蔬菜废弃物厌氧消化产酸特性及回流调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上蔬菜产量最大的国家,部分蔬菜会在收获、储存和运输等过程中损失而成为蔬菜废弃物。该有机废弃物含水量高且有机物含量高,填埋处理会产生渗滤液而造成环境污染。厌氧消化是处理蔬菜废弃物的理想选择之一,可以实现蔬菜废弃物的减量化和能源化。
     采用全混式和固定床生物膜反应器组成的两相系统对蔬菜厌氧消化产沼气过程进行研究。在有机负荷1.3、1.7、2.1g VS/L/d和2.6g VS/L/d下运行,考察有机负荷对发酵过程稳定性和产气的影响。有机负荷增加至2.6g VS/L/d时,酸化反应器发酵液的总挥发性脂肪酸浓度和CODcr浓度分别维持在8500mg/L和20000mg/L左右,与前一阶段相比并没有随着有机负荷提高而提高,且VS浓度达到20g/L,这些结果表明该有机负荷下水解受到抑制。
     实验中引入甲烷反应器出水回流至酸化反应器来促进蔬菜水解。结果显示甲烷反应器出水回流能有效缓解挥发性脂肪酸的抑制并起到稀释和调节pH值作用,尤其是在高有机负荷下对酸化反应器中底物酸化和沼气产量有明显促进作用。实验还研究了回流比对两相蔬菜厌氧消化性能的影响,该系统在有机负荷1.7g VS/L/d的条件下增大回流比为0、0.6、1和1.4,使酸化反应器日产气量提高,同时pH值从约5.1上升至6.7。这说明甲烷反应器带有一定碱度的出水回流有助于酸化反应器创造一个适宜环境产沼气,同时酸化反应器中发酵液CODcr浓度减小是由于回流的稀释作用。本实验中在回流比0.6条件下可促进酸化过程,但需要注意的是一个比较大回流比1.4会导致酸化和甲烷反应器之间的传质加强,造成反应系统运行不稳定。
     为了提高两相厌氧系统运行稳定性,将系统的甲烷反应器有效体积为4L和7L配比,在回流比0.8和1.6条件下考察反应器运行情况。结果表明在有机负荷为2.6g VS/L/d下回流对蔬菜废弃物厌氧消化的性能有明显促进作用。有机负荷提高到3.0g VS/L/d后,没有回流的系统中酸化反应器VS浓度达到50g/L左右,出料中有机固体进入甲烷反应器而导致其酸化,最终整个发酵过程失败。酸化和甲烷反应器分别为3L/4L组成的系统且回流比1.6的甲烷反应器发酵液中TVFA/TIC比值增加至约0.5,这表明产甲烷化即将发生的酸化而使系统厌氧消化过程受到抑制。3L/7L组成的系统延长了甲烷化的水力停留时间而有助于挥发性脂肪酸转化,提高了系统的甲烷产生和有机物降解效率。
     蔬菜废弃物单相厌氧消化中添加餐厨垃圾使产气量和甲烷产率增加。对蔬菜废弃物的单相和两相厌氧消化之间的差异进行比较表明两相系统可在更高的有机负荷下稳定运行。
China is a large vegetable producing country. However, some parts of produced vegetable are lost as waste throughout the vegetable supply chain, which includes collection, storage and transportation. Vegetable waste (VW) is often a source of nuisance as leachate when it is disposed in landfills because of its high moisture and organic contents. Anaerobic digestion is an alternative technology for treatment in consideration of solids reduction and energy recovery.
     A two-stage anaerobic digestion system consisting of CSTR and fixed-bed biofilm reactor was used in the experiments. To investigate effects of OLRs on two-stage anaerobic digestion, the systems were operated at four different OLRs of1.3,1.7,2.1g VS/L/d and2.6g VS/L/d. The results showed that with increasing OLRs to2.6g VS/L/d, total volatile fatty acid concentration and CODcr concentration in acidogenic reactor was maintained at about8500mg/L and20000mg/L, whereas VS content sharply increased to20g/L. It has been revealed that inhibition of hydrolysis in acidogenic reactor occured.
     The effluent recirculation from methanogenic reactor to acidogenic reactor was introduced to improve hydrolysis. Effluent recirculation showed a considerable positive effect on alleviating VFA inhibition and improving biogas production in acidogenic reactor because of the effect of dilution and pH adjustment, particularly at high OLRs. The effects of recirculation rate (RR) on the performance of two-stage VW anaerobic digestion were also investigated. The system was continuously operated at an organic loading rate of1.7g VS/L/d with varying RRs (0,0.6,1, and1.4). Results demonstrated that biogas production in acidogenic reactor increased, when pH value is increased from approximately5.1to6.7. This increase indicates that recirculation of alkaline effluent from the methanogenic reactor helps create a favorable condition for biogas production in the acidogenic reactor. The decrease in chemical oxygen demand (COD) concentrations was also observed in the acidogenic reactor. This condition may be attributed to dilution under recirculation. Meanwhile, the process of acidogenesis was stimulated by an RR of0.6. The dynamics between hydrolysis and methanogenesis under recirculation indicated that the mass transfer capacity between the two-stage reactors improved. It was note that a relatively high recirculation rate would cause disproportionate increase in the effective loading rate of the methanogenic reactor and interactively give rise to a progressive increase in the organic output concentration and decline in the performance.
     To improve the performance of VW in two-stage anaerobic systems under high organic loading rate, the acidogenic reactors were accompanied by a serial methanogenic reactors configuration with volume distribution ratio of4L and7L, and recirculation rate of0.8and1.6. The results showed that recirculation improved performance of VW anaerobic digestion under OLR of2.6g VS/L/d. The organic load pulses were introduced to compare stability of the processes and to study behavior of the serial systems. The VS content was sharply increased to50g/L in the acidogenic reactor of system control without recirculation. The output of the acidogenic reactor was fed directly to the methanogenic reactor, which led to acidification and overall process failure. TVFA/TIC of methanogenic reactor in3 L/4L configuration with RR of1.6increased to about0.5, which indicated a potential imminent failure of the methanogenic process. The methanogenic reactor in3L/7L configuration helped utilizing VFA produced from overloading in the acidogenic reactor, which improved CH4production and conversion efficiency of the system.
     The anaerobic digestion of vegetable waste was performed at various OLRs in single-stage with food waste (FW) addition. Changing the feed to a higher FW content in a ratio of VW to FW resulted in an increase in biogas yield and methane yield. The single-and two-stage anaerobic digestion of vegetable waste was compared, which indicated that two-stage digestion presented more stable operation and higher OLR treatment capacity.
引文
[1]STAT F.2012. FAOSTAT-Statistical Database,2012.
    [2]赵海燕.中国蔬菜产业国际竞争力研究:[博士学位论文].武汉:华中农业大学,2003.
    [3]黄鼎曦,陆文静,王洪涛.农业蔬菜废物处理方法研究进展和探讨.环境污染治理技术与设备,2002,3(11):38-42.
    [4]Velmurugan B., Ramanujam RA. Anaerobic digestion of vegetable wastes for biogas production in a fed-batch reactor. International Journal of Emerging Sciences,2011,1:478-486.
    [5]刘勤生.我国蔬菜加工与流通的现状及发展趋势.粮油加工与食品机械,2000,3(6):1-4.
    [6]Arvanitoyannis I.S., Varzakas T.H. Vegetable waste treatment:comparison and critical presentation of methodologies. Critical Reviews in Food Science & Nutrition,2008,48 (3):205-247.
    [7]刘荣厚,王远远,孙辰,等.蔬菜废弃物厌氧发酵制取沼气的试验研究.农业工程学报,2008,24(4):209-213.
    [8]Nawirska A., Kwasniewska M. Dietary fibre fractions from fruit and vegetable processing waste. Food Chemistry,2005,91 (2):221-225.
    [9]Pinacho A., Garcia-Encina P., Sancho P., et al. Study of drying systems for the utilization of biodegradable municipal solid wastes as animal feed. Waste Management,2006,26 (5):495-503.
    [10]Bouallagui H., Touhami Y., Ben Cheikh R., et al. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry,2005,40 (3):989-995.
    [11]吕凡.有机生活垃圾厌氧液化过程酸碱度对产物组成及产物抑制的影响:[博士学位论文].上海:同济大学,2006.
    [12]王丽敏.生活垃圾处理工艺的选择.山西建筑,2013,39(25):204-205.
    [13]Sun L., Wan S., Yu Z., et al. Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. Bioresource Technology,2012,104: 280-288.
    [14]Dugba P.N., Zhang R. Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems-thermophilic versus mesophilic operations. Bioresource Technology,1999,68 (3): 225-233.
    [15]Masse D., Patni N., Droste R., et al. Operation strategies for psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Canadian Journal of Civil Engineering,1996,23 (6): 1285-1294.
    [16]Bujoczek G., Oleszkiewicz J., Sparling R., et al. High solid anaerobic digestion of chicken manure. Journal of Agricultural Engineering Research,2000,76 (1):51-60.
    [17]Liu X., Wang W., Shi Y, et al. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China:Effect of organic loading rate. Waste Management,2012,32 (11): 2056-2060.
    [18]Cavinato C., Bolzonella D., Pavan P., et al. Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot-and full-scale reactors. Renewable Energy, 2013,55:260-265.
    [19]党锋,毕于运,刘研萍,等.欧洲大中型沼气工程现状分析及对我国的启示.中国沼气,2014,32(1):79-89.
    [20]程序,梁近光,郑恒受,等.中国“产业沼气”的开发及其应用前景.农业工程学报,2010,26(5):1-6.
    [21]邓良伟,陈子爱.欧洲沼气工程发展现状.中国沼气,2007,25(5):23-31.
    [22]杜祥琬,黄其励,李俊峰,等.我国可再生能源战略地位和发展路线图研究.中国工程科学,2009,11(8):4-9.
    [23]魏伟,张绪坤,祝树森,等.生物质能开发利用的概况及展望.农机化研究,2013,35(3):7-11.
    [24]王丽丽.沼气产业化基本理论与大中型沼气工程资源配置优化研究:[博士学位论文].长春:吉林大学,2012.
    [25]Gujer W., Zehnder A.1983. Conversion processes in anaerobic digestion. Water Science & Technology,15 (8-9):127-167.
    [26]胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003.
    [27]陈羚.固体有机物厌氧酸化过程中产物抑制的调节研究:[博士学位论文].北京:中国农业大学,2008.
    [28]任南琪,王爱杰,马放.产酸发酵微生物生理生态学.北京:科学出版社;2005.
    [29]周晓臣.城镇有机垃圾厌氧发酵中有机酸及氨氮抑制效应研究:[硕士学位论文].重庆:重庆大学,2006.
    [30]张亚雷,周雪飞,国际水协厌氧消化工艺数学模型课题组.厌氧消化数学模型:Anaerobic digestion model.上海:同济大学出版社,2004.
    [31]Shin S.G., Han G., Lim J., et al. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Research,2010,44 (17):4838-4849.
    [32]Veeken A., Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology,1999,69 (3):249-254.
    [33]Rao M., Singh S. Bioenergy conversion studies of organic fraction of MSW:kinetic studies and gas yield-organic loading relationships for process optimisation. Bioresource Technology,2004,95 (2): 173-185.
    [34]Shin H.S., Song Y.C. A model for evaluation of anaerobic degradation characteristics of organic waste:focusing on kinetics, rate-limiting step. Environmental Technology,1995,16 (8):775-784.
    [35]任南琪,王爱杰.厌氧生物技术原理与应用.北京:化学工业出版社,2004.
    [36]Babel S., Fukushi K., Sitanrassamee B. Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester. Water Research,2004,38 (9):2417-2423.
    [37]Gan J., Chen L., Li B., et al. A rotational drum fermentation system with water flushing for enhancing hydrolysis and acidification of solid organic wastes. Bioresource Technology,2008,99 (7): 2571-2577.
    [38]Yang Q., Luo K., Li X.M., et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresource Technology,2010,101 (9):2924-2930.
    [39]Chen L., Li B., Li D., et al. Ultrasound-assisted hydrolysis and acidogenesis of solid organic wastes in a rotational drum fermentation system. Bioresource Technology,2008,99 (17):8337-8343.
    [40]Zhang B., Zhang L., Zhang S., et al. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environmental Technology,2005,26 (3):329-340.
    [41]Liu H., Wang J., Liu X., et al. Acidogenic fermentation of proteinaceous sewage sludge:Effect of pH. Water Research,2011,46 (3):799-807.
    [42]Chen L., Jiang W.Z., Kitamura Y., et al. Enhancement of hydrolysis and acidification of solid organic waste by a rotational drum fermentation system with methanogenic leachate recirculation. Bioresource Technology,2007,98 (11):2194-2200.
    [43]林长松.CF固定床生物膜厌氧反应器产沼气发酵效率及机理研究:[博士学位论文].北京:中国农业大学,2009.
    [44]左壮,吴树彪,高永昌,等.蔬菜废弃物作为沼气发酵原料产气性能.同济大学学报(自然科学版),2012,40(S2):21-26.
    [45]Gunaseelan V.N. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and Bioenergy,2004,26 (4):389-399.
    [46]Scherer P., Vollmer G., Fakhouri T., et al. Development of a methanogenic process to degrade exhaustively the organic fraction of municipal grey waste under thermophilic and hyperthermophilic conditions. Water Science and Technology,2000,41 (3):83-91.
    [47]Nielsen H., Mladenovska Z., Westermann P., et al. Comparison of two-stage thermophilic (68℃ /55 ℃) anaerobic digestion with one-stage thermophilic (55 ℃) digestion of cattle manure. Biotechnology and Bioengineering,2004,86 (3):291-300.
    [48]Eggleston S., Buendia L., Miwa K., et al. IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies,2006. Hayama, Japan.
    [49]李东.城市生活有机垃圾厌氧降解的过程机理与工程应用研究:[博士学位论文].广州:中国科学院研究生院,2009.
    [50]李东,孙永明,袁振宏,等.有机垃圾组分中温厌氧消化产甲烷动力学研究.太阳能学报,2010,31(3),385-390.
    [51]易龙生,饶玲华,王鑫,等.餐厨垃圾理化性质及其厌氧发酵产气潜力分析.中南大学学报(自然科学版),2012,43(4):1584-1588.
    [52]李东,袁振宏,张宇,等.城市生活有机垃圾各组分的厌氧消化产甲烷能力.环境科学学报,2008,28(11):2284-2290.
    [53]刘晓.城市生物质废物共消化过程解析及工艺优化研究:[博士学位论文].北京:清华大学, 2011.
    [54]Fujishima S., Miyahara T., Noike T. Effect of moisture content on anaerobic digestion of dewatered sludge:ammonia inhibition to carbohydrate removal and methane production. Water Science and Technology,2000,41(3):119-127.
    [55]De Bere L. Anaerobic digestion of solid waste:state-of-the-art. Water Science and Technology, 2000,41(3):283-290.
    [56]Shen F., Yuan H., Pang Y., et al. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW):single-phase vs. two-phase. Bioresource Technology,2013,144:80-85.
    [57]Liu X., Gao X., Wang W, et al. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable Energy,2012,44:463-468.
    [58]杜连柱,陈羚,杨鹏,等.猪粪秸秆不同物料比对固体产酸发酵效果的影响.农业工程学报,2010,(7):272-276.
    [59]Shi J., Wang Z., Stiverson J.A., et al. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresource Technology,2013,136:574-581.
    [60]Sreekrishnan T., Kohli S., Rana V. Enhancement of biogas production from solid substrates using different techniques-a review. Bioresource Technology,2004,95(1):1-10.
    [61]王凤.不同有机负荷可生化单基质与厌氧污泥混合厌氧实验研究:[硕士学位论文].成都:西南交通大学,2008.
    [62]苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究:[博士学位论文].上海:同济大学,2006.
    [63]Wang Q., Narita J.Y., Ren N., et al. Effect of pH adjustment on preservation of kitchen waste used for producing lactic acid. Water, Air, & Soil Pollution,2003,144(1-4):405-418.
    [64]Ren N., Xing D., Rittmann B.E., et al. Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environmental Microbiology,2007,9(5):1112-1125.
    [65]Veeken A., Hamelers B. Effect of substrate-seed mixing and leachate recirculation on solid state digestion of biowaste. Water Science and Technology,2000,41(3):255-262.
    [66]岳秀萍.ASBR反应器快速启动策略及碱度需求特征研究:[博士学位论文].太原:太原理工大学,2006.
    [67]斯皮思,亚新,废水处理.工业废水的厌氧生物技术:中国建筑工业出版社;2001.
    [68]Mata-Alvarez J., Mace S., Llabres P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology,2000,74(1):3-16.
    [69]Lowe S.E., Jain M.K., Zeikus J.G. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiological Reviews,1993,57 (2):451.
    [70]Bouallagui H., Haouari O., Touhami Y., et al. Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochemistry,2004,39(12): 2143-2148.
    [71]Bouallagui H., Rachdi B., Gannoun H., et al. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors. Biodegradation,2009,20 (3):401-409.
    [72]李道义.农业废弃物干式厌氧发酵技术与装备的研究:[博士学位论文].北京:中国农业大学,2012.
    [73]Sanchez E., Borja R., Weiland P., et al. Effect of temperature and pH on the kinetics of methane production, organic nitrogen and phosphorus removal in the batch anaerobic digestion process of cattle manure. Bioprocess Engineering,2000,22 (3):247-252.
    [74]Lissens G., Vandevivere P., De Baere L., et al. Solid waste digestors:process performance and practice for municipal solid waste digestion. Water Science & Technology,2001,44(8):91-102.
    [75]Lane A. Laboratory scale anaerobic digestion of fruit and vegetable solid waste. Biomass,1984,5 (4):245-259.
    [76]Mata-Alvarez J., Llabres P., Cecchi F., et al. Anaerobic digestion of the Barcelona central food market organic wastes:experimental study. Bioresource Technology,1992,39 (1):39-48.
    [77]Banik G.C., Ellis T.G., Dague R.R. Structure and methanogenic activity of granules from an ASBR treating dilute wastewater at low temperatures. Water Science and Technology,1997,36 (6):149-156.
    [78]Banik G.C., Daguet R.R. ASBR treatment of low strength industrial wastewater at psychrophilic temperatures. Water Science and Technology,1997,36 (2):337-344.
    [79]Luo G., Xie L., Zhou Q. Enhanced treatment efficiency of an anaerobic sequencing batch reactor (ASBR) for cassava stillage with high solids content. Journal of Bioscience and Bioengineering,2009, 107 (6):641-645.
    [80]Bouallagui H., Lahdheb H., Ben Romdan E., et al. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management,2009,90 (5):1844-1849.
    [81]Bouallagui H., Ben Cheikh R., Marouani L., et al. Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource Technology,2003,86 (1):85-89.
    [82]Jiang Y., Heaven S., Banks C. Strategies for stable anaerobic digestion of vegetable waste. Renewable Energy,2012,44:206-214.
    [83]Schober G., Schafer J., Schmid-Staiger U., et al. One and two-stage digestion of solid organic waste. Water Research,1999,33 (3):854-860.
    [84]Held C., Wellacher M., Robra K.H., et al. Two-stage anaerobic fermentation of organic waste in CSTR and UFAF-reactors. Bioresource Technology,2002,81 (1):19-24.
    [85]Demirel B., Yenigun O. Two-phase anaerobic digestion processes:a review. Journal of Chemical Technology & Biotechnology,2002,77 (7):743-755.
    [86]刘广民,董永亮,薛建良,等.果蔬废弃物厌氧消化特征及固体减量研究.环境科学与技术,2009,32(3):27-30.
    [87]Bouallagui H., Torrijos M., Godon J.J., et al. Two-phases anaerobic digestion of fruit and vegetable wastes:bioreactors performance. Biochemical Engineering Journal,2004,21 (2):193-197.
    [88]Alvarez J.A., Otero L., Lema J.M. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresource Technology,2010,101 (4):1153-1158.
    [89]谭鹏.CSTR系统填埋场渗滤液与果蔬废物混合厌氧消化试验研究:[硕士学位论文].成都:西南交通大学,2012.
    [90]Callaghan F., Wase D., Thayanithy K., et al. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass and Bioenergy,2002,22 (1):71-77.
    [91]Gomez X., Cuetos M., Cara J., et al. Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes:conditions for mixing and evaluation of the organic loading rate. Renewable Energy,2006,31 (12):2017-2024.
    [92]Molinuevo-Salces B., Gonzalez-Fernandez C., Gomez X., et al. Vegetable processing wastes addition to improve swine manure anaerobic digestion:Evaluation in terms of methane yield and SEM characterization. Applied Energy,2012,91 (1):36-42.
    [93]Kafle G.K., Kim S.H. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation. Applied Energy,2013,103:61-72.
    [94]Raynal J., Delgenes J., Moletta R. Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process. Bioresource Technology,1998,65 (1):97-103.
    [95]Dinsdale R., Premier G., Hawkes F., et al. Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters. Bioresource Technology,2000,72 (2): 159-168.
    [96]Romano R.T., Zhang R. Anaerobic digestion of onion residuals using a mesophilic Anaerobic Phased Solids Digester. Biomass and Bioenergy,2011,35 (10):4174-4179.
    [97]张庆芳,杨林海,邵田羽,等.有机固体废弃物渗滤床高温干式厌氧发酵的中试研究.中国沼气,2012,30(4):11-13.
    [98]李道义,李树君,景全荣,等.连续高温干式厌氧发酵牛粪制沼气中试.中国沼气,2013,31(5):20-24.
    [99]徐金兰.厌氧折流板反应器(ABR)系统的特性及调控研究:[博士学位论文].西安:西安建筑科技大学,2003.
    [100]Ma J., Yu L., Frear C., et al. Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure. Bioresource Technology,2013,131:6-12.
    [101]Arcand Y., Guiot S., Desrochers M, et al. Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules. The Chemical Engineering Journal and the Biochemical Engineering Journal,1994,56 (1):B23-B35.
    [102]Knol W., Van Der Most M.M., De Waart J. Biogas production by anaerobic digestion of fruit and vegetable waste. A preliminary study. Journal of the Science of Food and Agriculture,1978,29 (9): 822-830.
    [103]Lane A.G. Methane from anaerobic digestion of fruit and vegetable processing wastes [waste disposal, fuel generation]. Food Technology in Australia,1979,31.
    [104]Lee D.Y., Ebie Y., Xu K.Q., et al. Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresource Technology,2009,101 (1):S42-S47.
    [105]Van Soest P., Robertson J., Lewis B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science,1991,74 (10), 3583-3597.
    [106]Apha A.1998. WEF (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC.
    [107]Kafle G.K., Kim S.H. Sludge exchange process on two serial CSTRs anaerobic digestions: Process failure and recovery. Bioresource Technology,2011,102 (13):6815-6822.
    [108]Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry,1959,31 (3):426-428.
    [109]Zhang B., He P.J., Lu F., et al. Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes. Water Research,2007,41 (19):4468-4478.
    [110]Bernfeld P. Amylases, alpha and beta. Methods in enzymology I,1955,149-158.
    [111]Ghose T. Measurement of cellulase activities. Pure & Applied Chemistry,1987,59(2):257-268.
    [112]Chen Y., Cheng J.J., Creamer K.S. Inhibition of anaerobic digestion process:a review. Bioresource Technology,2008,99 (10):4044-4064.
    [113]Alkaya E., Demirer G.N. Anaerobic acidification of sugar-beet processing wastes:Effect of operational parameters. Biomass and Bioenergy,2011,35 (1):32-39.
    [114]Xiao K., Guo C., Zhou Y., et al. Acetic acid inhibition on methanogens in a two-phase anaerobic process. Biochemical Engineering Journal,2013,75:1-7.
    [115]林长松,袁旭峰,王小芬,等.固定床厌氧反应器处理高浓度糖蜜废水.农业工程学报,2009,25(7):195-200.
    [116]Demirel B., Neumann L., Scherer P. Microbial community dynamics of a continuous mesophilic anaerobic biogas digester fed with sugar beet silage. Engineering in Life Sciences,2008,8 (4): 390-398.
    [117]Michaud S., Bernet N., Buffiere P., et al. Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Research,2002,36 (5):1385-1391.
    [118]Lin J., Zuo J., Gan L., et al. Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. Journal of Environmental Sciences,2011,23 (8):1403-1408.
    [119]Shiralipour A., Smith P.H. Conversion of biomass into methane gas. Biomass,1984,6(1):85-92.
    [120]Alvarez R., Liden G. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renewable Energy,2008,33 (4):726-734.
    [121]秦智,任南琪,李建政,等.产酸相反应器的过酸状态及其控制.哈尔滨工业大学学报, 2003,35(9):1105-1108.
    [122]刘敏,任南琪,王爱杰,等.UASB反应器酸化后的状态及恢复研究.中国沼气,2003,21(2):7-10.
    [123]Koch K., Lubken M., Gehring T., et al. Biogas from grass silage-Measurements and modeling with ADM1. Bioresource Technology,2010,101 (21):8158-8165.
    [124]Hill D., Cobb S., Bolte J. Using volatile fatty acid relationships to predict anaerobic digester failure. Trans ASAE;(United States),1987,30 (2):496-501.
    [125]Llabres-Luengo P., Mata-Alvarez J. The hydrolytic step in a dry digestion system. Biological Wastes,1988,23 (1):25-37.
    [126]Mshandete A., Murto M., Kivaisi A., et al. Influence of recirculation flow rate on the performance of anaerobic packed-bed bioreactors treating potato-waste leachate. Environmental Eechnology,2004, 25 (8):929-936.
    [127]Hansen K.H., Angelidaki I., Ahring B.K. Anaerobic digestion of swine manure:inhibition by ammonia. Water Research,1998,32 (1):5-12.
    [128]Niu Q., Qiao W., Qiang H., et al. Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration:stability, inhibition and recovery. Bioresource Technology,2013,137: 358-367.
    [129]Gerardi M.H. The microbiology of anaerobic digesters:John Wiley & Sons; 2003.
    [130]Zhang B., He P., LU F., et al. Enhancement of anaerobic biodegradability of flower stem wastes with vegetable wastes by co-hydrolysis. Journal of Environmental Sciences,2008,20 (3):297-303.
    [131]Parawira W., Murto M., Read J., et al. Profile of hydrolases and biogas production during two-stage mesophilic anaerobic digestion of solid potato waste. Process Biochemistry,2005,40 (9): 2945-2952.
    [132]Boe K., Angelidaki I. Serial CSTR digester configuration for improving biogas production from manure. Water Research,2009,43 (1):166-172.
    [133]Cheng F., Li M., Li D., et al. Volatile organic acid adsorption and cation dissociation by porphyritic andesite for enhancing hydrolysis and acidogenesis of solid food wastes. Bioresource Technology,2010,101 (14):5076-5083.
    [134]Turkdogan-Aydinol F.I., Yetilmezsoy K., Comez S. Effect of extracellular enzyme activity on digestion performance of mesophilic UASB reactor treating high-strength municipal wastewater. Bioprocess and Biosystems Engineering,2011,34:389-401.
    [135]Jung K.W., Moon C., Cho S.K., et al. Conversion of organic solid waste to hydrogen and methane by two-stage fermentation system with reuse of methane fermenter effluent as diluting water in hydrogen fermentation. Bioresource Technology,2013,139:120-127.
    [136]Jiang W.Z., Kitamura Y., Li B. Improving acidogenic performance in anaerobic degradation of solid organic waste using a rotational drum fermentation system. Bioresource Technology,2005,96 (14): 1537-1543.
    [137]Stabnikova O., Liu X.Y., Wang J.Y. Anaerobic digestion of food waste in a hybrid anaerobic solid-liquid system with leachate recirculation in an acidogenic reactor. Biochemical Engineering Journal,2008,41 (2):198-201.
    [138]He R., Shen D., Wang J.Q., et al. Biological degradation of MSW in a methanogenic reactor using treated leachate recirculation. Process Biochemistry,2005,40 (12):3660-3666.
    [139]El-Mashad H.M., van Loon W.K., Zeeman G., et al. Effect of inoculum addition modes and leachate recirculation on anaerobic digestion of solid cattle manure in an accumulation system. Biosystems Engineering,2006,95 (2):245-254.
    [140]Cavinato C., Bolzonella D., Fatone F., et al. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresource Technology,2011,102 (18):8605-8611.
    [141]Kobayashi T., Xu K.Q., Li Y.Y., et al. Effect of sludge recirculation on characteristics of hydrogen production in a two-stage hydrogen-methane fermentation process treating food wastes. International Journal of Hydrogen Energy,2012,37 (7):5602-5611.
    [142]Aslanzadeh S., Rajendran K., Jeihanipour A., et al. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System. Energies,2013,6 (6):2966-2981.
    [143]Yu H., Wilson F., Tay J.H. Prediction of the effect of recirculation on the effluent quality of anaerobic filters by empirical models. Water Environment Research,2000,72 (2):217-224.
    [144]Yen H.W., Brune D.E. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology,2007,98(1):130-134.
    [145]Duan N., Dong B., Wu B., et al. High-solid anaerobic digestion of sewage sludge under mesophilic conditions:Feasibility study. Bioresource Technology,2012,104:150-156.
    [146]Erdirencelebi D. Treatment of high-fat-containing dairy wastewater in a sequential UASBR system:influence of recycle. Journal of Chemical Technology and Biotechnology,2011,86(4): 525-533.
    [147]Mtz-Viturtia A., Mata-Alvarez J., Cecchi F. Two-phase continuous anaerobic digestion of fruit and vegetable wastes. Resources, Conservation and Recycling,1995,13(3):257-267.
    [148]Zuo Z., Wu S., Zhang W., et al. Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresource Technology,2013,146: 556-561.
    [149]Vavilin V.A., Shchelkanov M.Y., Rytov S.V. Effect of mass transfer on concentration wave propagation during anaerobic digestion of solid waste. Water Research,2002,36 (9):2405-2409.
    [150]Mohan S.V., Babu V.L., Bhaskar Y.V., et al. Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) treating hypersaline composite chemical wastewater. Bioresource Technology,2007,98 (7):1373-1379.
    [151]Rincon B., Borja R., Gonzalez J., et al. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochemical Engineering Journal,2008,40 (2):253-261.
    [152]Vavilin V., Fernandez B., Palatsi J., et al. Hydrolysis kinetics in anaerobic degradation of particulate organic material:an overview. Waste Management,2008,28 (6):939-951.
    [153]Kim H.W., Nam J.Y., Kang S.T., et al. Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes. Bioresource Technology.2012,110:130-134.
    [154]Ledakowicz S., Kaczorek K.2004. Laboratory simulation of anaerobic digestion of municipal solid waste. Journal of Environmental Science and Health, Part A,39 (4):859-871.
    [155]Zuo Z., Wu, S., Zhang, W., et al. Performance of two-stage vegetable waste anaerobic digestion depending on varying recirculation rates. Bioresource Technology,2014,162:266-272.
    [156]Ghosh A., Bhattacharyya B. Biomethanation of white rotted and brown rotted rice straw. Bioprocess Engineering,1999,20 (4):297-302.
    [157]程辉彩,张丽萍,左壮,等.复合菌系CN6生长特性及在沼气发酵中的应用.农业机械学报,2013,44(5):143-147.
    [158]张万钦,吴树彪,郎乾乾,等.微量元素对沼气厌氧发酵的影响.农业工程学报,2013,29(10):1-11.
    [159]Ponsa S., Ferrer I., Vazquez F., et al. Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55℃) of sewage sludge:Influence of pH and solid content. Water Research,2008,42 (14):3972-3980.
    [160]张金磊,李彦富,陈全,等.北京市餐厨垃圾信息化管理模式探讨.中国资源综合利用,2012,30(12):32-34.
    [161]王攀,任连海,甘筱.城市餐厨垃圾产生现状调查及影响因素分析.环境科学与技术,2013,36(003):181-185.
    [162]Yang Y.Q., Shen D.S., Li N., et al. Co-digestion of kitchen waste and fruit-vegetable waste by two-phase anaerobic digestion. Environmental Science and Pollution Research,2013,20:2162-2171.
    [163]胡颂.城市生物质废物水热预处理技术和厌氧消化特性研究:[硕士学位论文].北京:清华大学,2009.
    [164]Baere L. Will anaerobic digestion of solid waste survive in the future? Water Science & Technology,2006,53 (8):187-194.
    [165]季军远.分段组合式厌氧生物反应器工作性能的研究:[博士学位论文].杭州:浙江大学;2013.
    [166]吴树彪,郎乾乾,张万钦,等.微量元素对餐厨垃圾厌氧发酵的影响实验.农业机械学报,2013,44(11):128-132.
    [167]李小风.油脂对餐厨垃圾厌氧消化抑制效应的试验研究:[硕士学位论文].重庆:重庆大学;2010.
    [168]房明,吴树彪,张万钦,等.接种比对餐厨垃圾中温厌氧消化的影响.中国农业大学学报,2014,19(1):186-192
    [169]Dai X., Duan N., Dong B., et al. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions:Stability and performance. Waste Management,2013,33 (2): 308-316.
    [170]郭建斌.中低温全混式猪粪厌氧消化性能研究:[博士学位论文].北京:中国农业大学,2011.
    [171]Christ O., Wilderer P., Faulstich M. Mathematical modeling of the hydrolysis of anaerobic processes. Water Science and Technology,2000,41 (3):61-65.
    [172]Speece R.E. Anaerobic biotechnology for industrial wastewater treatment. Environmental Science & Technology,1983,17 (9):416A-427A.
    [173]Wang S., Chandrasekhara Rao N., Qiu R., et al. Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry. Bioresource Technology, 2009,100 (23):5641-5647.
    [174]Lu F., Hao L., Zhu M., et al. Initiating methanogenesis of vegetable waste at low inoculum-to-substrate ratio:Importance of spatial separation. Bioresource Technology,2012,105: 169-173.
    [175]凡广生,李多松.两相厌氧消化工艺的研究进展及其应用.能源环境保护,2006,20(1):10-13.
    [176]Ganesh R., Torrijos M., Sousbie P., et al. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste:Comparison of start-up, reactor stability and process performance. Waste Management,2014,34 (5):875-885.
    [177]张正.城市粪便集中处理工艺选择研究—以合肥市为例:[硕士学位论文].合肥:合肥工业大学;2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700