膨润土的中性改性及其微粒助留助滤效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨润土是当今应用范围较广和经济价值较高的粘土矿物之一,被称为“千种用途土”,广泛应用于冶金、化工、农业、建筑、造纸、环保等多种领域。我国膨润土资源非常丰富,矿产几乎遍布全国,其储量居世界第一位,但我国90%以上为钙基膨润土,不适合在造纸中作为微粒助留成分使用。
     碳酸钠是传统的改性剂,成本低廉,但碳酸钠改性膨润土质量不佳;柠檬酸钠改性膨润土非常适于作造纸微粒助留剂,但其成本较高;实验中以中性试剂氟化钠代替传统的碳酸钠做改性剂制备钠基膨润土悬浮液,并与CPAM(阳离子聚丙烯酰胺)组成微粒助留体系,研究改性机理与方法(固体加热改性、常温液体改性),考察钠化剂种类、改性时间、钠化剂用量、干燥条件、剪切分散方法、剪切时间及放置时间对膨润土性能及微粒助留助滤效果的影响,通过X射线衍射分析、透射电镜观察及膨胀倍、胶质价、粒度、粘度、阳离子交换量、Zeta电位测定等手段研究膨润土的性能变化,同时利用动态滤水仪研究CPAM与膨润土组成的微粒助留体系对二次纤维的助留助滤效果,并与国内外不同化学品公司提供的膨润土微粒助留剂的性能及对麦草桨、针叶木桨、二次纤维和LWC纸浆的助留助滤效果进行了比较。
     结果表明,中性改性剂氟化钠在用量4%时可以将钙基膨润土中的Ca2+交换完全。与常规碳酸钠改性膨润土相比,氟化钠改性膨润土呈完全剥离的片状结构,具有更好的胶体与分散性能,粒度小、悬浮液流动性好且对二次纤维具有更好的助留助滤效果,尤其是放置四周后仍能保持其良好的助留助滤效果。各种改性膨润土的物化性能与助留助滤效果均与钠化剂的用量有关,且在膨润土刚好完全钠化时其粒度最小、膨胀倍和胶质价最高,助留助滤效果最好。
     利用氟化钠对钙基膨润土进行钠化处理可制备高浓膨润土悬浮液,该悬浮液分散性好、粘度低、贮存稳定性好,有利于产品的商业化。与固体加热氟化钠改性膨润土和碳酸钠改性膨润土悬浮液相比,具有更好的物化性能及分散性、流动性,助留助滤效果也更好,且悬浮液放置四周后助留助滤效果保持不变。
     与国内外化学品公司的改性膨润土微粒助留剂相比,自制氟化钠膨润土的pH值呈中性,对浆种和抄纸pH值的适应性强,对二次纤维、麦草浆、木浆及LWC浆料都具有相当好的助留助滤效果,且远好于国内化学品公司的产品,与国外化学品公司的产品对其优势浆种的助留助滤效果相当甚至或更好。在pH值3.5-8.0之间,对纸料的助留助滤效果变化不大。
Bentonite, which is called“clay with thousand kinds of usages”, is an important mineral raw material used in many fields including metallurgy, chemical industry, agriculture, construction, pulp and papermaking, environment protection et al. There are many bentonite ores which distribute almost everywhere in China. However, more than 90 percent of them are Ca-bentonite, which can not be directly used as a microparticulate retention aid in paper industry.
     Sodium carbonate is often used as an ion-exchanger to prepare Na-bentonite. It is quiate cheap as conventional modification agent, but the resulted modified bentonite may detoriate the wet end envioronment since its alkaline pH value. Sodium citrate is an excellent ion-exchanger for preparing neutral Na-bentonite, yet it is not cost-effective for a bentonite based microparticle retention aid. In this study, sodium fluoride was selected as a neutral ion-exchanger for preparing Na-bentonite suspension. The resulted modified bentonite was used as a microparticulate retention aid together with cationic polyacryamide. The effects of modification agents, methods, time, dosage of modification agents, dry condition, shearing methds and time on properties and performances of bentonite as a microparticulate retention aid were inveistigated. The properties of bentonite are characterized by the X-ray diffraction, TEM observation, swelling capacity (SC), colloidal capacity (CC), particle size, viscidity, caion-exchange capacity and zeta potential. The synergistic retention and drainage effects of the modified bentionite with cationic polyacryamide were studied by the means of dynamic drainage jar. The differences between the fluoride modified bentionite and the commcial bentonite based microparticle retention aids were also analyzed according to their properties and synergistic retention and drainage effect with CPAM on wheat pulp, softwood pulp, secondary fiber and LWC pulp.
     The results show that calcium ions among the layers of bentonite are replaced completely by sodium ions when 4% of sodium fluoride (based on the weight of bentonite) is used as ion-exchanger. The sodium fluoride-modified bentonite is dispersed into single layered structures and exhibits better suspensibility and dispensability, smaller particle size as well as lower sludge viscosity than sodium carbonate-modified bentonite. Naturally, the bentonite modified by sodium fluoride behaves better on improving the retention and drainage of the secondary fibers than the bentonite modified by sodium carbonate; especially it can sustain its good performance even after four weeks as a suspension. The suspending and dispersing properties as well as retention and drainage effects of the modified bentonite on the secondary fibers are related to the dosage of the ion-exchangers. The greater improvement on the retention and drainage of the secondary fibers occurred when the calcium ions among the layers of bentonite are just completely exchanged by the sodium ions of the ion-exchangers.
     The properties of high solid bentonite suspension modified at ambient temperature show smaller particle size, lower viscosity as well as higher swelling and colloidal capacity than that of bentionite powders heated during drying. Consequently, it shows higher synergistic retention and drainage effects with cationic polyarcyamide on secondary fibers. It also shows better synergistic retention and drainage effects with cationic polyarcyamide than bentonite suspension modified by sodium carbonate since its higher dispersibility. Futhermore, the propertices and synergiec retention and drainage effects of fluoride modified bentionite suspenstion do not change significantly during the 4 weeks of standing time.
     Compared to the commcial bentonite based microparticle retention aid, the pH value of the fluoride modified bentonite suspension is neutral. It can be used to different paper stocks at different papermaking pH, showing far better synergistic retention effect with CPAM on wheat pulp, softwood pulp, secondary fiber and LWC pulp than that of both home-made and aboard-made commcial bentonite microparticle retention aid.
引文
[1] R.I.SgiLL. Development in Retention Aid Technology[J]. Paper Technology, 1991, 32(8): 34-41
    [2] William E.Scott. Principles of Wet End Chemistry[J]. TAPPI PRESS, Atlanta, 1996: 122-123
    [3] GiLL RIS. Paper Technology[M]. 1991, 32(8): 34
    [4] 中国可持续发展信息网地矿网站[Z]
    [5] 彭先佳, 袁继祖, 曹明礼. 改性膨润土在废水处理中的应用[J]. 中国非金 属矿工业导刊, 2000, 17, (6): 40-41
    [6] A. S Allen, J. Oliver and I. J. Black. Clay compositions and their use in paper making[J]. WO 97/33041
    [7] 方邺. 林膨润土的物质成分及其研究方法[J]. 建材技术-陶瓷, 1982, (3): 37-40
    [8] Evans W C.Linear Systems, Compartmental Modeling, and Estimability Issues in IAQ studies. Characterizing Sources of Indoor Air Pollution and Related Sink Effects [J].ASTMSTP 1287. Bruce A. Tichenor, Ed., American Society for Testing and Materials, 1996, 239-262
    [9] 侍倩, 李翠华. 酸、碱对粘土物理性质的影响的试验研究[J]. 武汉大学学报(工学版). 2001, 34(5): 84-87
    [10] B K G Theng Format ion and property of clay-polymer complex Nether lands terdara[M]. Elsevier Scientific Publishing, 1979
    [11] 马福善, 秦永宁, 梁珍成. 蒙脱石端面电荷改性研究[J]. 硅酸盐学报, 1995,24(3):317-321
    [12] 吴东印, 卫敏. 膨润土的提纯与开发应用[J]. 矿产保护与利, 2000, (3): 14-16
    [13] 董元锋, 刘温霞, 汪进. 改性膨润土对二次纤微粒助留效果的影响[J]. 中国造纸, 2006, 25(10): 66-68
    [14] 董元锋, 刘温霞, 汪进. 膨润土改性及其对二次纤维的微粒助留助滤作用[J].中华纸业, 2006, (11): 61-64
    [15] 董元锋, 刘温霞. 膨润土改性及其对二次纤维的微粒助留作用[J]. 中国造纸, 2006, 25(12): 19-22
    [16] Yuan Fengdong,Wen Xialiu. Improving the Performance of Bentonite-based Microp-article Retention Aid[A]. 3rd ISETPP[C]. 2006: 603-607
    [17] 王星文. 膨润土的复配改性及对二次纤维的微粒助留作用[D]. 济南, 山东轻工业学院, 2006
    [18] 杜海清, 唐绍裘. 陶瓷原料与配方[M]. 北京:轻工业出版社, 1986: 第一版
    [19] 刘温霞, 王松林, 李建文. 蒙脱石的结构形态及钠化方法与其微粒助留作用[J]. 中国造纸学报, 2004, 19(1): 97
    [20] Yuan Fengdong, Wen Xialiu. Preparation and Application of Bentonite Suspension in Papermaking Industry[C]. 12th ICSCS, 2006, 10
    [21] 董元锋, 刘温霞. 中性膨润土及其对二次纤维的微粒助留作用[J]. 纸和造纸,2007(3): 13-16
    [22] 王贵领, 赵经贵, 赵杰. 膨润土深度开发产品的制备及研究现状[J]. 化学工程师, 2003(2): 43-45
    [23] 胡茂焱. 氧化镁改性膨润土工艺的研究及作用机理[J]. 西部探矿工程, 1992 (4):12-15
    [24] 管俊芳, 陆琦, 陈林丽. 膨润土深加工的研究进展[J]. 化工矿产地质, 2002 (2): 23-26
    [25] 杨久义, 周广芬, 郭子成. 用膨润土制备造纸废水用混凝剂的研究[J]. 非金属矿, 2004(1): 44-46
    [26] 夏新兴, 彭毓秀, 李少鹏. 膨润土改性方法的研究[J]. 中国造纸, 2003, 22(2): 20-23
    [27] 张秀英, 李国昌, 王萍. 利用山东膨润土生产有机膨润土研究[J]. 非金属矿, 2004(1): 35-36
    [28] SHEN YUAN-Hwei . Preparation of organobentonite using nonionic surfactants [J].Chemosphere, 2001(44): 989-995
    [29] CHRISTOPHERBreen, RUTH Waston. Acid-activated organ clays: preparation, Characterization and catalytic activity of polycation-treated bentonites [J]. Applied Clay. 1998(2): 479-494
    [30] Agne Swerin et al. Flocculation of cellulosic fiber suspensions by model microparticulate retention aid systems[J]. Nordic Pulp Paper Research Journal, 1993, 8(4): 389
    [31] Lars Wagberg. On the mechanism of flocculation by microparticle retention aid systems[J]. Tappi. , 1996, 79(6): 157
    [32] Asselman, T. and Garnier, G. The flocculation mechanism of microparticulate retention aid systems[J]. JPPS, 2001, 27(8): 273
    [33] Agne Swerin. Flocculation of cellulosic fiber suspensions by a microparticulate aid systems consisting of cationic polyacrylamide and anionic montmorillonite[J]. Nordic Pulp Paper Research Journal, 1996, 11(1): 22
    [34] Wagberg L. On the mechanism behind flocculation by microparticle retention aid systems[J]. TAPPI Papermakers Conference, 1995, 71
    [35] P.M.Lowry, Wet end balance through the use of multi-component systems[J]. TAPPI Papermakers Coference, 1988, 231
    [36] Clitherow, et al.Filler compositions and their use in papermaking [P]. United States patent, 5017268, 1991
    [37] Nakazawa. Inorganic filler and process for production thereof[P]. United States Patent, 1986, 4: 626290
    [38] 吴祖武, 改性膨润土造纸填料应用的研究. 中国造纸[J]. 1993, (6): 22-27
    [39] Peuthere, Peter Waring, IarMarkCollet, Lesley. Sizing of paper[P]. U.S.Pat., No. 6284099, 2001
    [40] Saeid Gitipour, Mark T Bowers, Warren Huff, et al.The efficiency of modified bentonite clays for removal of aromatic organics from oily liquid wastes[J]. Spill Science &Technology bulletin, 1997(4): 155
    [41] Carrizosa MJ, Calderòn MJ, Hermosín MC et al. Organosmectites as sorbent and carrier of the herbicide bentazone [J]. The Science of the Total Environment, 2000, (200): 285
    [42] Dilek FB, Base S. Treatment of pulping effluents by using alumarxl clay-Colour removal and sluxlage characteristics[J]. Water SA, 2001, 27(3): 361-366.
    [43] Alonso V, Martion A, Borja R. Anaerobic digestion of wastewater produced in the manufacture of cellulosic pulp from wheat straw[J]. Resourses Conservationarxl Recycling, 1995, 13(2): 129-138
    [44] Yordan Jorge L, Kortmeyer Jordan, Yildirim Ismail, Yoon RoeHoan. Studies of the interactions between talcarxlmicrost tickes during paper recycling proceedings[J]. Research Forum Recycling Proceedings, 2001: 119-123
    [45] Ben Yu xia, Dorris Giller, Hill Geoff, Allen John. Contaminant removal fromdeinkingprocess water[M]. Part: Mill benclmaking Research, Forum on Recycling, Pr-oceeding, 2001: 145-153
    [46] Wurter Hartmut Hofmann Hans-Peter. Thin printing paper and a process for manufacturing said paper[P]. U.S.Pat., No.5916420, 1999
    [47] 袁澄清. 国外膨润土的若干薪用途[J]. 非金属矿, 1987, (6): 1-10
    [48] Scott WE. Principles of wet end chemistry[M]. Atlanta: TAPPI Press, 1996
    [49] 张光华. 造纸湿部化学原理与应用[M]. 中国轻工业出版社, 1998: 第一版
    [50] 沈一丁. 造纸化学品的制备与作用机理[M]. 中国轻工业出版社, 1999: 第一版
    [51] Neim L. Papermaking chemistry. Book4. In: Gullichsen J, Paulapuro H. Papermaking science and technology[J]. Helsinki: Finnish Paper EngineersAssociation and TAPPI, 1999
    [52] 胡惠仁. 关于微粒助留技术作用机理的新解释[J]. 造纸化学品, 2002,(1): 9-11
    [53] 张红杰, 胡惠仁. 新型的微粒助留体系[J]. 西南造纸, 2001, (6): 17-18
    [54] 陈启杰. 浅谈几种微粒助留体系[J]. 湖北造纸,2002, (3): 18-20
    [55] A.Swerin, G.Rinsiger and L. Odberg.Shear strength in papermaking suspensions flocculated by retention aid systems [J]. Nordic Pulp and Paper Research Journal, 1996, 11(1): 30-35
    [56] A.Swerin, G.Rinsiger and L.Odberg.Flocculation in suspensions of microcrystalline by microparticle retention aids [J]. Journal of Pulp and Paper Science, 1997, 23(8): 374-381
    [57] Xiao, H., Liu, Z and Wiseman, N. Synergetic effect of cationic polymer microparicles and anionic polymer on fine clay flocculation [J]. Colloid Interface Sci.1999, 216: 410-417
    [58] Liu W., Long Y , Wang Q, and Xie L. Retention mechanism of amphoteric starch/poly aluminum silicate on wheat straw pulps[C]. 4th INWPPC, 2000, V(2): 469-476
    [59] 车大军, 龙柱. 阳离子有机微粒的合成及其对阔叶木浆的助留助滤作用[J]. 中华纸业, 2003, 24(5): 31-33
    [60] 胡惠仁. 阳离子微粒与阴离子聚合物复配的微粒助留体系[J]. 纸和造纸, 2002, (1): 52-54
    [61] Agne Swerin. Flocculation of cellulosic fiber suspensions by a micro particulate aid systems consisting of cationic polyacrylamide and anionic montmorillonite[J]. Nordic Pulp Paper Research Journal, 1996, 11(1): 22
    [62] Clemencon. Effect of flocculation/micro particles retention programmers on floc properties[J]. PulpTechnol, 2000, 41(8): 8
    [63] Cherie ovenden, Nicholas Wiseman. Retention aid system of cationic polymer and anionic microparticles: experiments and pilot machine trials.Tappi[J], 2000, 83(3): 80-84
    [64] T.Asselman and G.Gamier. The flocculation mechanism of microparticulate retention aid systems [J]. Journal of Pulp and Paper Science, 2001, 27(8): 273-278
    [65] Ono, H. and Deng, Y. Flocculation and retention of precipitated calcium carbonate by cationic polymeric microparticle flocculants[J]. Colloid Interface Sci.1997, 188: 183-192
    [66] Mian Steve and Simonson.Retention aids for high-speed paper machines[J]. Tappi, 1999, 82(4): 78-84.
    [67] Honing Dan S., Harris Elieth W., Pawlowska lucyna M. and Jackson Logan A. Formation improvments with water soluble micropolymer systems[J]. Tappi, 1993, 76(9): 135-143
    [68] 刘娜. 膨润土性质及其对麦草将的协同助留助滤作用[D]. 济南: 山东轻工业 学院, 2003
    [69] 董元锋, 刘温霞, 汪进. 改性膨润土的干燥与分散条件对二次纤维微粒助留效果的影响[J]. 中国非金属况工业导刊, 2006, (5): 36-39
    [70] 刘温霞, 王松林, 李建文. 蒙脱石对酸性抄纸体系的微粒助留作用[J]. 造纸化学品, 2003, (4): 13
    [71] 董元锋, 刘温霞, 蒋秀梅. 改性方式对膨润土性能及微粒助留助滤效果的影响[J]. 中国非金属况工业导刊, 2007, (1): 35-39
    [72] Wagberg L. On the mechanism behind flocculation by microparticle retention aid systems[J]. 1995 TAPPI Papermakers Conference, 71
    [73] 周凯汀. 酸、碱对钠膨润土悬浮体系 pH 值的影响[J]. 华侨大学学报(自然科学版). 1998, 19(1): 40-43
    [74] 赵杏媛, 张有瑜. 粘土矿物与粘土矿物分析[M]. 北京: 海洋出版社, 1990, 38-39
    [75] 马福善, 秦永宁, 梁珍成. 蒙脱石端面电荷改性研究[J]. 硅酸盐学报, 1995,24 (3):317-321
    [76] 侍倩, 李翠华. 酸、碱对粘土物理性质的影响的试验研究[J]. 武汉大学学报(工学版). 2001, 34(5): 84-87
    [77] 方邺林. 膨润土的物质成分及其研究方法[J]. 建材技术-陶瓷, 1982(3): 37-40
    [78] 益发成, 戴淑霞, 候兰杰. 钙基膨润土钠化改型工艺及其产品应用现状[J]. 中国矿业, 1997, 6(6): 65-67
    [79] 牛炳昆. 膨润土的提纯研究[J]. 化工矿物与加工, 1999(8): 6-8
    [80] 候万国, 张春光, 王果庭. 聚丙烯酰胺对粘土悬浮体的絮凝与稳定作用[J]. 高等学校化学通报. 1989, 10(8): 848-851
    [81] 吴东印, 卫敏, 杨康平. 膨润土湿法提纯研究[J]. 非金属矿, 2000,23(3): 23-24
    [82] 吴东印, 卫敏. 膨润土的提纯与开发应用[J]. 矿产保护与利用, 2000, (3): 14-16
    [83] 王守刚. 膨润土及其加工技术[J].矿产保护与利用, 1992(2): 21-28
    [84] 归凤铁, 陈强, 候海山. 高纯钠基膨润土制备新工艺研究[J]. 非金属矿, 2004,999(7): 36-38
    [86] 刘温霞. 阳离子聚丙烯酰胺/膨润土助留助滤体系[J]. 造纸化学品, 2000(3): 18-22
    [87] Lindstrom T. Aluminum based microparticulate retention aid systems. Nordic Pulp Paper Res [J].1989, 4(2): 99
    [88] Carre B. Starch and alumina/siliica based compounds as amicroparticle retention aid system. Nordic Pulp Paper Res[J]. 1993, 8(1): 21
    [89] Jacock MJ, Swales DK. The theory of retention[J]. Paper Technology, 1994, 35 (8): 26
    [90] Doiron EB. Retention aid system. In: Gess JM. Rention of fines and fillers during papermaking[J]. Atlanta: TAPPI Press, 1998, 159
    [91] Honing DS. Formation improvement with water soluble micropolymer systems. Tappi[J], 1993, 79(9): 135
    [92] Ovenden C, Xiao H. Retention aid system of cationic microparticles and anionic polymer: experiments and pilot machine trials[J]. Tappi, 2000, 83(3): 80
    [93] 王松林, 刘温霞. 阳离子微粒氢氧化铝的合成及其微粒助留作用[J]. 中国造纸学报, 2004, 19(1): 66-72
    [94] Liu W, Ni Y, Xiao H. Cationic montmorillonite: prepartion and synergy with anionic polymer in filler flocculation [J]. Pulp Paper Sci, 2003, 29(5): 145
    [95] Lu C, Pelton R. PEO flocculation with phenonic microparticales[J]. Collid Interface Sci, 2002, 254: 101
    [96] 候世珍. 造纸助剂作用原理及应用[M]. 西安: 西安轻工业出版社,西北轻工业学院教材, 1995
    [97] 汪多仁. 聚丙烯酰胺的合成进展与应用[J]. 造纸化学品. 1998, (10): 13-16
    [98] 张乃娴, 李幼琴, 赵惠敏, 姬素荣. 粘土矿物研究方法[M]. 北京:科学出版社, 1990, 10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700