhopadhyay, B. Lanthanumtrifluoromethanesulfonate-catalyzed facile synthesis of per-O-acetylated sugars and their one-potconversion to S-aryl and O-alkyl/aryl glycosides. J. Carbohydr. Chem.2007,26,91-106.
    [11] Huang, L.-C.; Liang, P.-H.; Liu, C.-Y.; Lin, C.-C. Large-scale synthesis of per-O-acetylatedsaccharides and their sequential transformation to glycosyl bromides and thioglycosides. J.Carbohydr. Chem.2006,25,303-313.
    [12] Chao, C.-S.; Chen, M.-C.; Lin, S.-C.; Mong, K.-K. T. Versatile acetylation of carbohydratesubstrates with bench-top sulfonic acids and application to one-pot syntheses of peracetylatedthioglycosides. Carbohydr. Res.2008,343,957-964.
    [13] Agnihotri, G.; Tiwari, P.; Misra, A. K. One-pot synthesis of per-O-acetylated thioglycosides fromunprotected reducing sugars. Carbohydr. Res.2005,340,1393-1396.
    [14] Mukhopadhyay, B.; Kartha, K. P. R.; Russell, D. A.; Field, R. A. Streamlined synthesis ofper-O-acetylated sugars, glycosyl iodides, or thioglycosides from unprotected reducing sugars. J.Org. Chem.2004,69,7758-7760.
    [15] Weng, S.-S.; Li, C.-L.; Liao, C.-S.; Chen, T.-A.; Huang, C.-C.; Hung, K.-T. Facile preparation ofα-glycosyl iodides by in situ generated aluminum iodide: straightforward synthesis of thio-, seleno-,and O-glycosides from unprotected reducing sugars. J. Carbohydr. Chem.2010,29,429-440.
    [16] Kumar, R.; Tiwari, P.; Maulik, P. R.; Misra, A. K. A generalized procedure for the one-potpreparation of glycosyl azides and thioglycosides directly from unprotected reducing sugars underphase-transfer reaction conditions. Eur. J. Org. Chem.2006,74–79.
    [17](a) Sato, T.; Wakahara, Y.; Otera, J.; Nozaki, H.; Fukuzumi, S. Importance of Lewis acid mediatedelectron transfer in Mukaiyama-Michael reaction of ketene silyl acetals. J. Am. Chem. Soc.1991,113,4028-4030;(b) Maruoka, K.; Akakusa, M.; Saito, S.; Ooi, T.; Yamamoto, H. AsymmetricDiels-Alder reaction of unsymmetrical maleates. A Chemical access to chiral, unsymmetricalcis-cyclohexene-1,2-dicarboxylates. J. Am. Chem. Soc.1994,116,6153-6158;(c) Jin, J.; Smith, D.T.; Weinreb, S. M. Novel intramolecular ene reactions of allenylsilanes. J. Org. Chem.1995,60,5366-5367;(d) Ji, M.; Li, X.-F.; Wang, J.-H.; Zhu, J.-M.; Zhou. L.-M. Grafting SnCl4catalyst as anovel solid acid for the synthesis of3-methylbut-3-en-1-ol. Catalysis Today2011,173,28–31;(e)Takeya, T.; Doi, H.; Ogata, T.; Iwao Okamoto, I.; Kotani, E. Aerobic oxidative dimerization of1-naphthols to2,2’-binaphthoquinones mediated by SnCl4and its application to natural productsynthesis. Tetrahedron2004,60,9049-9060;(f) Dubost, C.; Leroy, B.; Marko, I. E.; Tinant, B.;Declercq, J.-P.; Justin Bryans, J. Stereoselective synthesis of functionalised triol units by SnCl4promoted allylation of α-benzyloxyaldehydes: crucial role of the stoichiometry of the Lewis acid.Tetrahedron2004,60,7693-7704;(g) Bigdeli, M. A.; Rahmati, A.; Abbasi-Ghadim, H.; Mahdavinia,G. H. SnCl4and SbCl5promoted aromatization of enamines. Tetrahedron Lett.2007,48,4575-4578;(h) Kita, Y.; Matsuda, S.; Inoguchi, R.; Jnaneshwara, K.; Ganesh, J.; Fujioka, H. SnCl4-promotedrearrangement of2,3-epoxy alcohol derivatives: stereochemical control of the reaction. TetrahedronLett.2005,46,89-91;(i) Dussault, P. H.; Liu, X. SnCl4-mediated reaction of ozonides withallyltrimethylsilane: formation of1,2-dioxolanes. Tetrahedron Lett.1999,40,6553-6556;(j)Mirjalili, B. B. F.; Hashemi, M. M.; Sadeghic, B.; Emtiazi, H. SnCl4/SiO2: an efficientheterogeneous alternative for one-pot synthesis of-acetamidoketones. J. Chin. Chem. Soc.2009,56,386-391.
    [18] Li, Y.-Q.; Cheng, L.-H. A rapid and convenient synthesis of acylals from aldehydes and aceticanhydrides catalyzed by SnCl4/SiO2. Chin. Chem. Lett.2001,12,565-568.
    [19](a) Nicolaou, K. C.; Winssinger, N.; Pastor, J.; DeRoose, F. A general and highly efficient solidphase synthesis of oligosaccharides. Total synthesis of a heptasaccharide phytoalexin elicitor (HPE).J. Am. Chem. Soc.1999,121,12196-12197;(b) Blom, P.; Ruttens, B.; Hoof, S. V.; Hubrecht, I.; Vander Eycken, J.; Sas, B.; Van hemel, J.; Vandenkerckhove, J. A convergent ring-closing metathesisapproach to carbohydrate-based macrolides with potential antibiotic activity. J. Org. Chem.2005,70,10109-10112;(c) Huang, G.-L.; Liu, M.-X.; Mei, X.-Y.; Cao, Y.-C. Synthesis, protein-bindingability and phytoalexin-elicitor activity of epoxyalkyl (1→3)-β-D-oligoglucosides. GlycoconjugateJ.2004,20,427-433.
    [20] Das, S. K.; Roy, J.; Reddy, K. A.; Abbineni, C. A mild and convenient indium(III)chloride-catalyzed synthesis of thioglycosides. Carbohydr. Res.2003,338,2237-2240.
    [21] Yang, L.; Ye, X.-S. A highly α-selective glycosylation for the convenient synthesis of repeatingα-(1→4)-linked N-acetyl-galactosamine units. Carbohydr. Res.2010,345,1713-1721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700