手性酞菁及稀土三明治配合物的设计、合成、有机聚集及光谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性是自然界与生命戚相关的基本属性之一。在生命体系中的大部分基本单元都是手性分子,许多生物化学现象的本质即为手性识别,因此在研究生物体内各种生物现象时,从分子水平上来模拟生物功能则具有至关重要的意义。由于在分子电子学、分子信息存储、非线性光学及材料学等领域,作为新型的功能材料的卟啉酞菁化合物以及三明治型稀土卟啉酞菁配合物拥有广阔的应用前景,因此对于分子手性和超分子手性的表达、传递、存储及调节的研究具有重要的科研和研究价值。尽通过引入手性信息研究者们得到了带有手性的卟啉酞菁类化合物,但使其在卟啉、酞菁分子及超分子水平上顺利表达出来并将其组装制造出最终希望得到的高级有序的手性纳米结构,这对研究者而言仍是一个挑战。到目前为止,对手性酞菁及手性卟啉酞菁混合双层的报道还比较少。
     本论文主要设计、合成了具有特定分子结构和特殊性质的新型手性酞菁及手性卟啉酞菁混杂双层配合物,研究在分子水平及超分子水平上手性酞菁及稀土三明治配合物手性信息的传递和表达,分析了分子水平及超分子水平上手性信息的传递和表达与分子结构的关系,为合成新颖的手性卟啉酞菁化合物及其衍生物提供了重要路线和机理。主要内容包括:
     1、光学活性手性酞菁的合成及其组装纳米结构研究
     由于具有光学活性的手性四吡咯大环衍生物和许多生物过程有关,激起了许多研究者的兴趣,人们通过各种方法合成了大量具有特定性质的手性化合物,并通过氢键、π-π堆积作用、配位键、静电作用以及范德华力等非共价键作用将这些手性化合物组装成了超分子,研究了手性信息在分子水平及超分子水平上的传递与表达,同时研究了非共价键在手性信息传递及表达过程中的作用。本章中,我们以带有手性基团的配体在催化剂DBU和醋酸锌的存在下,合成了(S)-构型的手性锌酞菁(compound 1),使用溶剂扩散法组装得到有机纳米聚集体,并通过紫外(UV)、圆二色(CD)、透射电镜(TEM)、扫描电镜(SEM)、X射线光电子能谱(XPS)等表征手段,研究了该锌酞菁的组装性质,研究表明Zn-Ocrown ether配位键的存在对聚集体的形貌存在较大影响。化合物锌酞菁在手性取代基的影响下,通过π-π键、Zn-Ocrown ether等作用力聚集形成了长约数十μm,宽约2.1μm,螺距约为4.5μm的一维的螺旋纳米带状结构;研究结果表明,在调节、控制酞菁分子自组装纳米结构中,手性基团的诱导效应和非共价键尤其是π-π堆积、金属配位键的协同作用起着非常重要的作用,特别是金属配位键对纳米结构的形貌、维度、手性及螺距大小的影响不容忽视。其结论会为我们了解手性信息在超分子水平上的传递、表达及通过分子设计来制备、调控有机纳米功能材料提供非常有用的信息。
     2、手性三明治型卟啉酞菁配合物的设计、合成及光谱学性质的研究
     三明治型卟啉酞菁金属化合物一直以来都是化学、物理和材料工作者的研究重点,具有共轭π电子结构的该类化合物在非线性光学、液晶、导电、超导、磁性、光电转换等方面扮演着特殊和关键的角色,其研究对于发现新型光学、电学和磁学性能,研制新型光、电和信息功能材料以及抢占该领域在生产技术和应用研究方面的制高点都有着重大和深远的意义。但是,迄今为止,手性三明治型卟啉酞菁金属化合物研究的还很少。在本章中,我们以带有手性基团的手性配体在金属锂存在下,合成了手性自由酞菁,然后再与制备的H2TC1PP在乙酰丙酮铕盐的存在下得到Eu (TCIPP) [Pc(α-2-OC8H17)4]和EuH (TCIPP) [Pc(a-2-OC8H17)4],并对二者的性质进行了相关的表征,包括氢谱、质谱、紫外、圆二色谱,着重研究了手性信息的传递与表达。研究表明,手性信号由酞菁环的周边位置顺利传递到卟啉酞菁混杂双层上,非质子化卟啉酞菁混杂双层和质子化卟啉酞菁混杂双层均具有手性信号,但由于Eu(TCIPP) [Pc(α-2-OC8H17)4]和EuH(TCIPP) [Pc(α-2-OC8H17)4]在分子结构上的差别(研究证明,质子化卟啉酞菁混杂双层中卟啉环上存在一个氢),非质子化卟啉酞菁混杂双层和质子化卟啉酞菁混杂双层在Soret带具有不同强弱的手性信号,体现出分子结构细微的差别即可导致手性信号的不同,这为卟啉酞菁混杂双层配合物在非线性功能材料的应用提供了可能。
Chirality which is closely related with the nature of life is one of the basic attributes of nature. Chiral molecules are most basic unit in the life system. Owing to the unique optical, electrical, and properties, associated with the intriguing intramoleculaπ-πinteractions, porphyrins, phthalocyanines, as well as sandwich type rare complexs as a novel functional materials, have been expected to be widely potential application in materials science, such as molecular electronics, molecular information storage, and nonlinear optics, etc. Recently, to obtain ordered supramolecular aggregates and nano-scale assembly, besides the expression, transmission, storage and regulation of molecular/ supramolecular's chirality, have attracted increasing attentions.
     It must be pointed out that self-assembly of functional molecules into a prerequisite nanostructure with desirable dimension and morphology via controlling inter-molecular interaction and the introduced chirality informations still remains a great challenge for scientists. In order to investigate supramolecular aggregation behaviors, supramolecular assembly methodology of chiral phthalocyninato complexs, the role of coordination bond in tuning the aggregates's morphology and the expression of chiral information at molecular / supramolecular level, in this thesis several chiral phthalocyanine derivatives are designed and synthesized. Our research work has been focused on the following respects:
     1. Synthsis and Novel Helical Nano-structures of Optically Active Metal Phthalocyanine
     Novel optically active metal phthalocyanine (1) decorated with four butoxy chains linked to the phthalocyanine ring was designed and prepared. Helical Nano-structures Self-Assembled from Optically Active Phthalocyanine Derivatives Bearing Four Optically Active butoxy:Effect of Metal-ligand Coordination on the Morphology, Dimension, and Helical Pitch of Self-Assembled Nano-structures. Compound 1 was prepared from the tetramerization of corresponding phthalonitriles, S-3-(2'-methel butoxy) phthalonititrile, in the absence and presence of Zn (OAc)2-2H2O template, respectively, promoted by organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Their self-assembly behavior has been comparatively investigated by electronic absorption and circular dichroism (CD) spectroscopy, transmission electron microscope(TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) technique, and X-ray photoelectron spectroscopy (XPS). The metal phthalocyanine self-assembles into highly ordered fibrous nano-structures with right-handed helicity through the hierarchical manner via one-dimensional helices with chirality determined by the optically active butoxy side chains, revealing the effect of metal-ligand coordination bonding interaction on the morphology, dimension, handedness, and the helical pitch of self-assembled nano-structures.
     2. Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Double-Decker Complexes:Synthsis and spectroscopic studies
     We are motivated to design and prepare new chiral sandwich-type phthaiocyaninato and porphyrinato rare earth complexs with a view to creating novel applications in material science and catalysis. The strategy towards chiral sandwich-type tetraphyrrole rare earth complexes involves utilization of 1,8,15, 22-tetrakis (octyloxy)-substituted phthalcoyanine ligand. In the present chapter, we describe the synthesis and spectroscopic studies of mixed (phthalocyaninato) (porphyrinato) rare earth double-decker complexes [EuPc*(TClPP)] (compound1)] and [EuHPc*(TClPP)](compound2)][(Pc*=Pc(α-D-2-octyloxy)4). These two compounds were characterized by 1HNMR, MS and various spectroscopic methods including IR, UV-vis and CD. Their UV-vis and CD spectra are different. Both compounds display CD signal in the Soret absorption region of mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes, indicating effective chiral information transfer from the chiral peripheral substituents to compound chromophore at the molecular level. And the intensity of CD signal is different between the compound1 and compound2.
引文
[1]Ficsher, H.; Orth, H. Die Chemie des pyrrols. [M] Vol 2, part 1, Akademic Verlagsegesllschft, Liepzig,1937,158.
    [2]Zelaski, J. Porphyrin. [J] Z. Physiol. Chem.,1902,37,54.
    [3]C. P. Wang et al. Lanthanide porphyrin complexs.Potential new class of nuclear magnetic resonance dipolar probe. [J] J.Am. Chem. Soc.,1974,96,7149-7150.
    [4]C. P. Wang et al. Porphyrin complexes. [J] Tetrahydron Lett.,1975,31,237.
    [5]Liu, C.; Pan, H.; Fox, M. A.; Bard, A. J. High-Density Nanosecond Charge Trapping in Thin Films of the Photoconductor ZnODEP. [J] Science,1993,261, 897-899.
    [6]计亮年,彭小彬,黄锦汪.金属卟啉配合物模拟某些金属酶的研究进展.[J]自然科学进展,2002,12,120-129.
    [7](a) Wolffs, M.; Hoeben, F. J. M.; Beckers, E. H. A.; Schenning, A. P. H. J.; Meijer, E. W. Sequential Energy and Electron Transfer in Aggregates of Tetrakis[oligo(p-phenylene vinylene)] Porphyrins and C60 in Water. [J] J. Am. Chem. Soc.2005,127,13484-13485; (b) Otsuki, J.; Iwasaki, K.; Nakano, Y.; Itou, M.; Araki, Y.; Ito, O. Supramolecular Porphyrin Assemblies through Amidinium-Carboxylate Salt Bridges and Fast Intra-Ensemble Excited Energy Transfer. [J] Chem. Eur. J.2004,10,3461-3466; (c) Sagawa, T.; Fukugawa, S.; Yamada, T.; Ihara, H. Self-Assembled Fibrillar Networks through Highly Oriented Aggregates of Porphyrin and Pyrene Substituted by Dialkyl L-Glutamine in Organic Media. [J] Langmuir,2002,18,7223-7228.
    [8](a) Kuramochi, Y.; Satake, A.; Kobuke, Y. Light-Harvesting Macroring Accommodating a Tetrapodal Ligand Based on Complementary and Cooperative Coordinations. [J] J. Am. Chem. Soc.2004,126,8668-8669; (b) Shoji, O.; Tanaka, H.; Kawai, T.; Kobuke, Y. Single Molecule Visualization of Coordination-Assembled Porphyrin Macrocycles Reinforced with Covalent Linkings. [J] J. Am. Chem. Soc.2005,127,8598-8599. (c) Furutsu, D.; Satake, A.; Kobuke, Y. A Giant Supramolecular Light-Harvesting Antenna-Acceptor Composite. [J] Inorg. Chem.,2005,44,4460-4462.
    [9]李德平,胡静.血卟啉类化合物诊治肿瘤的研究进展及应用.[J]中国生化药 物杂志,2003,24,162-163.
    [10]杨新国,孙景志,汪茫,陈红征,黄骥.卟啉类光电功能材料研究进展.[J]功能材料,2003,34,113-117.
    [11](a)马红,韩士田.卟啉在催化剂方面的应用研究进展.[J]河北工业科技,2009,26,205-209.(b)雷亚春,张勇,刘滇生,潘景浩.卟啉及其配合物在分析化学中应用进展.[J]光谱实验室,2003,20,479-485.
    [12]D.D.Eley,Phthalocyanines as semiconductors [J] Nature 1984,162,819-819.
    [13]A. T. Vartanyan, Poluprovodnikovye Svoistva Organicheskikh Krasitel [J] Zh. Fiz Khim.948,22,769-774.
    [14]陈发普,许德余.酞菁化合物作为新型肿瘤光化学诊治剂的研究进展.[J]国外医药-合成药、生化药.制剂分册,1990,11,78-82.
    [15]C. W. Tang, Two-layer organic photovoltaic cell; [J] Appl. Phys. Lett.,1986, 48,183-185
    [16]M. K. Nazeeruddin, et al, Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. [J] Chem. Commun.,1998,719-720
    [17]D. Wohrle, et al, Microlasers based on organic dyes in nanoporous crystals [J] Molecular Crystals&Liquid Crystals,1993,230,221.
    [18]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器材方面的研究进展[J]自然科学进展,2004,14,125-132.
    [19]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转换和振动弛豫[J]化学物理学报,1998,2,15-18.
    [20]G. De la Torre,P. Vazquez, et al. Phthalocyanines and nelated compounds. [J] J. Master. Chem.,1998,8,1671-1683.
    [21]J. S. Shirk, J. R. Lindle, F. J. Bartoli, et al. Third-order optical nonlinearities of bis(phthalocyanines) [J] J.Phys.Chem.,1992,96,5847-5852.
    [22]陈发普,许德余.酞菁化合物作为新型肿瘤光化学诊治剂的研究进展.[J]国外医药-合成药、生化药.制剂分册,1990,11,78-82.
    [23](a) Anderson, C. Y.; Freye, K.; Tubesing, K. A.; Li, Y.-S.; Kenney, M. E.; Mukhtar, H.; Elmets, C. A. A Comparative Analysis of Silicon Phthalocyanine Photosensitizers for in vivo Photodynamic Therapy of RIF-1 Tumors in C3H Mice. [J] Photochem. Photobiol.,1998,67,332-336. (b) Farrell, T. J.; Wilson, B. C.; Patterson, M. S.; Olivio, M. C. Comparison of the In Vivo Photodynamic Threshold Dose for Photofrin, Mono- and Tetrasulfonated Aluminum Phthalocyanine Using a Rat Liver Model. [J] Photochem, Photobiol.,1998,68, 394-399. (c) Griffiths, M. A., Wren, B. W. and Wilson, M. Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent. [J] J. Antimicrobial Chemotherapy,1997,40,873-876.
    [24](a) Hanack, M.; Meng, D.; Beck, A.; Sommerauer, M.; Subramanian, L. R. Separation of structural isomers of tetra-tert-butylphthalocyaninatonickel(Ⅱ). [J] J. Chem. Soc., Chem. Commun.,1993,58-60. (b) Laura, P.; Giuliana, V.; Giulio, J.; Reddi, E. Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts. [J] The International Journal of Biochemistry & Cell Biology,2002,34,10-23.
    [25]S. A. Borisenkova, New aspects of the heterogenenous catalysis of thiol oxidation by phthalocyanines. [J] Petroleum Chem.1991,31,379-398.
    [26]N. Kobayashi, P. Janda, A. B. P. Lever, Cathodic reduction of oxygen and hydrogen peroxide at cobalt and iron crowned phthalocyanines adsorbed on highly oriented pyrolytic graphite electrodes [J] Inorg. Chem.,1992,31, 5172-5177.
    [27]M. R. Bryce, W. Devonport, L. M. Goldenberg, C. Wang, Macromolecular tetrathiafulvalene chemistry. [J] Chem. Commun.,1998,945-952.
    [28]T. G. Linben, et al, A green fullerene:synthesis and electrochemistry of a Diels-Alder adduct of [60] fullerene with a phthalocyanine. [J] J. Chem. Soc, Chem. Commun.,1995,103-104
    [29]G. H. Gelinck, et al, The Effect of Structural Modifications on Charge Migration in Mesomorphic Phthalocyanines. [J] J. Am. Chem. Soc.,1994,116, 6880-6894.
    [30]C. Piechocki, J. Simon, Annelides.7. Discotic mesophases obtanined from substituted metallophthalocyanines. Toward liguid crystalline one-dimensional conductors. [J] J. Am. Chem. Soc.,1982,104,5245-5247.
    [31]M. J. Cook, M. F. Daniel, K. J. Harrison, N. B. McKeown, A. J. Thomson, [J] J. Chem. Soc., Chem. Commun.,1988,1086.
    [32]D. attisti, R. Aroca, Reversible adsorption on a single Langmuir-Blodgett monolayer. [J] J. Am. Chem. Soc.,1992,114,1201-1204.
    [33]马盼,姜建壮.酞菁在有机场效应晶方面的研究进展.[J]大学化学,2008,23,1-7.
    [34]W. E. Bennett, D. E. Broberg, N. C. Baenziger, Crystal structure of stannic phanlocyanine, an eight-coordinated tin complex [J] Inorg. Chem.1973,12, 930-936.
    [35]I. S. Kirin, P. N. Moskalev, Yu. A. MakSHEV, Formation of phthalocyanines of rare-earth elements [J] Russ. J. Inorg. Chem.1965,10,1065.
    [36]A. De. Cian, M. Moussavi, J. Fischer et al., Synthesis, structure, and spectroscopic and magnetic properties of lutetium(Ⅲ) phthalocyanine derivatives [J] Inorg. Chem.,1985,24,3162-3167.
    [37](a) F. Lux, D. Dempf, D. Graw, Diphthalocyaninato-thorium(Ⅳ) and-uranium(IV) [J] Angew. Chem. Int. Ed. Eng,1968,7,819-820. (b) F. Lux, D. Brwon, D. Dempf, et al. Synthesis of 1-Adamantanecarbaldehydes. [J] Angew. Chem. Int. Ed. Eng.1969,7,894.
    [38]D. K. P. Ng, J. Jiang., Sandwich-Type Heterolepic Phthalocyaninato and Porphyrianto Metal Complexes [J] Chem. Soc. Rev.1997,26,433-442.
    [39]姜建壮,吴基培,刘伟,谢经雷,孙思修.对称的二层及三层三明治型金属酞菁配合物的研究进展.[J]化学通报.1992,2.
    [40]A. Gieren, W. Hoppe, X-Ray crystal structure analysis of bisphthalocy aninatouranium [J] Chem. Commun.1971,413.
    [41]A. De. Cian, M. Moussavi, J. Fischer, et al. Synthesis, structure, and spectroscopic and magnetic properties of lutetium(Ⅲ) phthalocyanine derivatives [J] Inorg. Chem.1985,24,3162.
    [42]N. Koike, H. Uekusa, Y. Ohashi, et al. Relationshoip between the Skew Angle and Interplanar Distance in Four Bis(phthalocyaninato)lanthanide(III) Tetrabutyl ammonium Salts ([Nbun4][LnPc2]; Ln=Nd, Gd, Ho, Lu) [J] Inorg. Chem.1996,35,5798.
    [43]J. Buchler; A. D. C. J. Fischer; M. K. Botulinski; H. Paulus; R. Weiss.; Metal complexes with tetrapyrrole ligands. Cerium (Ⅳ) bis-(octaethylporphyrinate) and dicerium(Ⅲ) tris(octaethylporphyrinate):Parents of a new familly of lanthanoid double-decker and triple-decker molecules; [J] J. Am. Soc.1986,108; 3652.
    [44]G. C. S. Collins; D. J. Schiffrin; The electrochromic properties of lutetium and other phthalocyanines. [J] J.Electroanal. Chem.1982,139,335.
    [45]C. S. Frampton; J. M. O'Connor; J. Peterson; J. Silver; Enhanced colors and properties in the electrochromic behavior of mixed rare-earth-element bisphthalcoyanines. [J] Displays,1988,9,174.
    [46]J. J. Andre, K. Holczer, P. Petit, M. T. Riou, J. Smon; Electrical and mangnetic properties of thin films and single crystals of bis(phthalocyaninato) lutetium. [J] Chem. Phys. Lett.1985,115,463.
    [47]N. B. McKeown, The general chemistry of phthalcoyanines. [J] Chem.& Industry; 1999, Feb,1,92.
    [48]J. J.Andre, K. Holczer, P. Petit, M. T. Riou, J. Smon; Electrical and magnetic properties of thin films and single crystals of bis(phthalocyaninato) lutetium. [J] Chem. Phys. Let.1985,115,463.
    [49]J. Padilla and W. E. Hatifield. Magnetic and electrical properties of sandwich-like lanthanide phthalocyannies; [J] Synth. Met.1989,29, F45.
    [50]J. Padilla and W. E. Hatififield; Correlation between π-orbital overlap and conductivity in bis-phthalocyaninato lanthanides; [J] Inorg. Chim. Acta.1991, 185.131.
    [51]J. Souto, R. Aroca, J. A. Desaja; Gas Adsorption and Electrical Conductivity of Langmuir-Blodgett Films of Terbium Bisphthalocyanine. [J] J. Phys. Chem. 1994,98,8998.
    [52]M. Trometer, R. Even, J. Simon, A. Dubon and J.-Y. LavalJ. P. Germain, C. Maleysson, A. Pauly and H. Robert; Lutetium bisphalocyanine thin films for gas detecion. [J] Sens. Actuators B.1992,8,129.
    [53]J. Simon and S. Sirlin; Mesomorphic molecular materials for electronics, optoelectronics, iono-electronics:octaalkylphthalocyanine derivatives [J] Pure Appl.Chem.1989,61,1625.
    [54]G. Guillaud, M. Al Sadoun, M. Maitrot, J. J. Andre, J. Simon and R. Even. Field-effect transistors based on intrinsic molecular semiconductors [J] Chem. Phys. Lett.1988,167,503.
    [55]C. Clarisse, M. T. Riou, M. Gauneau and M. Le Cntellec. Field-Effect Transistor with Diphthalocyanine Thin Film [J] Electron. Lett.1988,24,674.
    [56]T. Toupance, V. Ahsen and J. Simon. Iono-electronics:crown ether substituted lutetium bisphthalocyanines [J] J. Chem. Soc., Chem. Commun.1994,75-76.
    [57]M. M. Nicholson, F. A. Pizzarello, The redox chemistry of phthalocyanine [J] J. Electrochem Soc,1980,127,2617.
    [58]K. L. Trojan, J. L. Kendall, K. D. Kepler and W. E. Hatifield; Strong exchange coupling between the lanthanide ions and the phthalocyaninato ligand radical in bis(phthalocyaninato) lanthanide sandwich compounds. [J] Inorg. Chim. Acta. 1992,198,795.
    [59](a) Avalos, M.; Babiano, R.; Cintas, P.; Jimenez, J. L.; Palacios, J. C. Absolute. Asymmetric Synthesis under Physical Fields:Facts and Fictions. [J] Chem. Rev., 1998,98,2391-2404. (b) Feringa, B. L.; Delden, R. A. v. Absolute Asymmetric Synthesis:The Origin, Control, and Amplification of Chirality. [J] Angew. Chem. Int. Ed.,1999,38,3418-3438.
    [60]李辉,杜渭松,李建.显示液晶用手性添加剂材料进展.[J]液晶与显示,2009,24,26-33.
    [61]辛丽,李俊庆,李淳飞.手性介质的光学物理性质及其研究进展.[J]物理,2000,29,216-219.
    [62]刘文杰,曹德榕.手性分子光开关研究进展.[J]有机化学,2008,28,1336-1347.
    [63]Wu, L.; Wang, Q.; Lu, J.; Bian, Y.; Jiang, J.; Zhang, X., Helical Nanostructures Self-Assembled from Optically Active Phthalocyanine Derivatives Bearing Four Optically Active Binaphthyl Moieties:Effect of Metal-Ligand Coordination on the Morphology, Dimension, and Helical Pitch of Self-Assembled Nanostructures. [J] Langmuir,2010,26(10), 7489-7497.
    [64]Xiao, J.; Li, Y.; Song, Y.; Jiang, L.; Li, Y.; Wang, S.; Liu, H.; Xu, W.; Zhu, D. Helical structures architecture of 1-{2-(4-hydroxy-phenyl)-1-[(pyren-1-ylmethyl)-carbamoxyl]-ethyl}-carbami c acid tert-butyl ester. [J] Tetrahedron Lett.,2007,48,7599-7604.
    [65](a) Bouman, M. M.; Meijer, E. W.; Stereomutation in optically active regioregular polythiophenes. [J] Adv. Mater.1995,7,385-387. (b) Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Christiaans, M. P. T.; Meskers, S. C. J.; Dekkers, H. P. J. M.; Meijer, E. W. Circular Dichroism and Circular Polarization of Photoluminescence of Highly Ordered Poly{3,4-di[(S)-2-methylbutoxy]thiophene}. [J] J. Am. Chem. Soc.1996,118, 4908-4909; (c) Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. [J] Nature,2000,407, 167-170.
    [66]Ribo, J. M.; Crusats, J.; Sagues, F.; Claret, J.; Rubires, R. Chiral Sign Induction by Vortices During the Formation of Mesophases in Stirred Solutions. [J] Science,2001,292,2063-2066.
    [67]Huang, X.; Li, C.; Jiang, S.; Wang, X.; Zhang, B.; Liu, M. Self-Assembled Spiral Nanoarchitecture and Supramolecular Chirality in Langmuir-Blodgett Films of an Achiral Amphiphilic Barbituric Acid. [J] J. Am. Chem. Soc.2004, 126,1322-1323.
    [68](a) Smith, J.O.; Olson, D.A.; Armitage, B.A. Molecular Recongnition of PNA-Containing Hybrids:Spontaneous Assembly of Helical Cyanine Dye Aggregates on PNA Templates. [J] J. Am. Chem. Soc.1999,121,2686-2695. (b) Seifert, J. L.; Connor, R. E.; Kushon, S. A.; Wang, M.; Armitage, A. Spontaneous Assembly of Helical Cyanine Dye Aggregates on DNA Nanotemplates. [J] J. Am. Chem. Soc.1999,121,2987-2995. (c) Wang, M.; Silva, G.L.; Armitage, B.A. DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate. [J] J. Am. Chem. Soc.2000,122,9977-9986. (d) Garoff, R.A.; Litzinger, E.A.; Connor, R.E.; Fishman, I.; Armitage, B.A. Helical Aggregation of Cyanine Dyes on DNA Templates:Effect of Dye Structure on Formation of Homo- and Heteroaggregates. [J] Langmuir,2002,18, 6330-6337.
    [69](a) Muranaka, A.; Okuda, M.; Kobayashi, N.; Somers, K.; Ceulemans, A. Recognition of Chiral Catechols Using Oxo-Titanium Phthalocyanine. [J] J. Am. Chem. Soc.2004,126,4596-4604. (b) Li, X.; Tanasova, M.; Vasileiou, C.; Borhan, B. Fluorinated Porphyrin Tweezer:A Powerful Reporter of Absolute Configuration for erythro and three Diols, Amino Alcohols, and Diamines. [J] J. Am. Chem. Soc.2008,130,1885-1893. (c) Kruppa, M.; Mandl, C.; Miltschitzky, S.; Konig, B. A Luminescent Reportor with Affinity for N-Terminal Histidine in Peptides in Aqueous Solution. [J] J. Am. Chem. Soc.2005,127,3362-3365.
    [70](a) Green, M. M.; Reidy, M. P.; Johnson, R. D.; Darling, G.; O'Leary, D. J.; Willson, G. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. [J] J. Am. Chem. Soc. 1989,111,6452-6454. (b) Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. A Helical Polymer with a Cooperative Response to Chiral Information. [J] Science,1995,268,1860-1866.
    [71]Prins, L. J.; Huskens, J.; de Jong, F.; Timmerman, P.; Reinhoudt, D. N. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. [J] Nature,1999,398,498-502.
    [72]Simonyi, M.; Bikadi, Z.; Zsila, F.; Deli, J. Supramolecular Exciton Chirality of Carotenoid Aggregates. [J] Chirality,2003,15,680-698.
    [73](a) Palmans, A. R. A.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Sergeants-and-Soldiers Principle in Chiral Columnar Stacks of Disc-Shaped Molecules with C3 Symmetry. [J] Angew. Chem. Int. Ed.1997,36,2648-2651. (b) Brunsveld, L.; Lohmeijer, B. G. G.; Vekeman, J. A. J. M.; Meijer, E. W. Chirality amplification in dynamic helical columns in water. [J] Chem. Commun.,2000,2305-2306. (c) Langeveld-Voss, B. M. W.; Waterval, R. J. M.; Janssen, R. A. J.; Meijer, E. W. Principles of "Majority Rules" and "Sergeants and Soldiers" Applied to the Aggregation of Optically Active Polythiophenes: Evidence for a Multichain Phenomenon. [J] Macromolecules,1999,32, 227-230. (d) Wilson, A. J.; Masuda, M.; Sijbesma, R. P.; Meijer, E. W. Chiral Amplification in the Transcription of Supramolecular Helicity into a Polymer Backbone. [J] Angew. Chem. Int. Ed.2005,44,2275-2279.
    [74]Yashima, E.; Maeda, K.; Okamoto, Y. Memory ofmacromolecular helicity assisted by interaction with achiral smallmolecules. [J] Nature,1999,399, 449-451.
    [75]Ziegler, M.; Davis, A. V.; Johnson, D. W.; Raymond, K. N. Supramolecular Chirality:A Reporter of Structural Memory. [J] Angew. Chem. Int. Ed.2003,42, 665-668.
    [76](a) Ayabe, M.; Yamashita, K.; Shinkai, S.; Ikeda, A.; Sakamoto, S.; Yamaguchi, K. Construction of Monomeric and Polymeric Porphyrin Compartments by a Pd(II)-Pyridine Interaction and Their Chiral Twisting by a BINAP Ligand. [J] J. Org. Chem.,2003,68,1059-1066. (b) Shirakawa, M.; Kawano, S.; Fujita, N.; Sada, K.; Shinkai, S. Hydrogen-Bond-Assisted Control of H versus J Aggregation Mode of Porphyrins Stacks in an Organogel System. [J] J. Org. Chem.2003,68,5037-5044.
    [77]Guo, X.; Jiang, C.; Shi, T. Prepared Chiral Nanorods of a Cobalt(II) Porphyrin Dimer and Studied Changes of UV-Vis and CD Spectra with Aggregate Morphologies under Different Temperatures. [J] Inorg. Chem.,2007,46, 4766-4768.
    [78]Koepf, M.; Wytko, J. A.; Bucher, J-P.; Weiss, J. Surface-Tuned Assembly of Porphyrin Coordination Oligomers. [J] J. Am. Chem. Soc.2008,130, 9994-10001.
    [79](a) Hameren, R. van; Buul, A. M. van; Castriciano, M. A.; Villari, V.; Micali, N.; Schon, P.; Speller, S.; Scolaro, L. M.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Supramolecular Porphyrin Polymers in Solution and at the Solid-Liquid Interface. [J] Nano Lett.,2008,8,253-259. (b) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science,1999,284,785-788. (c) Sly, J.; Kasak, P.; Gomar-Nadal, E.; Rovira, C.; Gorriz, L.; Thordarson, P.; Amabilino, D. B.; Rowan, A. E.; Nolte, R. J. M. Chiral molecular tapes from novel tetra(thiafulvalene-crown-ether)-substituted phthalocyanine building blocks. [J] Chem. Commun.,2005,1255-1257. (d) Jeukens, C. R. L. P. N.; Lensen, M. C.; Wijnen, F. J. P.; Elemans, J. A. A. W.; Christianen, P. C. M.; Rowan, A. E.; Gerritsen, J. W.; Nolte, R. J. M.; Maan, J. C. Polarized Absorption and Emission of Ordered Self-Assembled Porphyrin Rings. [J] Nano Lett.,2004,4,1401-1406. (e) Lensen, M. C.; Dingenen, S. J. T. Van; Elemans, J. A. A. W.; Dijkstra, H. P.; Klink, G P. M. Van; Koten, G. Van; Gerritsen, J. W.; Speller, S.; Nolte, R. J. M.; Rowan, A. E. Synthesis and self-assembly of giant porphyrin discs. [J] Chem. Commun.,2004,762-763.
    [80](a) Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai. H.; Kobayash, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir,2000,16,2078-2082. (b) Kimura, M.; Kuroda, T.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Self-Organization of Hydrogen-Bonded Optically Active Phthalocyanine Dimers. [J] Langmuir,2003,19,4825-4830.
    [81]Kobayashi, N. Optically active phthalocyanines. [J] Coord. Chem. Rev.2001, 219-221,99-123.
    [82]M. Kimura, H. Ueki, K. Ohta, H. Shirai, N. Kobayashi, Self-Organization of Low-Symmetry Adjacent-type Metallophthalocyanines Having Branched Alkyl Chains. [J] Langmuir,2006,22,5051-5056.
    [83]H. Engelkamp, S. Middelbeek, R. J. M. Nolte, Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science,1999, 284,785-788.
    [84]E. Bellacchio, R. Lauceri, S. Gurrieri, L. M. Scolaro, A. Romeo, R. Purrello, Template-Imprinted Chrial Porphyrin Aggregates. [J] J. Am. Chem. Soc.1998, 120,12353-12354.
    [1](a) Garoff, R. A.; Litzinger, E. A.; Connor, R. E.; Fishman, I.; Armitage, B. A. Helical Aggregation of Cyanine Dyes on DNA Templates:Effect of Dye Structure on Formation of Homo-and Heteroaggregates. [J] Langmuir 2002,18, 6330-6337. (b) Pasternack, R. F.; Giannetto, A.; Pagano, P.; Gibbs, E. J. Self-assembly of porphyrins on nucleic acids and polypeptides. [J] J. Am. Chem. Soc.1991,113,7799-7780. (c) Hannah, K. C.; Armitage, B. A. DNA-Templated Assembly of Helical Cyanine Dye Aggregates:A Supramolecular Chain Polymerization. [J] Acc. Chem. Res.2004,37,845-853. (d) Chen, X.; Liu, M. Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. [J] J. Inorg. Biochem.2003,94,106-113.
    [2](a) Schmuck, C. Molecules with Helical Structure:How To Build a Molecular Spiral Staircase. [J] Angew. Chem. Int. Ed. 2003,42,2448-2452. (b) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G Solvophobically Driven Folding of Nonbiological Oligomers. [J] Science 1997,277,1793-1796. (c) Cornelissen, J. J. L. M.; Fisher, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Helical Superstructures from Charged Poly(styrene)-Poly(isocyanodipeptide) Block Copolymers. [J] Science 1998,280,1427-1430. (d) Oda, R.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C. Tuning bilayer twist using chiral counterions. [J] Nature 1999,399,566-569. (e) Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. [J] Nature 2000, 407,167-170.
    [3](a) Berl, V.; Huc, I.; Khoury, R. G.; Krische, Lehn, M. J.; J.-M. Interconversion of single and double helices formed from synthetic molecular strands. [J] Nature 2000,407,720-723. (b) Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. Self-Assembly of Dendron Rodcoil Molecules into Nanoribbons. [J] J. Am. Chem. Soc.2001,123,4105-4106. (c) Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Semiconductor Nanohelices Templated by Supramolecular Ribbons. [J] Angew. Chem. Int. Ed.2002,41,1706-1709. (d) Fenniri, H.; Deng, B.-L.; Ribbe, A. E. Helical Rosette Nanotubes with Tunable Chiroptical Properties. [J] J. Am. Chem. Soc.2002,124,11064-11072. (e) Giorgi, T.; Lena, S.; Mariani, P.; Cremonini, M. A.; Masiero, S.; Pieraccini, S.; Rabe, J. P.; Samori, P.; Spada, G. P.; Gottarelli, G. Supramolecular Helices via Self-Assembly of 8-Oxoguanosines. [J] J. Am. Chem. Soc.2003,125,14741-14749. (f) Xiao, J.; Xu, J.; Cui, S.; Liu, H.; Wang, S.; Li, Y. Supramolecular Helix of an Amphiphilic Pyrene Derivative Induced by Chiral Tryptophan through Electrostatic Interactions. [J] Org. Lett.2008,10,645-648.
    [4](a) Ishi-I, T.; Kuwahara, R.; Takata, A.; Jeong, Y.; Sakurai, K.; Mataka, S. An Enantiomeric Nanoscale Architecture Obtained from a Pseudoenantiomeric Aggregate:Covalent Fixation of Helical Chirality Formed in Self-Assembled Discotic Triazine Triamides by Chiral Amplification. [J] Chem. Eur. J.2006,12, 763-776. (b) Roman, A. E.; Nolte, R. J. M. Helical Molecular Programming. [J] Angew. Chem. Int. Ed.1998,37,63-68. (c) Yashima, E.; Maeda, K.; Okamoto, Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules. [J] Nature 1999,399,449-451. (d) Pantos, G. D.; Wietor, J. L.; Sanders, J. K. M. Filling Helical Nanotubes with C60.[J] Angew. Chem. Int. Ed. 2007,46,2238-2240. (e) Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chiral Architectures from Macromolecular Building Blocks. [J] Chem. Rev.2001,101,4039-4070.
    [5](a) Palmans, A. R. A.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Sergeants-and-Soldiers Principle in Chiral Columnar Stacks of Disc-Shaped Molecules with C3 Symmetry. [J] Angew. Chem. Int. Ed.1997,36,2648-2651. (b) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Supramolecular Materials:Self-Organized Nanostructures. [J] Science 1997,276,384-389. (c) Prins, L. J.; Huskens, J.; F. Jong, D.; Timmerman, P. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. [J] Nature 1999,398,498-502.
    [6](a) Kobayashi, N. Coord. Optically active phthalocyanines. [J] Chem. Rev.2001, 219-221,99-123. (b) Liu, H.; Chen, C.; Ai, M.; Gong, A.; Jiang, J.; Xi, F. Synthesis of optically active 1,1'-binaphthyl-phthalocyanines linked via a crown ether unit. [J] Tetrahedron Asymmetry.2000,11,4915-4922. (c) Kobayashi, N. Optically active 'adjacent' type non-centrosymmetrically substituted phthalocyanines. [J] Chem. Commun.1998,487-488. (d) Kobayashi, N.; Kobayashi, Y.; Osa, T. Optically active phthalocyanines and their circular dichroism. [J] J. Am. Chem. Soc.1993,115,10994-10995. (e) Kimura, M.; Ueki, H.; Ohta, K.; Shirai, H.; Kobayashi, N. Self-Organization of Low-Symmetry Adjacent-type Metallophthalocyanines Having Branched Alkyl Chains. [J] Langmuir 2006,22,5051-5056.
    [7](a) Liu, H.; Liu, Y.; Liu, M.; Chen, C.; Xi, F. Synthesis and properties of optically active 6,6'-didodecyl-1,1'-binaphthyl-phthalocyanine linked through crown ether units. [J] Tetrahedron Letters.2001,42,7083-7086. (b) Kimura, M.; Kuroda, T.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Self-Organization of Hydrogen-Bonded Optically Active Phthalocyanine Dimers. [J] Langmuir 2003,19,4825-4830. (c) Lv, W.; Wu, X.;Wu, Bian, Y.; Jiang, J.; Zhang, X. Helical Fibrous Nanostructures Self-Assembled from Metal-Free Phthalocyanine with Peripheral Chiral Menthol Units. [J] ChemPhysChem.2009,10,2725-2732. (d) Rai, R.; Saxena, A.; Ohira, A.; Fujiki, M. Programmed Hyperhelical Supramolecular Assembly of Nickel Phthalocyanine Bearing Enantiopure 1-(p-Tolyl)ethylaminocarbonyl Groups. [J] Langmuir 2005,21,3957-3962.
    [8]Adachi, K.; Chayama, K.; Watarai, H. Formation of Helical J-Aggregate of Chiral Thioether-Derivatized Phthalocyanine Bound by Palladium (Ⅱ) at the Toluene/Water Interface. [J] Langmuir 2006,22,1630-1639.
    [9]Wu, L.; Wang, Q.; Lu, J.; Bian, Y.; Jiang, J.; Zhang, X., Helical Nanostructures Self-Assembled from Optically Active Phthalocyanine Derivatives Bearing Four Optically Active Binaphthyl Moieties:Effect of Metal-Ligand Coordination on the Morphology, Dimension, and Helical Pitch of Self-Assembled Nanostructures. Langmuir 2010,26 (10),7489-7497.
    [10](a) Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. Nanobelt Self-Assembly from an Organic n-Type Semiconductor: Propoxyethyl-PTCDI. [J] J. Am. Chem. Soc.2005,127,10496-10497. (b) Su, W.; Zhang, Y.; Zhao, C.; Li, X.; Jiang, J. Self-Assembled Organic Nanostructures:Effect of Substituents on the Morphology. [J] ChemPhysChem 2007,8,1857-1862. (c) Lu, G.; Zhang, X.; Cai, X.; Jiang, J. Tuning the morphology of self-assembled nanostructures of amphiphilic tetra(p-hydroxyphenyl)porphyrins with hydrogen bonding and metal-ligand coordination bonding. [J] J. Mater. Chem.2009,2417-2424. (d) Gong, X.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. Preparation and Characterization of Porphyrin Nanoparticles. [J] J. Am. Chem. Soc.2002,124, 14290-14291. (e) Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130,11623-11630. (f) Gao, Y.; Zhang, X.; Ma, C.; Li, X.; Jiang, J. Morphology-Controlled Self-Assembled Nanostructures of 5, 15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130,17044-17052.
    [11]Bian, Y.; Li, L.; Dou, J.; Cheng, D. Y. Y.; Li, R.; Ma, C.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22-Tetrasubstituted phthalocyaninato) lead Complexes. [J] Inorg. Chem.2004,43,7539-7544.
    [12]Kasha, M.; Rawls, H. R.; EI-Bayoumi, M. A. The exciton model in molecular spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [13](a) Berova, N.; Nakanishi, K.; Woody, R. CircularDichroism: Princples and Applications,2nd ed. [M] Wiley-VCH: New York,2000,337-382. (b) Hofacker, A. L.; Parquette, J. R. Dendrimer Folding in Aqueous Media: An Example of Solvent-Mediated Chirality Switching. [J] Angew. Chem. Int. Ed.2005,44, 1053-1057. (c) Balaz, M.; Holmes, A. E.; Benedetti, M.; Rodriguez, P. C.; Berova, N.; Nakanishi, K.; Proni, G. Synthesis and Circular Dichroism of Tetraarylporphyrin-Oligonucleotide Conjugates. [J] J. Am. Chem. Soc.2005, 127,4172-4173. (d) Borovkov, V. V.; Lintuluoto, J. M.; Fujiki, M.; Inoue, Y. Temperature Effect on Supramolecular Chirality Induction in Bis(zinc porphyrin). [J] J. Am. Chem. Soc.2000,122,4403-4407.
    [14]Wei Liu, Chi-Hang Lee, Hoi-Shan Chan, Thomas C. W. Mak, and Dennis K. P. Ng. Synthesis, Spectroscopic Properties, and Structure of [Tetrakis(2,4-dimethyl-3-pentyloxy)phthalocyaninato]metal Complexes. [J] Eur. J Inorg. Chem.2004,286-292.
    [15](a) Janczak, J.; Idemori, Y. M. One-Dimensional Assembling of Diiodo [phthalocyaninato (1-)] Chromate (Ⅲ) Molecules through Neutral I2 Molecules. Alternating Ferro- and Antiferromagnetic Interactions in the Metal-Radical System. [J] Inorg. Chem.2002,41,5059-5065. (b) Gardberg, A. S.; Yang, S.; Hoffman, B. M.; Ibers, J. A. Synthesis and Structural Characterization of Integrally Oxidized, Metal-Free Phthalocyanine Compounds:[H2 (pc)][IBr2] and [H2(pc)]2[IBr2]Br·C10H7Br. [J] Inorg. Chem.2002,41,1778-1781.
    [16]Gao, Y.; Chen, Y.; Li, R.; Bian, Y.; Li, X.; Jiang, J. Nonperipherally Octa(butyloxy)-Substituted Phthalocyanine Derivatives with Good Crystallinity: Effects of Metal-Ligand Coordination on the Molecular Structure, Internal Structure, and Dimensions of Self-Assembled Nanostructures. [J] Chem. Eur. J. 2009,15,13241-13252.
    [1]Phthalocyanines Materials:Synthesis, Structure and Function(Ed.:N. B. McKeown), [M] Cambridge University Press, New York,1998.
    [2]J. Jiang, K. Kasuga, D.P. Arnold, in Supramolecular Photosensitive and Electroactive Materials (Ed.:H. S. Nalwa), [M] Academic Press, New York, 2001, chapter 2, pp.113-210.
    [3]N. Kobayashi, Optically active phyhalocyanines. [J] Coord. Chem. Rev.2001, 219-221,99-123.
    [4](a) Tashiro, K.; Konishi, K.; Aida, T. Enantiomeric Resolution of Chiral Metallobis(porphyrin)s: Studies on Rotatability of Electronically Coupled Porphyrin Ligands. [J] Angew. Chem. Int. Ed.1997,36,856-858. (b) Tashiro, K.; Fujiwara, T.; Konishi, K.; Aida, T. Rotational oscillation of two interlocked porphyrins in cerium bis(5,15-diarylporphyrinate) double-deckers. [J] Chem. Commun.1998,1121-1122. (c) Tashiro, K.; Konishi, K.; Aida, T. Metal Bisporphyrinate Double-Decker Complexes as Redox-Responsive Rotating Modules. Studies on Ligand Rotation Actives of the Reduced and Oxidized Forms Using Chirality as a probe. [J] J. Am. Chem. Soc.2000,122,7921-7926.
    [5]Xiaomei Zhang, Atsuya Muranaka, Wei Lv, Yuexing Zhang, Yongzhong Bian, Jianzhuang Jiang, and Nagao Kobayashi. Optically Active Mixed Phthalocyaninato-Porphyrinato Rare-Earth Double-Decker Complexes: Synthesis, Spectroscopy, and Solvent-Dependent Molecular Conformations. [J] Chem. Eur. J.2008,14,4667-4674.
    [6]J. G. Stites, C. N. McCarty, L. L. Quill, The Rare Earth Metals and their Compounds. Ⅷ. An Improved Method for the Synthesis of Some Rare Earth Acetylacetonatesla. [J] J. Am. Chem. Soc.1984,70,3142-3143.
    [7](a) Kasuga, K,; Kawashima, M.; Asano, K,; Sugimori, T.; Abe, K.; Kikkawa, T.; Fujiwara, T. Preparation of One Structural Isomer of Tetra-substituted Phthalocyanine, 1,8,15,22-Tetra(3'-pentoxy)phthalocyanine, and a Crystal Structure of Its Nickel (Ⅱ) Complex. [J] Chem. Lett.1996,867-868. (b) Rager, C.; Schmid, G.; Hanack, M. Influence of Subsitituents, Reaction Conditions and Central Metals on the Isomer Distributions of 1 (4)-Tetrasubstituted Phthalocyanines. [J] Chem. Eur. J.1999,5,280-288.
    [8](a) A. Pondaven. Y. Cozien, M. L'Her, New J. Chem.1992,16,711-718;. (b) F. Guyon, A. Pondaven, P. Guenot, M. L'Her, Inorg. Chem.1994,33,4787-4793; (c) C. Cadiou, A. Pondaven, M. L'Her, P. Jehan, P. Guenot, J. Org, Chem. 1999,64,9046-9050.
    [9](a) Lachkar, M.; De Cian, A.; Fischer, J.; Weiss, R. Bioinorganic chemistry:an inorganic perspective of life. [J] New J. Chem.1988,12,729-731. (b) Tran-Thi, T.-H.; Mattioli, T. A.; Chabach, D.; De Cian, A.; Weiss, R. Hole Localization or Delocalization An Opitical, Raman, and Redox Study of Lanthanide Porphyrin-Phthalocyanine Sandwich-Type Heterocomplexes. [J] J. Phys. Chem. 1994,98,8279-8288.
    [10]Kadish, K. M.; Moninot, G.; Hu, Y.; Dubois, D.; Ibnlfassi, A.; Barbe, J.-M.; Guilard, R. Double-decker actinide porphyrins and phthalocyanines. Synthesis and spectroscopic characterization of neutral, oxidized, and reduced homo-and heteroleptic complexes. [J] J. Am. Chem. Soc.1993,115,8153-8166.
    [11]Jiang, J.; Mak, T. C. W.; Ng, D. K.P. Isolation and Spectroscopic Characterization of Heteroleptic, Anionic and Neutral (Phthalocyaninato)(tetra-4-pyridylporphyrinato) lanthanide(Ⅲ) Double-Deckers. [J] Chem. Ber.1996,129,933-936.
    [12]Kadish, K. M.; Moninot, G.; Hu, Y.; Dubois, D.; Ibnlfassi, A.; Barbe, J.-M.; Guilard, R. Double-decker actinide porhhyrins and phthalocyanines. Synthesis and spectroscopic characterization of neutral, oxidized, and reduced homo- and heteroleptic complexes. [J] J. Am. Chem. Soc.1993,115,8153-8166.
    [13]Guilard, R.; Barbe, J.-M.; Ibnlfassi, A.; Zrineh, A.; Adamian, V. A.; Kadish, K. M. Synthesis, Characterization, and Electrochemistry of Heteroleptic Double-Decker Complexes of the Type Phthalocyaninato-Porphyrinato-Zirconium(Ⅳ) or-Hafnium(Ⅳ). [J] Inorg. Chem.1995,34,1472-1481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700