用户名: 密码: 验证码:
有机官能化介孔分子筛固载金属配合物:设计、合成及催化作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔分子筛因其独特的织构性能在化工生产、环境保护、新型材料、生命科学等领域有着广泛的应用前景,显示了极大的开发价值,引起了人们广泛关注。均相催化剂多相化是实现均相催化过程环境友好生产的有效途径,介孔分子筛的出现毫无疑问为均相催化剂的多相化提供了契机,成为人们所关注的焦点之一。
     本文在合成介孔分子筛的基础上,从有机官能化介孔分子筛的分子设计角度,将可进一步功能化或有配位功能的有机基团引入到介孔分子筛的孔道内,制备出一系列有机官能化介孔分子筛。金属配合物通过配位作用而固载在有机官能化的介孔分子筛的孔道内,制备出新型的Heck反应催化剂和环氧化多相催化剂,并考察其催化性能。正如研究表明,通过硅氧烷与介孔分子筛表面的硅羟基反应是常见的键连有机基团的方法,但表面仍会剩余较多的硅羟基,硅羟基的存在会严重影响到介孔分子筛表面性质及催化活性,为此笔者提出采用混合的三氯化硅烷一步硅烷化介孔分子筛,在孔道内同时引入可进一步功能化的氯丙基或氯苄基和疏水性的甲基。
     第一章 总结了介孔分子筛织构性能和表面性质等特点:归纳了介孔分子筛进行有机官能化的方法、分子设计的内容及其应用:回顾了均相催化剂的历史成就,分析了其优势和存在的主要问题;进而阐述了有机官能化介孔分子筛固载均相催化剂面临的机遇;总结了基于有机官能化介孔分子筛固载均相催化剂的几种途径,简单回顾了在有机合成中的应用,并对此进行了展望。
     第二章 参照文献,通过几种方法合成了介孔分子筛MCM-41和HMS的合成,并用XRD和N_2吸附-脱附分析对介孔分子筛进行了表征。初步探索了较大孔径介孔分子筛的合成方法。
     第三章 分别对氯苄基和氯丙基官能化介孔分子筛进行修饰,将双腈基引入到介孔分子筛的孔道内,制备出相应的双腈基官能化介孔分子筛。再通过与二苯甲腈二氯化钯进行配体交换,将Pd(Ⅱ)固载到介孔分子筛的孔道内。实验表明双腈基官能化介孔分子筛对Pd有很好的固载作用,不仅提高了Pd的负载量,且有利于制备较高分散度的Pd物种。以碘代苯与丙烯酸甲酯的Heck反应为例,考察双腈基固载Pd的催化性能,肉桂酸甲酯的收率近90%,四次循环使用后催化活性没有明显的降低,Pd的析出并不严重,该催化剂易回收使用。用BET,XRD,FT-IR,ICP-AES,XPS,H_2脉冲吸附分析对催化剂进
    
    行了表征。
     第四章通过对介孔分子筛HMS、氯丙基官能化MCM一41和氯节基官能化MCM一41
    表面修饰,分别将乙二胺基和2,4一戊二酮基入到介孔分子筛孔道内,制备出乙二胺基和
    戊二酮官能化介孔分子筛。将烯烃环氧化均相催化剂M。。2(acac):和v(Iv)等固载到有
    机官能化介孔分子筛的孔道内,制备出新型的、易回收、可重复使用的烯烃环氧化多相
    催化剂。环己烯催化环氧化表明:HMS一aasp一M。的催化活性与均相催化剂MOOZ(acac)2
    相当,选择性大于80%,五次催化循环使用后,环己烯环氧化物收率仍可达59%。
     第五章合成了双烷氧基硅烷官能化的Salen一C。配合物,通过硅烷化反应将Salen
    配合物固载到介孔分子筛的孔道内,为在介孔分子筛孔道内固载Salen配合物提供了新
    方法。并用XRD、N:吸附一脱附、XPS、DR Uv一vis、FT一IR和元素分析对催化剂进行了
    表证。在以分子氧(02)为氧源、以异丁醛为氧转移剂的条件下,该催化剂对环己烯环
    氧化表现了良好的催化活性,5h后环己烯环的转化率接近90%,生成己烯环氧化合物
    的选择性大于85%,三次循环使用后催化活性没有明显的降低。该催化剂对1一辛烯环氧
    化也有一定的催化活性。
     第六章上述研究表明,烷氧硅烷由于活性较低,通过其与介孔分子筛硅轻基反应
    键连有机基团后,表面仍然剩余较多的硅经基,有可能会影响催化活性。为此,首先比
    较了(RO)351(CHZ)3CI和硅烷化活性较高的C13Si(CHZ)3CI通过“后表面接枝”法对介孔
    分子筛表面进行修饰得到的氯丙基官能化介孔分子筛织构、有机基团负载量的差异性:
    (RO)351(C HZ)3CI硅烷化活性较低,导致氯丙基的负载低,且在介孔分子筛的表面仍存在
    较多的硅经基:而C13Si(CHZ)3CI活性较高,使氯丙基负载量较高,致使孔径剧烈减小。
    在此基础上,首次提出用一定比例混合的C13SICH3和C13Si(CHZ)3CI硅烷化介孔分子筛,
    在介孔分子筛的孔道内同时疏水性的甲基和可进一步功能化的氯丙基。一方面C13SICH3
    作为一种体积小、活性高的硅烷化试剂,可以大大减少介孔分子筛表面的硅经基,从而
    改善或调节介孔分子筛的疏水性,增强介孔的水热稳定性;另一方面,可以调节混合物
    C13SICH3和C13Si(CHZ)3CI的比例,以调控氯丙基甲基双官能化介孔分子筛中氯丙基的负
    载量,同时有机官能化介孔分子筛的孔径和疏水性能在一定范围内也可调节。利用X射
    线、N:物理吸附一脱附、固体核磁、红外光谱和气相色谱一原子发射联用仪对此进行分析。
     第七章与氯丙基相比,氯节基中Cl更容易进行有机转换。先分别用
    (E to)3SIC6H4CHZcl和C13SIC6H4CHZCI对介孔分子筛进行硅烷化,由于两者的活性不同,
    使氯节基的负载量和有机官能化介孔分子筛的织构性能有较大的差异。氯节基负载量大
    !I
    
    导致介孔分子筛的
Mesoporous molecular sieves with unique textural properties exhibits high potential applications and good prospects in chemical industry, environment protection, novel materials and even biological field,etc. As one important aspect of their applications, Mesoporous molecular sieves offer good opportunities and possibilities to heterogenization of the conventional homogeneous catalysts, which is widely regarded as an effective way to realize environment-friendly chemical process, and thus recently become one of hot topics in catalysis and organic synthesis.
    Beginning with synthesis of mesoporous sieves MCM-41 and HMS, a series of reactive organic groups or the groups with coordination functions were introduced into the channels of mesoporous molecular sieves, forming a series of organically functionalized mesoporous sieves. The metal complexes were immobilized on the organically functionalized mesoporous sieves through coordination, producing the developed the novel catalysts for Heck reaction and epoxidation reaction. As our studies showed, silylation of mesoporous molecular sieves with alkoxysilane was an usual method of linking desired organical groups. However ,as a result, the a lot of silanol groups still existed on the surface of mosoporous molecular sieves after silylation, which maybe affect the interface property and its catalystic activity. Based on this consideration, a novel method was proposed that a mixture of trichlorosilanes was used to silylate mesoporous molecular sieves, introducing both the further reactive group and hyhrophobic methyl grou
    p in one pot.
    Chapter one summarized the textual and surface properties of mesoporous sieves, summarized the major preparation methods, aspects of molecular design and applications of organically functionalized molecular sieves, reviewed the achievements of heterogenization of homogeneous catalysts, analyzed it advantages and disadvantages, simply expounded on the coming opportunities and possibilities for organically funtionalized mesoporous molecualar sieves, discussed the approaches of immobilization of homogeneous catalysts, reviewed and previewed their applications in catalysis and organic synthesis .
    Chapter two. The mesoporous molecular sieves MCM-41 and HMS were synthesized according to the reported references and characterized with XRD and N2 sorption
    
    
    
    techniques. The methods of synthesizing mesoporous silicas with relatively big size were also investigated.
    Chapter three . Dicyano-functionalized MCM-41 were synthesized via surface modification of chlorobenzyl and chloropropyl functionalized MCM-41.Palladium complexes were anchored on dicyano-functionalized MCM-41 through ligand exchange with Cl2Pd(C6H5CN)2. The introduction of dicyano groups enhanced the immobilizing activity towards Pd, and the relatively high dispersion was obtained after being reduced with NaBH4. The developed catalysts demonstrated good activities towards the Heck reaction of iodobenzene and methyl acrylate with about 90% yield, easy separation after reaction and reusability .The metal leaching was not apparent after four runs.BET, XRD, FT-IR, ICP-AES, H2 chemisorption as well as XPS analysis were employed to characterize the novel catalysts.
    Chapter four. Diamino & 2,4-pentadione-functionalized mesoporous molecular sieves were obtained by surface modfication of mesoporous HMS and chloropropyl-functionaled or chlorobenzyl-functionalied MCM-41, respectively. The homogeneous MoO(acac)2 and V(IV) species were heterogenized onto the organically functionalized mesoporous molecular sieves, resulting in the hybrid catalysts for alkene epoxidation. The developed catalysts, especially for HMS-aasp-Mo exhibited as high activity as homogeneous analogue for cyclohexene epoxidation , The selectivity was above 80% and the activity still reached 59% after five runs .
    Chapter five. As a novel method of immobilizing salen complexes, Co-salen complex was covalently anchored on MCM-41 through silylation of mesoporous material with alkoxysilane functionalized Co saleh complex, which was syn
引文
1 C T Kreege, M E Leomowicz, W J Roth. Nature,1992,359:710.
    2 J S Beck, J C Varyuli, W J Roth, J.Am.Chem.Soc,1992,114:10834:
    3 IUPA C Mannual of Symbols and Terminology, 1972,31:378,
    4 K S W Sing, D H Everett., R H W Haul, L Moscou, R A Pierotti, J Rouquerol, T Siemieniewska. Pure. Appl. Chem, 1985, 57:603.
    5 J Casci, Stud.surf.Sci.catal.,1994,85:329.
    6 A Coma. Chem. Rev,1997,97;2373.
    7 A Steel, S W Carr,,M W Anderson, J.Chem.Soe.Chem.Commum,1994, 1571.
    8 陈逢喜,黄茜西,李全芝,科学通报,1999,44 (9):1905-1920.
    9 P B Moore, J Shen. Nature,1983,306:356-358.
    10 Mlnoru Takahashi, Masayoshi Fujt.Kona.2002, No.20.
    11 Q Huo, D I Margolez, G D Stucky.Chem.Mater.1996,8:1147.
    12 A Sayari, P Liu, M Kruk, M Jaroniec. Chem.Mater,1997,9:2499;
    13 K Michal and J. Mietck, J Phys.Chem.B.1999,103:4590
    14 D.Zhao, Feng, Q, Huo, etal. Scence,1995,279:548.
    15 Takeo.Yamada, Haoshen.Zhou, Keisuke.Asaietal. Mater.Lett,2002,56:93
    16 U.S.Patent,1991,5,057,57296.
    17 T Kimura, Y Sugahara,K J Kuroda, J. Chem.Soc. Chem. Comm,1995,559.
    18 N.Ulagappan, C N R Rao. Chem.Commun ,1996,2759.
    19 A Sayari, M Kruk, M Jaroniec, etal. Adv.Mater,1997,9:2123.
    20 A.Sayari;M. Kruk; M. Jaroniec. Adv. Mater,1998,10:1376.
    21 Anjie.Wang, Toshiaki Kabe. Chem.Commun.1999,20:2067.
    22 A Jentys,K Kleestorfer, H Vinck.Microporous.Mesoporous.Mater, 1999,27:321.
    23 H Wouter, .T Chen, M dewilde, P.J grobet. Microporous. Mesoporous. Mater. 2001,44-45:453.
    24 Koyano, T Tatsumi. JPhys Chem.B,1997,101:9436.
    25 A Jentys etal. Microporous. Mesoporous. Mater,1999,27:321.
    
    
    26 X S Zhao, G Q Lu .J.Phys Chem B,1998,102:1556.
    27 H Landmesser, H. Kosshck, W Storek, R Fricke. Solid State lonics 1997,101-103:271-277.
    28 Eugène Papirer. Surf.Sci series.90,
    29 Yasuhiro Iwasawa, Tailored Metal Catalysts, D Reidel Publishing company. 1946.p25
    30 D.Brunel, N Bellocq, P Sutra, A.Cauvel, et al. Corrd.Chem.Rev, 1998:178-180:1085.
    31 A C Blanc D.J Macquarrie, S Valle, et al. Greem Chem 2000,2:283.
    32 Anne cauvel, Gilbert Renard, Daniel Brunel J.Org Chem 1997,62,749.
    33 zhao X.S, Lu G.Q. J.Phys Chem B,1998,102:1556
    34 X.S. Zhao a, G.Q. Lu a,*, X. Hub Colloids and Surfaces A: 2001,179:261.
    35 X S Zhao, G Q. Lu, X Hu. Microporous and Mesoporous Materials.2000., 41:37.
    36 K A. Koyano, T Tatsumi, Y Tanaka, S Nakata, J. Phys. Chem. B. 1997,101: 9436.
    37 X S Zhao, G Q. Lu. J. Phys. Chem. B,1998,102: 1556.
    38 Dong-Huy Park, Norikazu Nishiyama, Yasuyuki Egashira, and Korekazu Ueyama/nd. Eng. Chem. Res. 2001, 40." 6105.
    39 K A Koyano, T Tatsumi, Y Tanaka, S Nakata. J. Phys. Chem. B ,1997, 101:9436.
    40 J M Kim, R Ryoo. Bull. Korean Chem. Soc. 1996, 17:66.
    41 T Sano, K Yamada, S Eire, M Hasegawa, Y Kawakami, Y, H Yanagishita. Stud. Surf Sci. Catal. 1997, 105:2179.
    42 U Schubert, N Hüsing, A Lorenz. Chem. Mater, 1995, 7: 2010.
    43 N K Raman, M T Anderson, C J Brinke. Chem. Mater. 1996, 8: 1682.
    44 J Wen, G L Wilkes. Chem. Mater. 1996, 8: 1667.
    45 Chenghong Lei, Yongsoon Shin, Jun Liu and Eric J Ackerman. J.Am Chem SOC J. AM. CHEM. SOC. 2002, 124:11242.
    46 Mercier, T J Pinnavaia. Adv. Mater. 1997, 9: 500.
    47 Brown, L Mercier, T Pinnavaia. J. Chem. Commun. 1999, 69.
    48 X Feng, G E Fryxell, LWang, Y A Kim, J Liu. K M Kemner. Science,1997, 276: 923.
    49 C T Kresge, M E Leonowicz, W J Roth, J C Vartuli, J S Beck. Nature,1992, 359:710.
    50 P T Tanev, T J Pinnavaia,. Science 1995, 267:865.
    
    
    51 A Stein, B J Melde, R C Schroden. Adv. Marter. 2000, 12: 1403.
    52 M S Morey, A Davidson, G D Stucky. J Porous Mater. 1998, 5:195.
    53 V Alfredsson, M W Anderson. Chem. Mater. 1996, 8:1141.
    54 Danier Brune,Nathalie Bellocq, Pierre Sutra,et al.Coord.Chem.Rem, 1998,178-180,185
    55 M H Lim, C F Branford, A Stein. J. Am. Chem. Soc., 1997, 119, 4090.
    56 D J Macquarrie. Chem. Commun. 1996, 1961.
    57 M. H Lim,.; Branford, C. F.; Stein,A. Chem. Mater. 1998, 10, 467.
    58 Van Rhijn, W. M.; D E De Vos, B F Sels, W D Bossaert, P A Jacobs. Chem.Commun. 1998, 317.
    59 C W Jones, K Tsuji, M E Davis. Nature, 1998, 39, 52.
    60 C E Fowler, S L Burkett, S Mann. Chem. Commun, 1997, 1769.
    61 Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Commun. 1996, 11, 1367.
    62 Return naturalium, doctoral thesis, Chapter Ⅰ.
    63 Toyoshi, Shimada; Kazuko. Aoki; Yo. Shinoda, etal, J. Am. Chem. Soc, 2003,125: 4688.
    64 钱延龙,廖世健,均相催化进展,化学工业出版社,1990,6
    65 王尚弟 孙俊全,催化剂工程导论,化学工业出版社,2001,8
    66 Z L Lu, E Linder, H A Mayer. Chem. Rev, 2002.102:3543.
    67 J Lieto, D. Milstein, R L Albright, J V Minkiewicz, B C Gates. Chemtech 1983,46
    68 H.G Robert. Chemtech. 1977.512.
    69 B T Holland, C Walkup, A Stein, J. Phys. Chem. B. 1998, 102: 4301.
    70 Udo kragl, Torsten Dwars Trends In biotechnology, 2001,19,11.
    71 Y. Izumi, K. Urabe, Stud. Surf Sci. Catal. 1994,90:1.
    72 Y Izumi, M Ono, M Kitagawa, M Yoshida, K Urabe, Microporous Mater. 1995,5: 255.
    73 I. Diaz, C. Marquez-Alvarez, F. Mohino, J. Pérez-Pariente, E. Sastre, J. Catal. 2000, 193:295.
    74 M H Lim, C F Branford. A Stein,. J. Am. Chem. Soc., 1997, 119: 4090.
    75 D J Macquarrie,. Chem. Commun. 1996, 1961.
    76 M H Lim, C F Branford, A.Stein. Chem. Mater. 1998, 10:467.
    77 W M Van Rhijn,. D E De Vos, B F Sels, W D Bossaert, P A Jacobs. Chem. Commun.
    
    1998, 317.
    78 C W Jones, K Tsuji, M E Davis,. Nature, 1998, 39:52.
    79 C E Fowler, S L Burkett, S Mann..Chem. Commun., 1997, 1769.
    80 M Laspéras, T Llorett, L Chaves, I Rodriguez, A Cauvel, D Brunel. Stud. Surf. Sci. Catal. 1997,108:75.
    81 L Zhang, T Sun, J Y Ying. Chem. Commun. 1999, 1103.
    82 D Pini, A Mandoli, S Orlandi, P Salvadori,.TetrahedronAsymmetry 1999, 10:3883.
    83 G J Kim, J H Shin. Tetrahedron Lett. 1999, 40: 6827.
    84 S Xiang, Y L Zhang, Q Xin, C Li. Angew. Chem., Int.Ed. Engl. 2002, 41: 821.
    85 E Corey,. J. Org. Chem. 1990, 55:1693.
    86 D Meunier, A Piechaczyk, A deMallmann, J M Basset,. Angew. Chem., Int. Ed. Engl. 1999, 38:3540.
    87 R B Bedford, C S J Cazin, M B Hursthouse, M E Light, K J Pike, S Wimperis,. J. Organomet. Chem. 2001, 633:173.
    88 T Y Zhang, M J Allen.Tetrahedron Lett. 1999, 40:5813.
    89 H Kosslick, I Mo" nnich, E Paetzold, H Fuhrmann, R Fricke, D Mu'" ller, G Oehme,. Micropor. Mesopor. Mater. 2001, 44-45: 537.
    90 E Paetzold, G Oehme, H Fuhrmann, M Richter, R Eckelt, M M Pohl, H Kossliek. Micropor. Mesopor. Mater, 2001, 44-45:517.
    91 E B Mubofu, J H Clark, D J Macquarrie,. Green Chem. 2001, 3:23.
    92 C P Mehnert, D W Weaver, J Y Ying, J. Am. Chem.Soc.1998,120:12289.
    93 Dirk E. De Vos, Mieke Dams, Bert F. Sels, and Pierre A. Jacobs, Chem. Rev. 2002, 102:3615.
    94 A M Liu, K Hidajat, S Kawi. J Mol Catal A :Chemical 2001,168:303.
    95 D A Evans. K A Woerpel, M M Hinman, M M Faul. J. Am. Chem. Soe. 1991, 113:726.
    96 K Mukhopadhyay, B R Sarkar,R V Chaudhan. J. Am. Chem. Soc,2002. 124(33):9693

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700