氢氧化镁铝类微粒助留系统的絮聚作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢氧化镁铝为混合金属氢氧化物,是最常见的一类水滑石。实验中利用氯化镁和氯化铝混合物与稀碱液的共沉淀反应,合成了带正电荷的氢氧化镁铝胶体,并对制得的胶体进行了表征。然后利用氢氧化镁铝作为阳离子微粒,通过动态滤水仪和絮凝度分析仪研究其自身,及与阴离子聚丙烯酰胺、阳离子聚丙烯酰胺、阴/阳离子聚丙烯酰胺复合物等组成助留系统时,对纸料和填料的助留、絮聚情况,并用扫描电镜和透射电镜分析氢氧化镁铝助留系统的助留机理与特点。
     结果表明,氢氧化镁铝微粒为完整的结晶体,颗粒大部分呈六边形结构,结晶状态良好,最大粒度为200nm,平均粒径100nm左右。氢氧化镁铝胶体随胶溶时间的增加其Zeta电位逐渐增加,而且使得其对纸料的助留作用提高,对高岭土和滑石粉填料的絮聚作用增强。此外,利用适当的剪切作用可提高氢氧化镁铝的分散性能,并由此可提高其对纸料的助留作用和对填料的絮聚作用。然而,单独使用氢氧化镁铝对纤维及填料的助留和絮聚作用不是很强。其对高岭土的絮聚作用主要靠氢氧化镁铝松散聚集体的“桥联”作用,而对滑石粉主要靠电中和作用。
     当氢氧化镁铝与阴离子聚丙烯酰胺组成阳离子微粒助留体系时,对纸料的助留作用和对填料的絮聚作用较强,且氢氧化镁铝加入量越高,达到最大絮聚所需阴离子聚丙烯酰胺的量也越大,所引发的絮聚具有一定的抗剪切作用,尤其是加入氢氧化镁铝后所历的剪切作用越大,最后的纸料留着率越高。
     CPAM/氢氧化镁铝助留体系具有良好的助留作用,以先加CPAM后加氢氧化镁铝时对纤维的留着率较好,并且在中性偏碱性的时候助留效果最佳。氢氧化镁铝与CPAM联合使用时,先加CPAM与先加氢氧化镁铝的两种加入顺序均可大幅度提高对高岭土的絮聚作用,并以先加氢氧化镁铝时达到最大絮聚所需氢氧化镁铝的量较低,但两种加入顺序对高岭土填料的絮聚机理不同,先加CPAM后加氢氧化镁铝形成的是结构致密的高岭土絮聚体,而先加氢氧化镁铝后加CPAM形成的是结构松散的高岭土絮聚体。
     氢氧化镁铝与APAM/CPAM复合物组成的助留系统中,随着APAM/CPAM复合物质量比增大,对麦草浆的助留作用随之提高。带有阳电荷的CPAM/APAM复合物比带有阴电荷的复合物具有更强的絮聚能力,但是氢氧化镁铝与高比例的CPAM/APAM复合物具有很有限的协同助留作用。
Magnesium aluminum hydroxide (MAH), a mixed metal hydroxide, is the most common hydrotalcite–like compound. In experiment, positively charged magnesium aluminum hydroxide was synthesized by co-precipitation of magnesium chloride and aluminum chloride with dilute alkaline solution. It was characterized by TEM, particle analyzer and zeta potential tester. Then, the retention and flocculation effects of the colloidal magnesium aluminum hydroxide as a single coagulant and cationic microparticulate component with cationic polyacrylamide (CPAM), anionic polyacrylamide(APAM) or cationic/anionic polyacrylamide complexes on fibers and fillers were investigated by means of Dynamic Drainage Jar(DDJ) and photometric dispersion analyzer (PDA2000), respectively. The retention mechanisms and flocculation characters of magnesium aluminum hydroxide based systems were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
     The results indicate that the magnesium aluminum hydroxide (MAH) particles are complete crystals with hexagonal structure. The size of largest particle is 200nm. The average particle size is 100nm. The zeta potential of MAH colloid is increased gradually with the increase of peptization time. Consequently, its retention effects on stocks and flocculation effects on fillers are improved significantly with peptization time. In addition, appropriate shearing force may improve the dispersibility of MAH and in turn to enhance the retention of fiber and the flocculation of filler. However, MAH itself causes a weak flocculation of kaolin clay and shows a little retention effect on paper stocks. The kaolin clay is flocculated by bridging large kaolin clay particles with small loosely connected MAH particles while the talc powders are flocculated by the charge neutralization with MAH.
     MAH shows good synergistic retention effects with APAM on both stock retention and filler flocculation. Higher amount of MAH needs more APAM to achieve the best synergistic retention/flocculation effect. The flocculation of both stocks and fillers induced by MAH/APAM shows certain shear resistance. Higher stirring speed after MAH is immediately added, often results in higher final stock retention.
     CPAM/MAH system displays good retention effects on paper stocks. The addition sequence of CPAM followed by MAH commonly shows higher retention effects on paper stocks, and displays higher retention efficiency under neutral/alkaline pH. For the flocculation of kaolin clay, both addition sequences of MAH followed by CPAM and CPAM followed by MAH show significant synergistic flocculation effects. However, the addition sequence of MAH followed by CPAM may achieve its biggest flocculation effects on kaolin clay at lower addition levels of MAH. The flocculation mechanisms of kaolin clay caused by the different addition sequences of MAH and CPAM are different. When CPAM is first added to the clay suspensions, the clay particles flocculate to form dense flocs with the addition of MAH. When MAH is added to clay suspensions followed by CPAM, the clay particles are loosely connected together.
     In the system of the MAH with APAM/CPAM complexes, increasing the mass ratio of APAM/CPAM will enhance the first pass retention of wheat straw pulp. The APAM/CPAM complexes with cationic charges induce stronger flocculation than that with anionic charges. However, the MAH only shows very limited synergistic retention effect with APAM/CPAM complexes of higher CPAM/APAM mass ratios.
引文
[1] R.I. SgiLL. Development in Retention Aid Technology[J]. Paper Technology, 1991, 32(8): 34-41
    [2] William E., Scott. Principles of Wet End Chemistry[J]. TAPPI PRESS, Atlanta, 1996: 122-123
    [3] GiLL RIS. Paper Technology[M]. 1991, 32(8): 34
    [4] 苏文强, 杨磊. 造纸助剂[M]. 东北林业大学, 2005, 1
    [5] 杨开吉, 苏文强, 沈静. 聚合物类助留剂的开发现状及发展前景[J]. 湖南造纸2006(1):23-26
    [6] Carigana A., Garnier G. Mvandevan T. G. The flocculation of fines by PEO/ Cofactor retention aid systems[J]. Journal of pulp and paper science, 1998, 24 (3): 94
    [7] Xlao H. Rrelton, Hamiel eca. Retention mechanisms for two-component systems based on phenolicresins and PEO or new PEO-Copolymer retention aids, 1996, 212: 75-85
    [8] 胡惠仁. 关于微粒助留技术作用机理的新解释[J]. 造纸化学品, 2002, (1): 9-11
    [9] 张红杰, 胡惠仁. 新型的微粒助留体系[J]. 西南造纸, 2001, (6): 17-18
    [10] 陈启杰. 浅谈几种微粒助留体系[J]. 湖北造纸,2002, (3): 18-20
    [11] Swerin A., Rinsiger G., Odberg L.. Shear strength in papermaking suspensions flocculated by retention aid systems [J]. Nordic Pulp and Paper Research Journal, 1996, 11(1): 30-35
    [12] Swerin A., Rinsiger G., Odberg L.. Flocculation in suspensions of microcrystalline by microparticle retention aids [J]. Journal of Pulp and Paper Science, 1997, 23(8): 374-381
    [13] Xiao, H., Liu, Z., Wiseman, N.. Synergetic effect of cationic polymer microparticles and anionic polymer on fine clay flocculation [J]. Colloid Interface Sci.1999, 216: 410-417
    [14] Liu W., Long Y., Wang Q., et al. Retention mechanism of amphoteric starch/poly aluminum silicate on wheat straw pulps[C]. 4th INWPPC, 2000, V(2): 469-476
    [15] 车大军, 龙柱. 阳离子有机微粒的合成及其对阔叶木浆的助留助滤作用[J]. 中华纸业, 2003, 24(5): 31-33
    [16] 胡惠仁. 阳离子微粒与阴离子聚合物复配的微粒助留体系[J]. 纸和造纸, 2002, (1): 52-54
    [17] Ono H., Deng Y.. Flocculation and retention of precipitated calcium carbonate by cationic polymeric microparticle flocculants[J]. Colloid Interface Sci., 1997, 188: 183-192
    [18] Mian Steve, Simonson. Retention aids for high-speed paper machines[J]. Tappi, 1999, 82(4): 78-84
    [19] Honing Dan S., Harris Elieth W., Pawlowska lucyna M., et al. Formation improvements with water soluble micropolymer systems[J]. Tappi, 1993, 76(9): 135-143
    [20] Lars Wagberg. On the mechanism of flocculation by microparticle retention aid systems[J]. Tappi, 1996, 79(6): 157-164
    [21] Lindstrom T. Aluminum based microparticulate retention aid systems. Nordic Pulp Paper Res[J]. 1989, 4(2): 99
    [22] Carre B. Starch and alumina/siliica based compounds as amicroparticle retention aid system. Nordic Pulp Paper Res[J]. 1993, 8(1): 21
    [23] Jacock MJ, Swales DK. The theory of retention[J]. Paper Technology, 1994, 35 (8): 26
    [24] Doiron EB. Retention aid system. In: Gess JM. Rention of fines and fillers during papermaking[J]. Atlanta: TAPPI Press, 1998, 159
    [25] Honing DS. Formation improvement with water soluble micropolymer systems. Tappi[J]. 1993, 79(9): 135
    [26] Lu C, Pelton R. PEO flocculation with phenonic microparticles[J]. Collid Interface Sci, 2002, 254: 101
    [27] Yan Z., Deng Y. Cationic microparticle based flocculation and retention systems. Chemical Engineering Journal, 2000, 80: 31-36
    [28] Xiao H., Liu Z., Wiseman N. Synergetic effect of cationic polymer microparticles and anionic polymer on fine clay flocculation. Journal of Colloid and Interface Science, 1999, 216: 409-417
    [29] Honig D. S., Harris E. Charged organic polymer microbeads in paper-making process. United States Patent, 1993, US 5, 274, 055
    [30] Ovenden C., Xiao H., Wiseman N. Retention aid systems of cationic microparticles and anionic polymer: experiments and pilot machine trials. Tappi J. 2000, 83(3): 80-85
    [31] Ovenden C, Xiao H. Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems. Colloids and Surfaces, 2002, 197: 225-234
    [32] 王松林, 刘温霞. 阳离子微粒氢氧化镁铝的合成及其微粒助留作用, 中国造纸学报, 2004,19(1): 66-69
    [33] Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clay: preparation properties and application [J]. Catal Today, 1991, 11: 173-301
    [34] 谢鲜梅. 层状化合物镍铝水滑石的制备和表征[J]. 无机化学学报, 2000, 16(1): 43-46
    [35] Reichle W T, Kang S Y, Everhardt D S. The Nature of the thermal decomposition of acatalytically active anionic clay mineral [J]. J Catal, 1986, 101: 352-359
    [36] Allmann R. The crystal structure of pyroaurite[J]. Acta Crystallorg Sect B. 1968, 24: 972-977
    [37] Taylor H F W. Crystal structures of some double hydroxide minerals[J]. Miner. Mag. 1973, 39 (304): 377-389
    [38] Bone J S, Ph.D. report: Development and Characterisation of the Inter layer Chemistry of Layered Double Hydroxides. University of Exeter, June 1995
    [39] Cavani F, Vaccari A. Hydrotalcite-type anionic clay preparation, properties and application [J]. Catal Today, 1991, 11: 17-301
    [40] 谢鲜梅. 阴离子粘土的合成方法[J]. 太原工业大学学报, 1997, 28(8): 58-60
    [41] Rives V. Characterization of layered double hydroxides and their decomposition products[J]. Materials Chemistry and Physics, 2002, 75: 19-25
    [42] 韩书华,许之,候万国. 插入法制备镁铝氢氧化物的性质研究[J]. 山东大学学报. 1998, 33 (12):1785-1787
    [43] 刘继广, 矫庆泽, 蒋大振等. 杂多阴离子柱撑锰铝水滑石的合成、表征及催化性能[J]. 催化学报, 1995, 16(3): 241-244
    [44] 李连生, 马淑杰, 徐如人等. 稀土水滑石催化合成邻苯二甲酸二戊酯的研究[J]. 高等学校化学学报, 1995, 16(8): 1164-1167
    [45] Suzuki E, OnoY. Bull Chem. Soc. Jpn., 1988, 61: 1008
    [46] Reichle W T. US. Patent 4, 458, 026 Jul.3, 1984
    [47] Schencketal. US Patent 2, 958, 626, 1960
    [48] Kumuraetal. US Patent 3, 539, 306, 1970
    [49] Miyataetal. US Patent 3, 897, 525, 1975
    [50] Shigeo Miyata, Takamatsu. US Patent 4, 514, 389, 1985
    [51] Parker L M, Milestone N B, Newman R H. The use of hydrotalcite as an anion absorbent[J]. Industrial&Engineering Chemistry Research, 1995, 34: 1196-1202
    [52] Jone L. US Patent 4, 752, 397
    [53] Miyataetal. Complex metal oxide with acidic and basic properties and high surface area[P]. US: 3897525, 1975
    [54] 王松林, 刘温霞. 氢氧化镁铝胶体微粒与纤维和阴离子聚丙烯酰胺的吸附[J]. 中国造纸学报, 2004, 19 (1): 89
    [55] 徐忠恺等. 高分子阴离子 PAM 助留剂的特性和应用[C]. 上海造纸研究所技术报告
    [56] 陈菊勤等. 胺甲基聚丙烯酰胺的合成及其絮凝作用考察[J]. 工业水处理, 1993, 13(5): 23
    [57] 陈运根等. 高分子量聚丙烯酰胺的制备[J]. 精细石油化工, 1989, 6: 25
    [58] 胡惠仁, 何秋实, 梁 哲等. 阴离子聚丙烯酰胺(APAM)提高纸张干强度的研究[J]. 中国造纸,1999 ,18 (1):11-16
    [59] 马自俊, 金日辉. 丙烯酰胺水溶液聚合的几种氧化还原引发体系的研究[J]. 精细石油化工, 1997, (1): 41-43
    [60] 陈韦华, 胡开堂. PAM 的制备及其在造纸工业中的应用[J].上海造纸, 2000, (1):19-22
    [61] 王杰民. 聚丙烯酰胺的合成与应用[J]. 化学工程师, 1991, (2): 27-29
    [62] 张效林, 韩 卿. PAM的合成及其在造纸中的应用前景[J]. 造纸化学品, 2003,(3):11-14
    [63] Lars Wagberg, et al. On the mechanism behind flocculation by microparticle retention-aid systems[R]. TAPPI Papermakers Conference.1995: 71-78
    [64] Agne Swerin, et al. Flocculation of cellulosic fiber suspensions by model microparticulate retention-aid systems[J]. Nordic Pulp Paper Research Journal. 1993, 8(4): 389-398
    [65] 刘温霞. 阳离子聚丙烯酰胺/膨润土助留助滤体系[J]. 造纸化学品. 2000(3): 18-22
    [66] 陈夫, 何秋实, 隆言泉. 两性聚丙烯酰胺的助滤作用[J].纸和造纸, 1998 (4): 43-45
    [67] S.P. vijayalaksh mi, et al. Int.J.Miner Process, 2002, 67: 199-210
    [68] Toshiyuki H,Absumu T. Characterization of repeatedly reconstructed Mg-Al hydrotalcite-like compounds:gradual segregation of aluminum from the structure[J]. Chem Mater, 1998, 10: 4055
    [69] Han S,Zhang C,Hou W,et al. Studies on strueture of magnesium aluminum hydroxide positive sol[J]. Chemical Journal of Chinese University, 1996, 17(11): 1785
    [70] Dan S, Honig R., Turnbull, et al. Process of 1999 TAPPI Papermakers Conference, Atlanta, USA. 1~4 March 1999 Vol. 3, 1335-1344
    [71] Andrea Gibbs, Huining Xiao, Yulin Deng, et al. TAPPI, 1997 Vol. 83, No. 4,163
    [72] Shubin V., Linse P. Effect of electrolytes on cationic polyacrylamide on silica: ellipsometric study and modeling[J]. Phsys. Chem., 1995(99): 1285-1291
    [73] 王松林, 刘温霞. 不同阴离子型氢氧化镁铝正电胶体的合成和造纸助留实验[J] . 造纸化学品, 2004, 16(3): 10-12
    [74] Rushmere J. Retention and drainage aid for papermaking[P]. United States Patent, 4798653, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700