钛酸钠一维纳米材料的合成及其微粒助留作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料因其独特的几何效应得到广泛应用。实验中利用水热法以二氧化钛和氢氧化钠为原料合成了带负电荷的钛酸钠纳米带和纳米管,对合成条件如温度和时间对产物的影响做了研究并对产物进行了表征。然后利用钛酸钠作为阴离子微粒,通过动态滤水仪和絮凝度分析仪研究其自身及与阳离子聚丙烯酰胺组成微粒助留体系时,对纸料和填料的助留、絮聚情况,并利用透射电镜分析钛酸钠纳米带助留体系的助留机理与特点,最后与纳米线状结构的碱式氯化镁的微粒助留作用进行了比较。
     结果表明,钛酸钠粒子为完整的结晶体,颗粒的形貌受温度影响较大,低温(150℃)下合成的产物为纳米管,长度约为1.5~5.0μm,纳米管的外径在30~70nm之间;高温(180℃)下合成的产物为纳米带,延长时间增加纳米带的长度和分布均一性。在180℃、72h的条件下合成的钛酸钠纳米带大部分在7μm左右,宽度在50~80nm之间。钛酸钠纳米带和纳米管都带负电荷,其Zeta电位在pH值4~6之间随pH值逐渐降低(绝对值增大),在pH值6~8之间几乎不变。
     钛酸钠纳米带和纳米管本身对填料的絮聚作用不大,但当与CPAM联合使用时在低加入量下表现出较好的协同絮聚作用,而且适当提高CPAM的量协同絮聚效果更好。CPAM/钛酸钠纳米带微粒助留体系更适用于中性抄纸,且絮聚作用具有桥联絮聚的特点。钛酸钠纳米带的长度对絮聚影响比较大,低加入量下长度越大越有利于对高岭土的絮聚。但长度大于一定值时因钛酸钠自身的团聚作用会抑制其絮聚作用。这一临界值为合成时间24h的钛酸钠纳米带,长度大约3μm左右。一定范围内增大CPAM加入后的剪切速率有助于钛酸钠纳米带对高岭土的重聚。无论是对高岭土还是对滑石粉,CPAM/钛酸钠纳米带、纳米管微粒助留体系引发的絮聚都具有较好的抗剪切能力,对高岭土作用形成的絮聚体比较致密。
     与球状纳米二氧化钛相比,钛酸钠纳米带和钛酸钠纳米管在低加入量下即可达到最佳絮聚效果,但纳米带整体絮聚效果不如纳米球状二氧化钛,纳米管与二球状氧化钛相差不大。与合成的线状碱式氯化镁相比,钛酸钠纳米带单独使用时絮聚效果不如线状碱式氯化镁,但当与CPAM联合使用时与碱式氯化镁的絮聚作用相差不大而且达到最大絮聚作用所需加入量及CPAM加入量都比较小。CPAM/线状碱式氯化镁与CPAM/钛酸钠纳米带或纳米管都属于微粒助留体系,增大CPAM加入后的转速有利于助留效果的提高,但是CPAM/线状碱式氯化镁微粒助留体系对滑石粉的絮聚有抗剪切能力较差。
One-dimensional nanomaterials have been widely used because of their special geometry effects. In experiment, negatively charged sodium titanate nanobelt and nanotube were synthesized by a hydrothermal treatment of titanium dioxide in concentrated sodium hydroxide. The influence of temperature and time on the synthesis of the titanate nanomaterials was studied, and the products were characterized by TEM observation and zeta potentioal measurement. Then, the retention and flocculation effects of the sodium titante nanomaterials as a single coagulant and anionic microparticulate component with cationic polyacrylamide (CPAM) on fibers and fillers were investigated by means of dynamic drainage jar (DDJ) and photometric dispersion analyzer (PDA2000), respectively. The retention mechanisms and flocculation characters of the sodium titanate with CPAM were analyzed by transmission electron microscopy (TEM). Additionly, the flocculation effect of nanobelt was contrasted with that of titanium dioxide and magnesium hydroxide chloride hydrate nanowires either used alone or together with CPAM.
     Results indicate that the synthesized sodium titante one-dimensional nanomaterials are crystals and their morphology was inpacted greatly by temperaure. The product of lower temperature (150 oC) is nanotube with a typical length of 1.5~5.0μm and a diameter of 30 ~ 70 nm while the product of higher temperature (180 oC) is nanobelt, whose length and uniformity increased by postponding the reaction time. The length of most of the nanobelt is 7μm when time is as long as 72h. The width is 50~80 nm. In addition, it was found that the sodium titanate nanobelt and nanotube carried negative charges and their zeta potentials decreased as pH value increased from 4 to 6, but kept constant from pH 6 to pH 8.
     Both of sodium titante nanobelt and nanotube only cause a weak flocculation of kaolin clay. However, they show good synergistic effects with CPAM on filler flocculation at a very low dosage. Higher CPAM dosage give larger filler flocculation as the sodium titanate one-dimensional materials are employed as microparticle retention aids. In addition, they show higher flocculation effect with CPAM under neutral and weak alkaline conditions and induce filler flocculation with the character of bridging flocculation. The length of sodium titanate nanobelt has a great impact on flocculation. The flocculation of kaolin clay is inhanced as the length increased, but too long nanobelt is unfavorable to filler flocculation because of the aggregation of sodium titanate nanobelt. The titanate nanobelt with a reaction time of 24 h shows highest synergistic flocculation effect with CPAM on filler. Its length is 3μm. Furthermore, the filler flocculation induced by CPAM/titanate nanobelt or nanotube has a high shear resistance and the filler flocs are dense.
     Compared with spherical titanate dioxide, sodium titanate nanobelt and nanotube cause better clay flocculation at lower dosage as they used together with CPAM. However, nanobelt induces a weaker flocculation than titanate dioxide, while nanotube induces almost same flocculation with titanate dioxide at larger dosage. Comparing sodium titanant nanobelt with magnesium hydroxide chloride hydrate nanowires, it is found that the sodium titanate nanobelt induces a weaker flocculation of talc filler as used alone, but it induces a filler floculation nearly as strong as magnesium hydroxide chloride hydrate nanowires induces one as it used together with CPAM. Also, the sodium titanate nanobelt induces the maximum filler flocculation at a lower dosage and less CPAM addition level. Both magnesium hydroxide chloride hydrate nanowire and sodium titanate nanobelt and nanotube belong to micriparticle retention aid. Higher stirring speed after CPAM is immediately added, often results in higher final clay flocculation. However, the flocs induced by CPAM/magnesium hydroxide chloride hydrate nanowire have lower shear resistance.
引文
[1]刘温霞,邱化玉.造纸湿部化学[M].北京:化学工业出版社,2005
    [2] Andersson K., Lindgren E. Important properties of colloidal silica in microparticulate systems [J]. Nordic Pulp Paper Res J, 1996, 11(1): 15-21
    [3] Main S, Simonson P. Retention aids for high-speed paper machines [J]. Tappi J, 1999, 82(4): 78-84
    [4] Xiao, H., Liu, Z., Wiseman, N. Synergetic effect of cationic polymer microparticles and anionic polymer on fine clay flocculation[J]. Colloid Interface Sci.1999, 216: 410-417
    [5] Liu W., Long Y., Wang Q., et al. Retention mechanism of amphoteric starch/poly aluminum silicate on wheat straw pulps[C]. 4th INWPPC, 2000, V(2): 469-476
    [6]刘温霞,王松林,李建文.蒙脱石的结构形态及钠化方法与其微粒助留作用[J].中国造纸学报, 2004, 19(1): 97-103
    [7]董云峰,刘温霞.氟化钠改性膨润土的结构及对二次纤维的助留助滤效果[J].中国造纸学报, 2007, 22(3): 40-44
    [8]沈静,刘温霞.合成锂皂土与改性膨润土微粒助留效果的比较[J].上海造纸, 2004, 35(2): 44-47
    [9] Lindstrom T. Aluminum based microparticulate retention aid systems[J]. Nordic Pulp Paper Res 1989, 4(2): 99-102
    [10] Carre B. Starch and alumina/siliica based compounds as amicroparticle retention aid system[J]. Nordic Pulp Paper Res 1993, 8(1): 21-25
    [11] Jacock MJ, Swales DK. The theory of retention[J]. Paper Technology, 1994, 35 (8): 26-30
    [12]胡芳,胡惠仁,祖彬等.凹凸棒石微波活化与焙烧活化的比较[J].金属矿石, 2006, 4: 64-66
    [13]马金霞,彭毓秀,李忠正.彭改性微粒硅溶胶助留助滤体系的絮聚机理[J].中国造纸学报, 2005, 20(2): 143-147, 2006, 4: 64-66
    [14] Doiron EB. Retention aid system. In: Gess JM. Rention of fines and fillers during papermaking[J]. Atlanta: TAPPI Press, 1998, 159-162
    [15] Honing DS. Formation improvement with water soluble micropolymer systems[J]. Tappi, 1993, 79(9): 135-141
    [16] Ono H., Deng Y. Flocculation and retention of precipitated calcium carbonate bycationic polymeric microparticle flocculants[J]. Journal of Colloid and Interface Science, 1997, 188: 183-192
    [17] Xiao H., Liu Z., Wiseman N. Synergetic effect of cationic polymer microparticles and anionic polymer on fine clay flocculation[J]. Journal of Colloid and Interface Science, 1999, 216: 409-417
    [18] Yan Z, Deng Y. Cationic microparticle based flocculation and retention systems[J]. Chem Eng J, 2000, 80: 31-36
    [19]李建文,邱化玉.阳离子无皂乳液的合成及其助留作用[J].中国造纸学报, 2004, 19(1):85-90
    [20]李建文,邱化玉.新型阳离子有机微粒助留系统的研究及应用[J].中国造纸, 2004, 19(7):4-9
    [21]新型阳离子微粒助留体系的研究现状[J].纸和造纸, 2005, 6: 42-45
    [22] Karve MD, et al. (Buckman Laoratorirs International, Inc). Papermaking pulp and flocculant comprising acidic acqueous alumina sol[P]. US: 671293. 2004-3-30
    [23]王松林,刘温霞.阳离子微粒氢氧化镁铝的合成及其微粒助留作用[J].中国造纸学报, 2004, 19(1): 66-69
    [24]祖彬,夏新兴,吴学栋等.阳离子硅镁石微粒性能及其对纸料的助留效果[J].纸和造纸, 2009, 27(4): 37-39
    [25] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 1964, 4: 89.
    [26] Y. C. Lu, J. Zhong. Todd Steiner. ed. Semiconductor Nanostructures for Optoelectronic Applications[J]. Norwood, MA: Artech House, Inc. pp. 2004, 191-192.
    [27] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature. 2005, 437:121.
    [28]郜涛.一维氧化物晶须氧化物材料制备和结构研究[D].北京:固体物理研究所, 2003
    [29]苏勉曾,谢高阳,申浮文.化学及其应用[M].复旦大学出版社,1989
    [30] Andersson S. Acta Crystallogr, 1962, 15:194-201
    [31] Yang J J, Jin Z S, Wang X D, et al. Dalton Trans., 2003, 3898-3901
    [32] Zhu H Y, Lan Y, Gao X P, et al. Chem. Soc., 2005, 127: 6730-6736
    [33]和朝南,郭广生,王志华.钛酸和钛酸钠纳米管的制备及形成过程[J].北京化工大学学报, 2008, 35(1):15-19
    [34] Xing Wu, Qizhong Jiang, et al. Solid State Communications[J].2005, 136: 513-517.
    [35]任朝华.絮凝-纳米二氧化钛光催化氧化法处理造纸废水[J].纸和造纸,2007,26(4):68-70.
    [36]姚光裕.用二氧化钛催化光降解制浆和造纸废水中木素[J].造纸信息,2005, 12:27
    [37]徐会颖,周国伟,魏英勤. Ni掺杂介孔TiO2的制备及其光催化降解造纸废水[J].中国造纸,2008, 27(3):28-31.
    [38]寇顺利,陈小泉,刘焕彬,等.纳米Ti02–两性淀粉对脱墨浆新闻纸抄造过程中DCS去除的研究[J].造纸科学与技术,2009,28(3):48-52.
    [39] Denilson D S P, Alain C, Stephane G. Photochemical bleaching of chemical pulps catalyzed by Photochemistry and Photobiology[J].Chemistry Titanium Dioxide,1998,115:73-80.
    [40]王能友.造纸工业中“纳米”的应用[J].天津造纸,2003, 3:10-12.
    [41]陈小泉,刘焕彬,等.纳米TiO2微粒助留系统在新闻纸中应用初探[J].造纸科学与技术,2004,23 (2):25-28.
    [42]寇顺利,陈小泉,等.纳米TiO2-两性淀粉对脱墨浆抄造新闻纸的助留助滤作用[J].中国造纸,2008, 27(12):11-15.
    [43]杨磊,陈小泉,刘焕彬.纳米TiO2在制浆造纸中的应用研究进展[J].上海造纸,2007,38(4):58-60.
    [44] Zonghuan Lu, Sandeep Eadula, Zhiguo Zheng, et al. Layer-by-layer nanoparticle coatings on lignocellulose wood microfibers[J]. Colloids and surfaces A: Physicochem. Eng. Aspects 2007, 292: 56-62.
    [42]徐忠恺等.高分子阴离子PAM助留剂的特性和应用[C].上海造纸研究所技术报告,1999
    [43]陈菊勤等.胺甲基聚丙烯酰胺的合成及其絮凝作用考察[J].工业水处理, 1993, 13(5): 23
    [44]陈运根等.高分子量聚丙烯酰胺的制备[J].精细石油化工, 1989, 6: 25
    [45]胡惠仁,何秋实,梁哲等.阴离子聚丙烯酰胺(APAM)提高纸张干强度的研究[J].中国造纸,1999 , 18 (1):11-16
    [46]陈韦华,胡开堂. PAM的制备及其在造纸工业中的应用[J].上海造纸, 2000, (1):19-22
    [47]马自俊,金日辉.丙烯酰胺水溶液聚合的几种氧化还原引发体系的研究[J].精细石油化工, 1997, (1): 41-43
    [48]王杰民.聚丙烯酰胺的合成与应用[J].化学工程师, 1991, (2): 27-29
    [49]张效林,韩卿. PAM的合成及其在造纸中的应用前景[J].造纸化学品, 2003,(3):11-14
    [50] Lars Wagberg, et al. On the mechanism behind flocculation by microparticle retention-aid systems[R]. TAPPI Papermakers Conference.1995: 71-78
    [51] Agne Swerin, et al. Flocculation of cellulosic fiber suspensions by model microparticulate retention-aid systems[J]. Nordic Pulp Paper Research Journal. 1993, 8(4): 389-398
    [52]刘温霞.阳离子聚丙烯酰胺/膨润土助留助滤体系[J].造纸化学品. 2000(3): 18-22
    [53]陈夫山,何秋实,隆言泉.两性聚丙烯酰胺的助滤作用[J].纸和造纸, 1998 (4): 43-45
    [54] S.P. vijayalaksh mi, et al. Int.J.Miner Process, 2002, 67: 199-210
    [55]王彦敏.氧化钛基纳米带的改性及应用研究[D].济南:山东大学, 2009
    [56] T. Kasuga, M. Hiramatsu, A. Hoson, Langmuir, 1998, 14, 3160.
    [57] S. Zhang, L. M. Peng, Q. Chen, G. H. Du, G. Dawson, W. Z. Zhou, Phys. Rev. Lett., 2003, 91, 256103.
    [58] D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, J. Mater. Chem., 2004, 14, 3370
    [59] Dan S, Honig R., Turnbull, et al. Process of 1999 TAPPI Papermakers Conference Atlanta, USA. 1~4 March 1999 Vol. 3, 1335-1344
    [60] Andrea Gibbs, Huining Xiao, Yulin Deng, et al. TAPPI, 1997 Vol. 83, No. 4,163
    [61] Wenxia Liu, Yonghao Ni, Huining Xiao. Cationic montmorillonite: preparation and synergy with anionic polymer in filler flocculation[J]. Pulp Paper Sci. 2003, 29(5), 145-149.
    [62] Ardersson K, Lindgren E. Important properties of colloidal silica in microparticulate systems[J]. Nordic Pulp Paper, 1996, 11(1): 15
    [63]杨桂英.氢氧化镁铝类微粒助留系统的絮聚作用[D].济南:山东轻工业学院, 2008
    [64] Wagberg L., Bjorklund M., Asell I. and Swerin A. On the mechanism of flocculation by microparticle retention-aid systems[J]. Tappi Joural, 1996, 79(6): 157-164.
    [65] Weiliu Fan, Xinyu Song, Sixiu Sun. Hydrothermal formation and characterization of magnesium hydroxide chloride hydrate nanowires[J]. Joural of Crystal Growth, 2007, 305: 167-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700