反相微乳液制备两性聚丙烯酰胺造纸助留助滤剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两性聚丙烯酰胺由于其链节上同时含有正、负两种电荷基团,具有明显的“反聚电解质效应”和pH值适用范围广等优良特点,使其在造纸工业、石油开采、环境保护等方面有望得到广泛应用。但其常用制备方法都具有相应的缺点,如水溶液聚合制备的产品易交联,而反相乳液聚合制备的产品分子量分布宽等缺点。为了改善其使用性能,本研究采用反相微乳液聚合法制备了新型两性聚丙烯酰胺助留助滤剂。
     通过电导和目视相结合的方法研究了二甲基二烯丙基氯化铵(DADMAC)/丙烯酰胺(AM)/丙烯酸(AA)反相微乳液聚合体系的制备,得出环己烷为最佳油相、Span80-Tween60为最佳乳化体系、最佳单体浓度为55%、最佳单体配比为1.5∶7∶1.5、最小乳化剂用量为17.65%、油相和乳化剂的比值范围为3∶7~7∶3、单体溶液用量不大于33.33%(基于水相)。研究了单体浓度、单体配比、HLB值和电解质对反相微乳液体系稳定性的影响,结果表明,当单体浓度在40%~65%、HLB值在5.36~8.54变化时,反相微乳液体系比较稳定;单体配比中丙烯酰胺所占比例越大,体系越稳定;电解质NaAc的加入增强了DADMAC/AM/AA反相微乳液体系的稳定性。
     采用单因素实验探讨了EDTA加入量、充氮时间、搅拌速度、乳化剂用量、引发剂用量、单体浓度、反应温度和反应时间对两性聚丙烯酰胺(PDAA)分子量、转化率、乳液稳定性及其对纸料的助留助滤性能的影响。然后通过正交实验探讨了由单因素实验得到4个对反相微乳液影响较大的因素(反应温度、引发剂用量、反应时间和单体浓度)对PDAA的分子量、转化率和乳液稳定性及其对纸料的助留助滤性能的影响;由单因素实验和正交实验得到了制备PDAA的最优条件为:EDTA加入量0.5%、充氮时间为20min、搅拌速度为300r/min、乳化剂用量为18%(基于乳液质量)、引发剂用量为0.4%(基于单体)、单体浓度为54%(基于水相)、反应温度为24℃和反应时间为3h。通过研究pH值对PDAA产品的分子量、转化率、乳液的稳定性和对纸料的助留助滤性能的影响,得到pH值为7.12时,PDAA具有最理想的助留助滤性能。采用红外光谱和紫外光谱对PDAA结构进行了表征。
     采用电导法和目视法绘制了复配乳化剂、单体溶液、环己烷的三元相图,从稳定的反相微乳液区域选择动力学研究范围;通过动力学研究,得到聚合反应的表观活化能为9.84kJ/mol;探讨了反应温度、单体浓度、乳化剂用量和引发剂用量对聚合反应速率和PDAA分子量的影响,得到了聚合速率和分子量的动力学关系式分别为Rp~∝[M]~(1.05)[E]~(0.21)[I]~(0.35)和M_V∝[M]~(1.18)[E]~(-1.16)[I]~(-0.24)。通过扫描电镜观察了PDAA反相微乳液粒子形貌与PDDA水溶液粒子的形貌。
     研究了分子量、阳离子单体含量、纸料pH值和纸浆种类对PDAA助留助滤性能的影响;结果显示,当PDAA分子量为300万、阳离子单体含量为25%、纸浆pH值为8、纸浆种类为稻草浆时,PDAA具有最理想的助留助滤性能。另外,还探讨了PDAA与CPAM、CS、CHPG、PAE、PEO的协同作用。结果表明,PDAA和CPAM、CS、CHPG具有十分显著的协同助留助滤作用,与PAE具有一定的协同作用;而与PEO的协同助留助滤作用不明显。
     本研究采用反相微乳液聚合法制备的PDAA两性聚合物具有粒径小、分子量较大、分子量分布窄等优异性能,是一种理想的造纸助留助滤剂,对减少细小纤维流失、降低纸张生产成本和提高造纸企业的竞争力具有重要意义。
Amphoteric-polyacrylamide-basedchemicals have been extensively applied in manyindustries including papermaking, oil and environmental protection. With both negative andpositive groups on their polymer chains and with striking "anti-polyelectrolyte" characteristics,these polymers are generally considered to be suitable for use in a wide range of pH conditionsin papermaking. However, there are many disadvantages associated with the commonly appliedpreparation procedures, for example, water-solution-polymerization-based polymer productsusually have strong tendency of crosslinking, and the molecular weight distribution ofinverse-emulsion-polymerization-based products are always too wide to be suitable for use inspecific applications. In order to overcome these disadvantages, development of novelamphoteric-polyacrylamide-based retention and drainage aids was explored.
     The preparation of inverse-microemulsion polymerization system of DADMAC/AM/AAwas studied by conductivity measurements and visual observations, the results show that, theoptimum oil phase, emulfying system, monomers Consistency and weight ratio of monomersare hexamethylene, SpanS0-Tween60, 55% and 1.5:7:1.5 respectively, and the minimumdosage of emulsifiers and maximum dosage of monomers are 17.65% and 33.33%. The resultsalso show that, the weight ratio of oil phase to emulsifiers should be well kept in the range of3:7~7:3. Effect of monomers cgnsistency, weight ratio of monomers, HLB and electrolytes onstability of inverse-microemulsion polymerization system were subsequently studied, and theresults show that, stable inverse-microemulsion polymerization system can be obtained whenthe monomers consistency and HLB are in the range of 40%~65% and 5.36~8.54 respectively,increased dosage of acrylamide and incorporation of NaAc into the system can further enhancethe stability.
     Effect of EDTA dosage, N_2 charging, stirring speed, dosage of emulsifiers, dosage ofinitiating agents, monomers consistency, reaction temperature and reaction time on molecularweight of amphoteric polymer, reaction yield, emulsion stability and retention and drainage aidproperties were intensively investigated. Orthogonal analytical method was then applied todiscuss the influence of reaction temperature, initiators dosage, reaction time and monomersconsistency on molecular weight, reaction yield, emulsion stability and retention and drainage aidproperties of the polymer products. The results show that, the optimum conditions for thepreparation of the polymer product are: EDTA dosage of 0.5%, N_2 charging time of 20min, stirringtime of 300r/min, emulsifier dosage of 18%, initiators dosage of 0.4%, monomers consistencyof 54%, reaction temperature of 24℃and reaction time of 3h. The results also show that, theoptimum pH is 7.12. The synthetic product of amphoteric polymer was then characterized by IR and UV.
     The ternary phase diagram of emulsifiers, monomers solution and hexamethylene wasobtained by conductivity analysis and visual observations, and the scope of study on kineticswas selected. According to the results of kinetics, the apparent activation energy of thepolymer reaction is 9.84kJ/mol. Effect of reaction temperature, monomers consistency,emulsifiers dosage and initiators dosage on reaction rate and molecular weight was thenstudied, and the equations were obtained (Rp~∝[M]~(1.05)[E]~(0.21)[I]~(0.35), M_v~∝[M]~(1.18)[E]~(-1.16)[I]~(0.24)).SEM was then applied for the characterization of the morphology of emulsion particles and itsvariations during the polymerization reaction.
     The novel amphoteric polymer product was then applied as retention and drainage aids inmaking handsheets using straw pulp. The results show that, the optimum conditions are:molecular weight of 300 0000, cationic monomer content of 25%, furnish pH of 8.0. Thesynergic effect of the polymer product with cofactors including CPAM, CS, CHPG, PAE andPEO was then discussed, PDAA, CPAM, CS and CHPG are shown to be quite effective inperformance enhancement of retention and drainage, certain effect can be achieved with PAE,and the effect of PEO is not obvious.
     The polymer product developed in this work has many advantages, and it can besuccessfully applied as retention and drainage aid in papermaking. The application of theproduct can lower the manufacturing cost and enhance the competitiveness of the relevantpapermaking mills.
引文
[1] 夏华林.坚持科学发展观加快我国造纸化学品行业发展步伐.第十三届全国造纸化学品开发应用技术研讨会论文集.上海,2006:26~33
    [2] 沈景新.我国造纸化学品市场潜力巨大.中国包装报,2003:17
    [3] 姚献平,郑丽萍.对我国造纸化学品“十一五”发展的思考和建议.’2006中国造纸化学品发展论坛论文集.绍兴,2006:21~35
    [4] 戴红旗.造纸化学品与我国造纸工业的可持续发展.造纸化学品,2006,18(4):12~15
    [5] Neim L, Papermaking Chemistry. Book4. In: Gulichsen J, Paulapuro H. Papermaking science and Technology. Helsinki: Finnish Paper Engineers'Association and TAPPI, 1999: 879~896
    [6] 张光华.造纸湿部化学原理及其应用.北京:中国轻工业出版社,1998:29~31
    [7] 苏文强,杨磊.造纸助剂.哈尔滨:东北林业大学出版社,2004:180~182
    [8] 柴淑萍.造纸助留剂及其应用.纸和造纸,1995,15(5):3
    [9] 张中有,李绵贵,熊明等.高效阳离子淀粉的制备及应用.造纸化学品.1999,11(1):6~7
    [10] El-Shinawy, N, El-Mehbad, N. Y., El-Gendy, A. A. Modified Starch as a Retention Aid in Papermaking. Polymer-Plastics Technology and Engineering, 2006, 45(1): 1~7
    [11] 龙柱谢来苏,陈夫山等.两性淀粉在桉木化机浆抄纸中的应用.广东造纸,1999,18(Z1):69~71
    [12] 曹丽云,黄剑锋,张光华.壳聚糖—丙烯酰胺接枝共聚物用作造纸增强、助留剂的研究.纸和造纸,2001,13(1):37~38
    [13] 张光华,刘书钗,郭建勋等.壳聚糖交联聚丙烯酰胺的制备及应用.造纸化学品.1999,11(3):5~9
    [14] 王军利,陈夫山,刘忠.瓜尔胶及改性瓜尔胶的性质及应用.纸和造纸,2003,23(1):59~60
    [15] 徐祥,韩庆斌,李劲松等.瓜尔胶的性质及其在卷烟纸生产中的应用.中国造纸,2003,22(2):34~37
    [16] 高晓军,张金芝,王友成.瓜尔胶用于浆内增强及助留助滤.纸和造纸,2006,25(1):48~49
    [17] 万小芳,陈常晓,李友明等.阳离子瓜尔胶/膨润土二元助留助滤剂在脱墨浆中的应用.造纸科学与技术,2006,25(1):17~20
    [18] 万小芳,李友明,宋林林等.阳离子羟乙基瓜尔胶的合成及其造纸湿部应用.精细化工,2006,23(7):707~709
    [19] 王军利,陈夫山,刘忠等.新型助留助滤剂—阳离子瓜尔胶的应用研究.中国造纸,2002,30(3):31~32
    [20] 秦丽娟,陈夫山,王高升.阳离子瓜尔胶半干法合成及其在造纸湿部的应用.2005, 24(2):11~13
    [21] 李志斌,黄乃华.PAM造纸助留剂及其正确应用.山西化工,1996,(2):41-42
    [22] 周小凡,吴静波,吕文志等.新型改性聚丙烯酰胺助留剂的合成及应用.中华纸业2002.27(11):27~29
    [23] 徐雄立,崔先龙,印先琴.阳离子聚丙烯酰胺用作造纸助留剂的应用进展.湖北造纸,2001(1):22~25
    [24] Alois Vanerek, T. G. M. van de Ven. Coacervate Complex Formation Between Cationic Polyacrylamide and Anionic Sulfonated Kraft Lignin. Colloids and Surfaces A, 2006, 273: 55~62
    [25] Cherie Ovenden, Huining Xiao, Nicholas Wiseman. Retention aid Systems of Cationic microparticles and Anionic Polymer: Experiments and Pilot Machine Trials. Tappi, 2000, 83(3): 80~85
    [26] 涂世俭,胡明,何培新.聚酰胺多胺环氧氯丙烷的合成.胶体与聚合物,2004,22(2):23~24
    [27] 徐青林,胡惠仁,谢来苏.二甲基二烯丙基氯化铵聚合物及其在造纸中的应用.造纸化学品,2004,13(4):31~35
    [28] 胡志斌,何士宽,谢来苏.聚氧化乙烯助留助滤系统用于新闻纸抄造.纸和造纸,2001,20(1):34~36
    [29] 景宜,尤纪雪,杨其玉.聚乙烯亚胺及其改性物在白水封闭循环系统中的应用.中华纸业,2001,26(7):23
    [30] Van de ven TGM, Alince B. Association-induced Polymer Bridging: new Insigts into the Rethention of Fillirs with PEO. Pulp Paper Sci, 1996, 22(7):257
    [31] 董志俭,钱学仁.高度支化聚合物及其在造纸助留中的应用.中国造纸,2003,22(12):50~52
    [32] Allen L H, Polverari M. A new Retention Aid for Newsprint, Mechanical Printing Grades and Board. Nlic Pulp Paper Res J, 2000, 15(5): 407
    [33] Li, J., Xiao, H., Kim, Y. S, et al. Synthesis of Water-soluble Cationic Polymers Withstar-like Structure Based on Cyclodextrin Core via ATRP. J. Poly. Sci. Part A: Polym. Chem. 2005, 43: 6345~6354
    [34] 李建文,邱化玉.阳离子无皂乳液的合成及其助留作用.中国造纸学报,2004,19(1):85~88
    [35] 李建文,邱化玉.新型阳离子有机微粒助留系统的研究及应用.中国造纸,2004,23(7):4~7
    [36] Xiao H, Liu Z, Wisman N. Synergetic Effect of Cationic Polymer Micropartics and Anionic Polymer on Fine Clay Flocculation. J Colloid interface Sci, 1999, 216: 409
    [37] Yan Z, Deng Y. Cationic Microparticle Based Fiocculation and Retention Systems. Chem Eng J, 2000, 80: 31
    [38] 刘温霞.造纸微粒助留助滤技术与研究现状.第十三届全国造纸化学品开发应用技术研讨会论文集.杭州,2006:20~25
    [39] Mei, Y, Abetz, C., Birkert, O., et al. Interaction of SphericaI Polyeletrolyte Brushes with Calcium Carbonate and Cellulose Fibers: Mechanistic Studies and Their Application in Papermaking. J. Appl. Polvm. Sci., 2006, 102:233~241
    [40] 彭晓宏,佘娜,沈家瑞.新型阳离子聚丙酰胺微粒的研究.精细与专用化学品,2002,Z1:19~21
    [41] Peng X, Shen J, Xiao H. Preparation and Retention of Poly(ethylene oxide)-grafted Cationic Polyacrylamide Microparticles. Journal of Applied Polymer Science, 2006, 101 (1): 359~363
    [42] 刘温霞.阳离子聚丙烯酰胺/膨润土助留助滤体系.造纸化学品,2000,12(3):18~22
    [43] 刘温霞,刘娜.蒙脱石微粒助留体系的开发.纸和造纸,2004,23(5):78~81
    [44] 刘娜,刘温霞.高浓液相改性膨润土的开发前景.中国造纸,2003,22(5):52~54
    [45] 刘娜,刘温霞.不同属型膨润土改性及其助留作用.中国造纸,2003,22(9):26~28
    [46] 赵丽红,刘温霞.膨润土的特点及其在造纸工业中的应用.中国造纸,2004,23(10):49~53
    [47] 刘温霞,王松林,李建文.蒙脱石的结构形念及钠化方法与其微粒助留作用.中国造纸学报,2004,19(1):99-103
    [48] 夏新兴,彭毓秀,李忠正等.造纸湿部CPAM/膨润土助留助滤体系的研究.湖南造纸,2002,28(3):15~17
    [49] 刘温霞,张旋,李杰辉等.膨润土改性及其对麦草浆的协同助留作用.造纸科学与技术,2000,19(6):33~35
    [50] 苏文强,杨开吉,沈静等.阳离子聚丙烯酰胺/膨润土体系的助留助滤性能.纸和造纸,2006,25(6):43~45
    [51] A. Vanerek, B. Alince, T.G.M. van de Ven. Delamination and Flocculation Efficiency of Sodium-activated Kaolin and Montmorillonite. Colloids and Surfaces A, 2006, 273 : 193~201
    [52] Steve main. Patrik Simonson, Retention aids for High-peed Paper Machine. Tappi, 1999, 82 (4): 78~84
    [53] 刘温霞,孙艳玲,李荣刚.阳离子淀粉/氢氧化铝对麦草浆的助留助滤性能.造纸化学品,1997,9(4):9
    [54] Nobel J. and Borgkvist M, A new Microparticle Based Retention aid System for Alkaline Papermaking Hydrosil. EUCEPA 1990, Barcelona, 295
    [55] 叶晓春.微胶粒助留技术.纸和造纸,2000,19(6):43~46
    [56] 张红杰,胡惠仁.阳离子微粒与阴离子聚合物复配的微粒助留系统.纸和造纸,2002,21(1):52~54
    [57] 金珠,张美云.聚氧乙烯的特性及其在造纸工业中的用途].纸和造纸,2005,24(3):65~67
    [58] 钱丽颖,何北海.非离子型双元助留体系湿部化学特性的影响因素及作用机理.中国造纸学报,2005,20(2):134~138
    [59] T. G. M. van deVen, M. Abdallah Qasaimeh J. Paris. PEO-induced Flocculation of fines: Effects of PEO Dissolution Conditions and Shear History. Colloids and Surfaces A, 2004, 248:151~156
    [60] 王松林,刘温霞.氢氧化镁铝胶体微粒与纤维和阴离子聚丙烯酰胺的吸附.中国造 纸学报,2004,19(1):89~93
    [61] 王松林,刘温霞.阳离子微粒氢氧化镁铝的合成及其微粒助留作用.中国造纸学报,2004,19(1):66~69
    [62] 刘温霞,邱化玉.造纸湿部化学.北京:化学工业出版社,2006:141~145
    [63] Obata M, Takahashi K, Vnegami H, Dewatering of Sludges with Polymer Coagulants, JP 09192700, 1997-07-29
    [64] 赵勇,李维云,哈润华.(AM/AA/DADMAC)共聚物堵水剂的反相乳液制备研究.精细化工,1997,14(6):35~38
    [65] Leong Y S, Candau F. Inverse Micromulsion Polymerization. Phys Chem, 1982, 86(12):2269~2270
    [66] Cardoso J, Manero O, Thermal and Dilute Solution Properties of Zwitterionic Copolymers. J. Polym. Sci. Phys. Ed, 1991, 29:639~652
    [67] 李晓,张卫英,袁惠根.反相微乳液聚合机理及模型化处理.中国工程科学,2003,5(1):69~72
    [68] Guo J S, Sudol E D, vanderhoff J W. Modeling of the Styrene Microemulsion Polymerization. Polym. Sci. Polym. Chem. 1992, 30(5): 702~7012
    [69] Guo J S, EI-Aasser M S. Vanderhoff J W. Microemulsion Polymerization of Styrene. Polym. Sci. Polym. Chem. 1989, 27:691~710
    [70] Capek L, Potisk P. Microemulsion Polymerization of butyl Acrylate. Ⅳ. Effect of Emulsifier Concentration. Polym. Sci. Polym. Chem. 1995, 33(10): 1675
    [71] Kuo PL, Tusso N J, Tseng C M.etc. Macromolecules, 1987, 20:1216
    [72] 哈润华,侯斯健,栗付平.微乳液结构和丙烯酰胺反相微乳液聚合.高分子通报,1995(3):10~19
    [73] Can L M, Chew C H and Lye I. Effect of water-soluble Cosurfactants on Microemulsion Polymerization of Styrene. Polymer, 1993, 34(18): 3860~3864
    [74] 张志成,徐相凌,张曼维.丙烯酰胺微乳液聚合.高分子学报,1994(4):426~431
    [75] 彭晓宏,盘思伟,沈家瑞.氧化还原引发体系对DMC/AM/从三元水溶液共聚合的影响.石油化工,1999,25(8):543~547
    [76] Obata M, Takahashi K, Vnegami H. Dewatering of Sludges with Polymer Coagulants, Japanese Patent 09192700, 1997-07-29
    [77] Isamu Kaneda, Atsushi Sogabe, Hideo Nakajima. Water-swellable Polyelectrolyte Microgels Polymerized in an Inverse Microemulsion using a Nonionic Surfactant. Journal of Colloid and Interface Science, 2004, 275: 450~457
    [78] 赵勇,何炳林,哈润华.反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究.高分子学报,2000(5):550~553
    [79] Young J, Stephany M. Standley L, et al. Enhanced Antigen Presentation and Immunostimulation of Dendritic Cells using Acid-degradable Cationic Nanoparticles. Journal of Controlled Release, 2005, 105:199~212
    [80] Deng Y, Wang L, Yang W, et al. Preparation of Magnetic Polymeric Particles via Inverse Microemulsion Polymerization process. Journal of Magnetism and Magnetic Materials, 2003, 257:69~78
    [81] 李晓,袁惠根.丙烯酰胺反相微乳液聚合体系的形成.合成树脂及塑料,1999,16(4):16~20
    [82] Candau F, Pabon M, Anquetil J. Polymerizable Microemulsions: some Criteria to Achieve an Pptimal Formulation. Physiochemical and Engineering Aspects, 1999. 153: 47~59
    [83] 徐生,郭玲香.丙烯酰胺/二甲基二烯丙基氯化铵共聚物的反相微乳液聚合研究.精细石油化工,2006,23(1):22~25
    [84] 刘明华.有机高分子絮凝剂的制备及应用.北京:化学工业出版社,2006:14~16
    [85] Young Jik Kwon, Stephany M, Standley Sarah L, et al. Enhanced Antigen Presentation and Immunostimulation of Dendritic Cells using Acid-degradable Cationic Nanoparticles. Journal of Controlled Release, 2005, 105: 199~212
    [86] 彭晓宏,蒋永华.PDAA乳液选矿剂的合成及絮凝作用.应用化学,2006,23(9):988~991
    [87] 胡瑞,周华,李田霞.复合引发体系制备阳离子絮凝剂在污水处理中的应用研究.工业水处理,2006,26(8):32~35
    [88] 朱诚身.聚合物结构分析.北京:科学出版社,2004:72
    [89] Candau F, Leong Y S, Fitch R M. Kinetic Study of the Polymerization of Acrylamide in Inverse Microemulsion. Polym. Sci. Polym. Chem. Ed. 1985, 23(1): 193~214
    [90] Barton J, tino J, Hlonskova Z, et al. Effect of Percolation on Free-radical Polymerization of Acryamide in Inverse Microemulsion. Polymer International, 1994, 34: 89~96
    [91] 李晓,袁惠根.辛烷/Span80-Tween60/丙烯酰胺/水反相微乳液聚合动力学.合成橡胶工业,1999,22(4):220~224
    [92] Fouassier J P, Lougnot D J, Zuchowicz I. Reverse Micelle Radical Photopolymerization of Acrylamide: Excited states of Ionic Initiators. Eur Polym J, 1986, 22(11): 933~938
    [93] 张志成,徐相凌,张曼维.过硫酸钾引发丙烯酰胺乳液聚合.高分子学报,1995(1):23~27
    [94] 徐相凌,张志成,张曼维.辐射引发丙烯酰胺微乳液聚合.高分子学报,1995(3):377~379
    [95] 李晓,刘戈,袁惠根.煤油/Span80-Tween60/水/丙烯酰胺反相微乳液聚合动力学.化学反应工程与工艺,1999,15(1):13~17
    [96] 哈润华,候斯健.(2-甲基丙烯酰氧乙基)三甲基氯化铵-丙烯酰胺反相微乳液共聚合研究.高分子学报,1993(5):570~574
    [97] Holtzscherer C, Durand J P, Candu F. Polymerization of Acrylarnide in Nonionic Microemulsions: Charaterization of the Microlaties and Polymers Formed. Callid&Polym Sci, 1987, 265(12): 1067~1074.
    [98] 申迎华,谢龙,王志忠.AMP(2-甲基丙烯酰氧乙基)三甲基氯化铵/2-丙烯酰胺基-2-甲基丙基磺酸钠的反相微乳液共聚合动力学研究.高分子学报,2005(6):846~849
    [99] 王德松,罗青枝,朱学旺等.AM/SA反相微乳液聚合反应动力学研究.高分子材料科学与工程,2003,19(2):104~107
    [100] 单国荣,曹志海,黄志明等.丙烯酰胺在聚乙二醇水溶液中的聚合动力学.高分子学报,2003(6):789~788
    [101] 申迎华,谢龙,王志忠.反相微乳液聚合动力学研究进展.日用化学工业,2003, 33(5):309~312
    [102] 赵勇,李维云,哈润华等.(AM/AA/DADMAC)共聚物堵水剂的反相乳液法制备研究.精细化工,2004,14(6):35~37
    [103] Thomas W M, Wang D W. Acrylamide polymers. In: Mark M F, Bikales N M, O verberger C G, etc, Eds. Encyclopedia of Polymer Science and Engineering. Vol. 1. New York: John Wiley&Sons, Inc., 1985: 169~211
    [104] 陈夫山,胡惠仁,谢来苏.PDAA对漂白麦草浆的助留作用.纸和造纸,1998,18(3):52~54
    [105] 王海毅,龙柱.影响PDAA助留助滤因素的研究.中华纸业,2001,22(9):21~23
    [106] 孙艳霞,程芹,车吉泰.两性型聚丙烯酰胺助留助滤剂的合成及其性能研究.造纸化学品,2005,17(2):11~13
    [107] 夏峥嵘,李绵贵.两性高相对分子质量聚丙烯酰胺的合成.精细石油化工,2005(1):47-49
    [108] 徐青林,胡惠仁,陈夫山.新型结构PDAA增强、助留助滤性能的研究.中国造纸学报,2003,18(1):88-92
    [109] 李建文.造纸湿部化学助剂的协同作用.造纸化学品,2006,18(2):66~68
    [110] 陈启杰,王萍,陈夫山.高取代度阳离子淀粉对废纸脱墨浆助留助滤的研究.中国造纸学报,2005,20(1):133~136
    [111] 秦丽娟,陈夫山,王高升.阳离子瓜尔胶半干法合成及其在造纸湿部的应用.中国造纸,2005,24(2):11~13
    [112] 万小芳,陈常晓,李友明.阳离子瓜尔胶/膨润土二元助留助虑剂在脱墨浆中的应用.造纸科学与技术,2006,25(1):17~20
    [113] 黄鸿.湿强剂聚酰胺环氧树脂及其应用.中华纸业,2002,23(1):48~49
    [114] 沈静,刘温霞,李长艳.阳离子水溶性聚合物对松香的乳化增效作用.中国造纸,2005,24(1):22~25
    [115] 陈玉群,沈一丁.聚脲改性聚酰胺多胺环氧氯丙烷的制备及抗水性.纸和造纸,2003,23(5):50~52
    [116] 沈静,刘温霞.聚氧化乙烯类助剂的助留机理.中国造纸学报,2004,19(1):202~206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700