长期施肥条件下红壤性水稻土氮素肥力分异特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在江西省红壤研究所红壤性水稻土肥料长期定位试验中,采集不同施肥处理(CK, N, NP、NPK、NPKM、OM)耕层土壤,研究了不同施肥处理土壤各有机形态碳、氮含量及其关系,探讨了各施肥处理对土壤团聚体、生物活性等的影响;并通过室内恒温淹水培养实验,研究了不同施肥处理土壤氮素矿化作用对外源物的响应特点;同时,结合不同施肥处理对水稻土基础肥力及作物产量的影响,进一步分析了水稻年产量与土壤物理、化学、生物学若干测试指标的关系。研究结果如下:
     土壤团聚体干筛分析结果表明,与CK相比,在连续施肥23a后,施用有机肥(NPKM、OM)可显著提高粒径3-5mm土壤团聚体含量(25.4%-24.6%)、降低粒径0.05~0.25mm、<0.05mm的团聚体含量(70.6%-71.1%和113.6%-121.7%);而单施化肥处理(N, NP、NPK),各粒径土壤团聚体含量无明显差异。表明施肥对红壤性水稻土团聚体的影响主要受有机肥的控制,与化肥关系不大。红壤性水稻土团聚体的MWD、GMD和分形维数值与粒径1~2mm、0.5~1mm、0.25~0.5mm、0.05~0.25mm、<0.05mm团聚体含量存在显著或极显著的线性关系,从而认为土壤团聚体的MWD、GMD和分形维数值可较客观地反映土壤肥力的状态。
     红壤性水稻土在连续施肥23a后,化肥配施处理(NPK)耕层土壤有机碳和全氮与CK处理相比无显明变化。有机肥处理(NPKM、OM)耕层土壤有机碳和全氮含量较CK处理分别提高31.5%-34.3%和26.5%-33.7%(P<0.01),比NPK处理分别增加19.3%-21.8%和14.3%-20.7%(P<0.05)。单施有机肥处理与有机肥化肥配施处理间无显明差异,表明有机肥是提高红壤性水稻土有机质和全氮的根本途径。NPK处理耕层土壤闭蓄态颗粒有机碳的含量及其构成(占土壤有机碳的比例)较CK处理分别提高66.0%和47.8%(P<0.05)。施用有机肥(NPKM、OM)耕层土壤各组分有机碳含量较CK处理、NPK处理均有显著的提高;有机肥处理(NPKM、OM)与CK相比,其游离态颗粒有机碳和闭蓄态颗粒有机碳构成分别增加82.0%-270.0%和97.3%~97.7%(p<0.01),而耕层土壤矿物结合态有机碳构成却减少了18.9%~21.3%(p<0.05);与化配施肥(NPK)相比,有机肥处理(NPKM、OM)可显著地提高耕层土壤有机碳中游离态和闭蓄态颗粒有机碳的构成,但对矿物结合态有机碳的构成影响不明显。NPKM处理与OM处理相比,除游离态颗粒有机碳外,均无明显差异。表明施用有机肥(NPKM、OM)可提高耕层土壤各形态碳素的含量,改变各形态碳素在有机碳中的构成,化肥配施对耕层土壤闭蓄态有机碳含量和构成也有明显的促进作用。连续施用有机肥(OM, NPKM)耕层土壤积累碳在各形态有机碳的分配率表现为闭蓄态颗粒有机碳(72.8%-76.8%)>矿物结合态有机碳(13.1%-16.7%)>游离态颗粒有机碳(2.6%-6.1%),且各形态有机碳间的分配率达显著性差异;积累氮在各形态氮中的分配受有机肥的影响,总体表现出氨基酸态氮(26.6%~38.0%)>非酸解氮(27.6%-32.0%)>未知态氮(17.1%-28.5%)>氨态氮(7.0%-9.9%)>氨基糖态氮(5.9%-7.4%)的趋势。NPKM处理与OM间积累碳、氮的分配无明显差异,表明红壤性水稻土积累碳、氮分别在各形态碳、氮中的分配基本保持稳定。
     耕层土壤N素养分主要受有机肥的控制,施有机肥(OM、NPKM)能显著提高土壤全氮、酸解性总氮的含量。在酸解性总氮组分中,有机肥(0M)或有机无机肥配合(NPKM)施用可显著提高各形态酸解性氮的含量,化肥配施(NPK)则显著提高了氨基酸态氮含量,而氮肥单施(N)或偏施(NP)对土壤各酸解性氮影响不明显。与不施肥(CK)相比,长期施有机肥(OM、NPKM)显著增加耕层土壤各团聚体中酸解性总氮、氨态氮、氨基酸态氮含量。同时,有机肥也显著提高粒径3-5mm、>5mmm团聚体对土壤全氮、酸解性总氮、氨态氮、氨基酸态氮的贡献率,这也说明长期施有机肥(OM、NPKM)可提高土壤大团聚体N素养分供应能力。
     长期施有机肥(OM、NPKM),耕层土壤微生物生物量碳、微生物生物量氮较纯化肥区(NPK、NP、N)和无肥区(CK)均有显著或极显著的提高。与CK相比,长期单施化肥(N、NP、NPK)微生物生物量碳、氮增加幅度较小。同时,施有机肥(OM、 NPKM)有激活和提高土壤酶活性的作用,表现在耕层土壤蔗糖酶活性、纤维素酶活性、脲酶活性、天(门)冬酰胺酶活性、谷氨酰胺酶活性、组氨酸脱氨酶活性等均明显高于纯化肥区(NPK, NP、N)和无肥区(CK)。除NPK处理明显增加耕层土壤纤维素酶活性、脲酶活性、组氨酸脱氨酶活性外,纯化肥区(NPK, NP、N)仅略高于无肥区(CK),没有明显的促进作用。相关分析结果表明,红壤性水稻土微生物生物量碳、氮及各种酶活性与土壤有机碳和全氮间均呈显著或极显著正相关。
     长期施有机肥(OM、NPKM)的土壤不管是否添加外源物(碳源或磷源),室内淹水恒温(30℃)培养32d后,其氮素净矿化量均明显(p<0.05)高于纯化肥区(N、 NP、NPK)和无肥区(CK);化肥区表现出NPK>NP>N>CK的趋势(p>0.05),说明红壤性水稻土长期施用有机肥可显著提高耕层土壤供氮能力。加入葡萄糖后,各施肥(CK, N、NP、NPK, NPKM、OM)土壤氮素的相对矿化量均为负值,其值大小表现出OM0.05),意味着其矿质氮的生物固持作用均大于有机氮的矿化作用。这种生物固持作用在低有机质的土壤(CK、N、 NP、NPK)上更强;而加入K2HPO4后,各供试土壤氮素相对矿化量均为正值,表明磷素可促进红壤性水稻土的有机氮矿化,特别在高有机质土壤(OM、NPKM)上尤为明显;当同时添加碳源、磷源时,各供试土壤氮素相对矿化量与单加葡萄糖时相似,表明即使是肥力较高的红壤性水稻土上,在添加磷的同时再添加碳源也会对土壤氮素的矿化有抑制作用。淹水培养32d后的土壤氮素净矿化量与土壤有机质、全氮、酸解性总氮、微生物量碳、微生物量氮均呈极显著正相关(p<0.01),与氨态氮、氨基酸态氮、酸解未知态氮间呈显著正相关(p<0.05),与氨基糖态氮、非酸解性氮无显著性相关(p>0.05)。这对于深入了解红壤性水稻土有机氮状况及作物的氮需求等都有非常重要的意义。
     红壤性水稻土基础地力贡献率为46.3%-72.0%。随着施肥结构完善,对基础地力的依赖性表现出NPKMThis study was conducted at the long-term location test of Red Soil Research Institute of Jiangxi (116°2024′N,28°1530′E and25to30m above mean sea level). Continuous23years experimental data of annual yield of rice under different treatments (CK, N, NP, NK, NPK, NPKM) and the tested soil samples(CK, N, NP, NPK, NPKM, OM) of different fertilization in red paddy soil for were analyzed to investigate some factors influence on the N variations in the soil.1) the influence of different fertilization on soil aggregation and its organic N forms, soil microbial activities;2) the content of soil organic C, N after23years;3) the influence of different fertilization on the nitrogen mineralization and their response to exteriorly added substrates(glucose or K2HPO4) under the waterlogged cultivation.;4) the influence of different fertilization on rice yield and soil basic fertility and relation of annual yield of rice and physiological,chernical and biochemical parameters of soil.
     A preliminary study was made of soil aggregates under long-term fertilization in red paddy soil. Results demonstrated that the percentage of the soil aggregates which sizes are3-5mm is increased significantly, while the size of0.05-0.25mm and<0.05mm is decreased significantly with the long-term application of organic fertilizer (OM, NPKM), but little difference in the chemical fertilizers (N, NP, NPK) in compared with that of the samples from CK. The soil aggregates formation was primarily depended on the long-term application of organic fertilizer. The correlation analysis revealed that there existed a significant positive correlation between MWD (Mean weight diameter), GMD (Geometric mean diameter), D (Fractal dimension) and the size scopes of1~2mm,0.5~1mm,0.25~0.5mm,0.05~0.25mm,<0.05mm of soil aggregates. The present results indicated that these parameters can be considered as physical indexes of soil fertility based on MWD, GMD, D.
     Also the current results showed that the contents of soil organic carbon(SOC) and total nitrogen(TN) in the treatments of NPKM and OM were increased by31.5-34.3%and26.5-33.7%compared to those of CK respectively(p<0.01), while increased by19.3%-21.8%and14.3-20.7%compared to those of NPK(P<0.05) after23years. However, there were a little difference between OM and NPKM. It exhibited that organic fertilizer was a sound practice to increase SOC and TN in red paddy soil. The content of oPOC (occluded Particulate Organic Carbon) and its proportion in SOC in the treatment of NPK were increased by66.0%and47.8%compared with CK respectively(P<0.05), while the content of all fractions of SOC increased significantly in the treatment of OM and NPKM. Organic fertilizer (OM, NPKM) increased contents of fPOC (free Particulate Organic Carbon) and oPOC by82.0%-270%,97.3%-97.7%respectively (P<0.01),whereas decreased the proportion of mOC (mineral Organic Carbon) in SOC by18.9%-21.3%(P<0.05) compared with CK. Moreover, organic fertilizer (OM, NPKM) increased significantly the proportion of fPOC and oPOC in SOC than NPK, but there were a little difference in the proportion of mOC in SOC between OM or NPKM and NPK and in the contents of all fractions of SOC and its proportion in SOC between OM and NPKM except for fPOC. Therefore, OM and NPKM changed composition of soil organic matter and markedly increase contents of all fractions, while NPK only significantly increased contents of oPOC and its proportion in SOC. The order of the transformation rates of all sorts of fractions in NPKM and OM was oPOC (72.8%and76.8%)> mOC (13.1%and16.7%)> fPOC (2.6%and6.1%). Moreover there were significant difference in the transformation rates of additional carbon among fPOC, oPOC and mOC. Furthermore, there were influences on transformation rate of various N fractions in the additional N, which the order of amino acid N (26.6%-38.0%)> nonhydrolizable N(27.6%-32.0%)> hydrolyzable unidentified N (HUN)(17.1%-28.5%)> ammonium N(7.0%-9.9%)> amino sugar N (5.9%-7.4%). But there a little difference in transformation rate of various C and N fractions between OM and NPKM. This indicated transformation rates of various C and N fractions maintained almost constant in red paddy soil under long-term organic fertilizer.
     There were also increases in the contents of TN and acid hydrolysable N in the treatment of organic fertilizer (OM, NPKM). Among various fractions of acid hydrolysable N, the increase in the contents of ammonium N, amino acid N, amino sugar N and HUN was found in the treatment of OM and NPKM, while an increase was only observed in amino acid N in NPK, but a little difference in the contents of various fractions of acid hydrolysable N in the treatments of N,NP compared to those in CK. Meantime,the organic fertilizer increased significantly the contents of acid hydrolysable N,ammonium N and amino acid N in different soil aggregates in the treatment of OM, NPKM compared to those of CK. Moreover, the significant increases were obtained in the contribution of the size of3-5mm and<0.05mm of soil aggregates to soil nutrient in the treatment of OM, NPKM compared to those of CK. These showed the organic fertilizer increased the supply of soil nitrogen in soil macro-aggregates.
     There were significant increases in the contents of microbial biomass-C(MBC) and microbial biomass-N (MBN) in OM and NPKM compared to those of CK and N, NP, NPK, but there were little increase in the contents of microbial biomass-C and microbial biomass-N in N,NP,NPK compared to those of CK. Furthermore, an increase of the activities of soil enzyme in OM and NPKM was found, for example, the activity of invertase(INV), cellulase(CEL), urease(URE), L-asparaginase(ASP), L-glutamin(GLU), L-histidine ammonia lyase(HIS) etc. was significantly higher than that in the treatments of N, NP and NPK and CK. And the activity of these soil enzymes in the treatment of N, NP and NPK was little higher than that in CK (p<0.05). However, little difference in the above soil enzymes was obtained between the treatment of N, NP and NPK and CK except for the increased activity of soil CEL, URE and HIS. Correlation analysis indicated that significantly positive relationship was observed among MBC, MBN soil enzyme activity, SOC and TN in red paddy soil, suggesting these physiological and biochemical parameters being as evaluation indices of soil.
     The net mineralization amount of N treated with organic fertilizer (OM, NPKM), either exogenously added substrate or not (carbon or phosphorus) was significantly higher than that with N, NP, NPK and CK after32days waterlogged incubation (30℃)(p<0.05) in lab. The tendency of the net mineralization amount of N treated with N, NP and NPK was NPK>NP>N>CK (p>0.05). This indicated long-term use of organic fertilizer could significantly improve N-supply capacity in red paddy soil. Minus-values in relative mineralization amount were obtained in treatments of CK, N, NP, NPK, NPKM and OM after addition of glucose, with the trends of OM0.05). This suggested biological immobilization of mineralization N exceeded than mineralization of organic N particularly in the soil (CK, N, NP and NPK) with low content of organic matter. However, positive-values of relative mineralization rate was found after addition of K2HPO4, indicating an increase in microbes number and activity by P in red paddy soil was helpful to soil mineralization especially in the higher content of organic matter (OM, NPKM). Furthermore, the relative mineralization rate in all treatments simultaneously added C and P sources was similar to single glucose, indicating inhibition of soil N mineralization by exteriorly added C (glucose) and P (K2HPO4) in the red paddy soil. After32d of waterlogged incubation, the net N mineralization amount of soil was significantly positive correlated to SOC, TN, acid hydrolysable N, MBC and MBN (p<0.01), and to ammonium N, amino acid N, HUN (p<0.05), but slight positive to amino sugar N, nonhydrolizable N (p>0.05). This is of importance to assess organic N status in red paddy soil and N requirement for rice.
     The yield change in different fertilizer application and the relationship between fertilizer application and soil fertility have been statistically analyzed and found based on data from continuous23years experiment. The results showed that there was46.3%~72.0%basic contribution of soil fertility. Meantime, basic contribution of soil fertility in first year decreased by9.4%compared to that of22th. With the improving of fertilization, dependence of yield on basic soil fertility increased with in the order of NPKMN>NK. Yields treated with N, NP and NK were equivalent to or lower than those of the CK after18~21years. However, annually increased amplitude and rice yield have been raised significantly in the treatment of NPK. Furthermore, much higher increased amplitude has been observed in combination with organic fertilizer compared with other treatments. Correlation analysis indicated that significantly relationship was observed between annual yield of rice and SOC, TN, MBC, MBN, INV, CEL, URE, ASP, GLU,HIS acid hydrolysable N, ammonium N, amino acid N, amino sugar N, nonhydrolizable N, net N mineralization, size of3~5mm,0.05~0.25mm of soil aggregates and MWD, GMD, D in red paddy soil,suggesting these physiological,chemical and biochemical parameters being as evaluation indices of soil fertility.
引文
Aber J D, Magill A M, Boone R, et al. Plant and soil responses to three year so fchronic nitrogen addition sat the Harvard Forest, Massa chusetts. Ecological Applications,1993,3(1):156~166
    Addiscott T M, Bailey N J, Bland G J, et al. Simulation of the nitrogen in soil and winter wheat crops: a management model that maker the best use of limited information. Fertilizer Research,1991,27: 305-312
    Alef K and Nannipicri P. Methods in applied soil microbiology biochemistry. Acadmic press, New York, 1995
    Allen A L, Stevenson F J, Kurtz L T. Chemical distribution of resual fertilizer nitrogenin soil as revealed by nitrogen-15 studies. Jounal Environmental Quality,1973,2:120~124
    Allison F J. Soil organic matter and its role in crop production.Development in Soil Science, Vol 3. Elsevier, Amsterdam.1973:58~66
    Angers D A, Bissonnette N, Legere A, et al. Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Can. J. Soil Sci.,1993,73:39~50
    Asami T, Hara M. On the fractionation of soi lorganic nitrogen after the hydrolysis using HC1. Soil Sci. Plant Nutr.,1971,17:222~234
    Bernhard R F. Soil nitrogen mineralization under a Eucalyptus plantation and a natural Acacia forest in Senegal. For. Ecol. Manage.,1988,23:233~244
    Bernoux M, Arrouays D, Cerrir C C, et al. Modeling vertical distribution of carbon in oxisols of the western Brazilian amazon (rondonia). Soil Science,1998,163:941~951
    Bonde A T. Microbial biomass as a fraction of potentially mineralizable in soil from long field experiments. Soil Biol Biochem,1998,20(4):447~453
    Breland T A. Modelling mineralization of plant residues on soil:effect of physical protection. Biol Fertil Soils,1997,25:233~239
    Bremer E, Kuikman P. Influence of competition for nitrogen in soil on net mineralization of nitrogen. Plant Siol,1997,190(1):119~126
    Cambardella C A, Elliott E T. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal,1992,56:777~783
    Chan K Y. Consequences of changes in particulate organic carbon in vertisols under pasture and cropping. Soil Science Society of America Journal,1997,61:1376~1382
    Chan K Y. Soil particulate organic matter under different land use and management. Soil Use and Management,2001,17:217~221
    Chantigny M H, Angers D A, Beauchamp C J. Active carbon pools and enzyme activities in soils amended with de-inking paper sludge. Can. J. Soil Sci.,2000,80:99~105
    Christensen B T. Physical fraction of soil and organic matter in primary particle size and density separates. Advances in Soil Science. Springer Verlag, New York, Inc.1992,20:1-90
    Das A K, Boral L, Tripath R S, et al. Nitrogen mineralization and microbial biomass-N in a subtropical humid forest of meghalaya, India, Soil. Biockem,1997,29:1609~1612
    Dick R P, Break W D, Turco R. Soil enzyme activities and biodiversity measurements as integrating boilogical indicators. In:Doran et al. eds. Handbook of Mehods for Assessment Soil Quality Madison:SSSA Special Pub.49. Soil Sci Soc Am Spec Publ,1996,247~272
    Disdall J M. Possible role of soil micrcoorganism in aggregation in soils. Plant Soil,1994,117:145~153
    Dobermann A, Witt C, Abdulrachman S, et al. Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia. Agronomy Journal,2003,95(4):913~923
    Doran J W. Defining soil quality for a sustainable environment. Soil Society of America. Special Publication. Madison, Wadison, Wisconsin,1994, No.35,3~234
    Elliott E T, Colemen D C. Let the soil work for us. Ecological Bulletins,1988,39:23~32
    Erisma N J. Summary statement. Environmental Pollution,1998,102:3-12
    Fleming R L. Water content, bulk density, and coarse fragment content measurement in forest soils. Soil Sci. Soc. Am. J.,1993,57(1):261~270
    Franzluebbers A J, Arshed M A. Particulate organic content and potential mineralization as affected by tillage and texture. Soil Science Society of America Journal,1997,16:1382~1386
    Franzluebbers A J, Hons F M, Zuberer D A. Long-term changes in soil carbon and nitrogen pools in wheat management systems. Soil Sci Soc. Am.,1994,58:1639~1645
    Freixo A A, Machado P L, Santos H P. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil. Soil Tillage Res.2002,64:221~ 230
    Gagnon B, Lalande R, Simard R R, et al. Soil enzyme activities following paper sludge addition in a winter cabbage-sweet corn rotation. Can. J. Soil Sci.,2000,80:91~97
    Gami S K, Ladha J K, Pathak H, et al. Long-term changes in yield and soil fertility in a twenty-year rice-wheat experiment in Nepal. Biol. Fertil. Soils,2001,34:73~78
    Garten-jr C T, Post W M, Hanson P J. Forest soil carbon inventories and dynamics along an elevation gradient in the southern appellation mountains. Biogeochemistry,1999,45:115~145
    Franzluebbers A J, Arshad M A. Particulate organic carbon content and potential minerlization as affected by tillage and texture. Soil Science Society of America Journal,1997,61:1382~1386
    Glendining M J, Powlson D S, Poulton P R, et al. The effects of long-term application of inorganic nitrogen fertilizer on soil nitrogen in the broadbalk wheat experiment. J Agric Sci,1996,127: 347~363
    Golchin A, Oades J M, Skjemstd J O, et al. Study of free and occluded particulate organic matter in soils by solid-state 13C CP/MAS NMR Spectroscopy and Scanning Electron Microscopy. Australian Journal of soil research,1994,32:285~309
    Gong Z T. Wetland soils in China//IRRI. Wetland:Characterization, Classification and Utilization. Philippines:IRRI,1985:473~488
    Greenland D J. The Sustainability of Rice Farming. London:CAB International Publication in Association with the International Rice Research Institute,1998:110~113
    Gregorich E G, Ellert B H, Brury C F, et al. Fertilization effects on soil organic matter turnover and corn residue C storage. Soil Sci. Soc. Am.,1996,60:472~476
    Gregorich E G, Ellert B H. Light fraction and macro-organic matter in mineral soils. In:Soil Sampling and Methods of Analysis (Carteed). Canadian Society of Soil Science,1993
    Groffman P M, Eagan P, Sullivan W M, et al. Grass species and soil type effects on microbial biomass and activity. Plantand Soil,1996,183(1):61~67
    Guber A K, Pachepsky Ya A, Levkovsky E V. Fractal mass-size scaling of wetting soil aggregates. Ecological Modelling,2005,182:317~322
    Hassin K J, Bouwman LA, Zwart KB, et al. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland slils. Geoderma,1993,57(1): 105-128
    Hassink J. Preservation of plant residues in soils differing in unsaturated protective capacity. Soil Sci. Soc. Am. J.,1996,60:487~491
    He Z L, Yao H Y, Chen G C. Relationship of crop yield to microbial biomass in highly-weathered soils of Chira. In:Ando T, et al. ed. Plant Nutrition for Sustainable Food Production and Environment. Tokyo, Japan:Kluwer Academic Publishers,1997,751~752
    Ineson P, Benham D G, Poskitt J, et al. Effects of climate change on nitrogen dynamics in upland soils.2. A soil warming study. Global Change Biology,1998,4(1):153~161
    Islam M M. Effect of organic residue amendment on mineralization of nitrogen in flooded rice soils under laboratory conditions. Commun. Soil Sci. Plant Anal.1998,29(7&8):971~981
    Jensen K, Revsbech N P and Nielsen L P. Micro scale distribution of nitrification activity in sediment determined with a shielded micro sensor for nitrate. Appl. Environ. Microbio.1993,59:3287~3296
    Joann K W, Chi C. Macroaggregate characteristics in cultivated soil after 25 annual manure applications. Soil Science Society of Ameri Journal,2002,66:1637~1647
    Ju X T, Liu X J, Zhang F S, et al. Effect of long-term fertilization on organic nitrogen forms in a calcareous alluvial soil on the North China Plain. Pedosphere,2006,16(2):224~229
    Kanchikerimath M, Singh D. Soil organic matter and biological properties after 26 years of maize-wheat-cowpea cropping as affected by manure and fertilization in a Cambisol in semiarid region of India. Agriculture, ecosystems and Environment,2001,86:155~162
    Kandeler E, Luxhoi J, Tscherko M, et al. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biology&Biochemistry.1999,31:1171~1179
    Kelley K R. Forms and nature of organic N in soil. Fertilizer Research,1995,42:1~11
    Kjonaas O J. In situ efficiency of ion exchange in resins in studies of nitrogen transformation. Soil Sci. Soc. Am. J.,1999,63:399-409
    Koblerg R L, Rouppet B, Westfall D G, et al. Evaluation of aninsitunet soil nitrogen mineralization method in dry-land agroecosystem. Soil Sci. Soc. Am. J.,1997,61(3):504~508
    Kramer S, Green D M. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid wood land. Soil Biology & Biochemistry,2000,32:179~188
    Lades J M, Waters A G. Aggregate herarchy in soils. Australia Joural of soil science,1991,29:815~828
    Lavahum M F E, Joergensen R G and Meyer B. Activities and biomass of soil microorganisms at different depth.Biol. Fertil. Soils.1996,23:38~42
    Lepist O A, Kenttamie S K. Modeling combined effects of forestry, agriculture and deposition on nitrogen export in a northern river basin in Finland. AMBIO,2001,30(6):338~348
    Li H L, Han Y, Cai Z C. Modeling nitrogen mineralizationin paddy soils of Shanghai region. Pedosphere, 2003,13(4):331~336
    Lin E, Liu Y F, Li Y. Agricultural C cycle and greenhouse gas emission in China. Nutrient Cycling in Agroecosystems,1997,49:295~299
    Lin Q M, Brookes P C. An evaluation of the substrate-induced respiration method. Soil Biology and Biochemistry,1999,31:1969~1983
    Liu S G, Reinrs W A, Michael K, et al. Simulation of nitrous oxide and nitric oxide emissions from tropical primary forests in the Costa Rican Atlantic zone. Environmental Modeling&Software, 2000,15:727~743
    Liu Y, Muller R N. Above-ground net primary productivity and nitrogen mineralization in a mixed mesophytic forest of eastern Kentuky. For. Ecol. Manage.,1993,59(1):53~62
    LiuY, Muller R N. Above-ground net primary productivity and nitrogen mineralization in a mixed mesophytic forest of eastern Kentuky. For.Ecol. Manage.,1993,59(1):53~62
    Matus E J, Rodriguez J. A simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input. Plant and Soil,1994,162:259~271
    Mbagwu J S C. Effects of inculation with organic substrates on the stability of soil aggregate to water. Pedlogie,1989,39:159~163
    Mendes I C, Bandick A K, Dick R P, et al. Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Sci. Soc. Am. J.,1999,63:873~881
    Monreal C M and Bergstrom. Soil enzymatic factors expressing the influence of land use, tillage system and texture on soil biochemical quality. Can. J. Soil Sci.2000,80:419~428
    Motavalli P, Discekici P H, Kuhn J. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer. Agriculture, Ecosystems and Environment,2000,79:17~27
    Nadclhoffer K J, Giblin A E, Shaver G R, et al. Effects of temperrture and substrate quality on element micralization in six arctic soils. Ecology,1991,72(1):242~253
    Pankhurst C E. Defining and assessing soil health and sustainable productivity. Biological Indicators of Soil Health. CAB International,1997:1~324
    Parkin T B. Spatial variability of microbial processes in soil-A view.J.Environ.Qual.,1993,22:409~417
    Powers R F. Mineralizable soil nitrogen as an index of nitrogen availability to forest trees. Soil Sci. Soc. Am, J.,1980,44(6):1314~1320
    Powers R F. Nitrogen mineralization along an latitudinal gradient:interactions of temperature, moisture and substrate quality. For. El. Manage.,1990,30(1):19~29
    Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. European Journal of Soil Science,2000,51:595~605
    Puri G, Ashman M R. Relationship between soil microbial biomass and gross. N mineralization. Soil. Biol. Biochem,1998,30(2):251~256
    Reeves D W. The role of soil organic matter in maintaining soil quality in continuous cropping system. Soil Tillage Res.1997,43:131~167
    Reich P B, David F, Grigal J, et al. Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology,1997,72(2):335~347
    Rieu M, Sposito G. Soil Fractal fragmentation,soil porosity and soil water properties.Application Soil Sci.,1991,55:1230-1238
    Sainju U M, Terrill T H, Gelaye S, et al. Soil aggregation a carbon and nitrogen pools under rhizoma peanut and perennial weeds. Soil Science Society of America Journal,2003,67:146~155
    Saleque M A, Abedin M J, Bhuiyan N I, et al. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crops Research,2004,86:53~65
    Schinner F R, Ohlinger E, Kandeler R, et al. Methods in soil biology, Springer-Verlag, Berlin Heidlber, Grmany,1996
    Schutter M E, Dick R P. Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci. Soc. Am. J.,2002,66:142~153
    Scott N A, Binkley D. Foliage litter quality and annual net N mineralization:comparison across North American froest sites. Oecologia,1997,111:151~159
    Serna M D, Pomares F. Evaluation of chemical indices of soil organic nitrogen availability in calcareous soils. Soil Sci. Soc. AM.,1992,56:1486~1491
    Sharma B D, Jalota S K, Singh C B. Effect of nitrogen and water uptake on yield of wheat.Fertilizer Research,1992,31:5-8
    Six I, Paustian K, Elliott E T, et al. soill structure and soil organic matter:I. Distribution of aggregate size classes and aggregate associated carbon. Soil Science Society of Americs Journal,2000,64: 681~689
    Six J, Elliott E T, Paustian K. Aggregate and soil organic matdynamics under conventional and no-tillage systems.Soil Scien Society of America Journal,1999,63:1350~1358
    Six J, Elliot E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivation and native grass land soils. Soil Science Society of America Journal,1998,62:1367~1377
    Smith J L, Paul E A. The significance of soil microbial biomass estimations. In:soil Biochemistry, Bollag, J M and G Stotzky, (eds), Marcel Dekker Inc, New York,1991:359~396
    Sneh G K, Chander M, Mundra C, et al. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biol.Fertil. Soils,1999, 29:196~200
    Solomond D, Lehmann J, Zech W L. Use effects on soil organic matter properties of chromic luvisols in semiarid northern Tanzania:carbon, nitrogen, lignin and carbohydrates. Agriculture, Ecosystems and Environment,2000,78:203~213
    Srivastava S C, Singh J S. Microbial C N and in dry tropical forest soils:Effects of alternate land-use and nutrient flux. Soil Biol. Biochem.,1991,23(2):117~124
    Srivastava S C, Singh J S. Microbial C, N and P in dry tropical forest soil:Effects of alternate land-uses and nutrientflux. Soil Biol Biochem,1991,23(2):117~124
    Stevenson F J. Nitrogen-Organic Forms. Methods of Soil Anaysis, Part 3. Chemical Methods. Book Series 5. ASA-SSSA Madison, Wisconsin.1996:1185~1200
    Sulkava P, Huhta V, Laakso J. Impact of faunal structure on decomposition and N-mineralization in relation to temperature and moisture in forest soil. Pedobiologia,1996,40:505~513
    Suzuki M, Kamekawa K, Sekiya S, et al. Effect of continuous application of organic or inorganic fertilizer for sixty years on soil fertility and rice yield in paddy field. Transactions 14th International Congress of Soil Science, Kyoto, Japn, August 1990, Volume IV 14~19
    TaleⅢ R L. Function of protease and phosphatase activities in subsidence of Pahokee muck. Soil Sci. 1984,138:271~278
    Unkovich M, Jamieson N, Monaghan R, et al. Nitrogen mineralization and plant nitrogen acquisition in a nitrogen-limited calcareous grassland. Environmental and experimental botany,1998,40: 209~219
    Von Lutzow M, Leifeld J, Kainz M, et al. Indications for soil organic matter quality in soils under different management. Geoderma.2000,105:243-258
    Wilson D J, Jefferies R L. Nitrogen mineralization, plant growth and goose herbivory in an Arctic coastal ecosystem. Journal of Ecology,1996,84:841~851
    Wright S F, StarfandI J L, Paltineanu C. Changes in aggregate stability and concentration of glomalin during tillag transition. SSSAJ,1999,63,1825~1829
    Yadvinder S, Bijay S, Ladha J K, et al. Long-term effect of organic input on yield and soil fertilizer in the rice-wheat rotation. Soil Sci. Soc. Am. J.,2004,68(3):845~853
    Zhu W X, Carreiro M M. Chemoautotrophic nitrification in acidic forest soils along an urban-to-rural transect. Soil Biol. Biochem.,1999,31:1091~1100
    Zhu Y M, Berry D F, Martens D C. Copper avail-ability in two soil amended with eleven annual applications of copper-enriched hog manure. Communication in Soil Science and Plant Analysis, 1991,22 (7&8):769~783
    中国农业年鉴农业编辑委员会.中国农业年鉴.北京:农业出版社,1999
    中国科学院林业土壤研究所等编.全国土壤酶学研究文集.沈阳:辽宁科学技术出版社,1988:7-14,232-236
    文启孝.土壤氮素的含量和形态.中国土壤氮素.南京:江苏科学技术出版社,1992:3-26
    王小治,朱建国,高人,等.太湖地区氮素湿沉降动态及生态学意义:以常熟生态站为例.应用生态学报,2004,15(9):1616-1620
    王旭东.不同施肥条件对土壤有机质及胡敏酸特性的影响.中国农业科学,2000,33(2):75-81
    王邵民.不同施肥方式下紫色水稻土土壤肥力变化规律的研究.农村生态环境,2000,16(3):23-26
    王岩,沈其荣,史瑞和.有机无机肥料施用后土壤生物量C,N,P的变化及N素转化.土壤学报, 1998,35(2):227-234
    王岩,蔡大同,史瑞和.肥料残留氮的有效性及其与形态分布的关系.土壤学报,1991,30(1):19-25
    王胜佳.多熟制稻田土壤有机质平衡的定位研究.土壤学报,2002,39(1):9-15
    王德建,林静慧,孙瑞娟,等.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响.土壤学报,2003,40(3):426-432
    付会芳,李生秀.土壤氮素矿化与土壤供氮能力.西北农业大学学报,1992,20(增刊):48-52
    冯锐,毕江涛,王晓.不同培肥措施对壤土酶活性的影响.土壤通报,1999,30(5):212-213
    史吉平,张天道,林葆.长期施肥对土壤有机质及生物学特性的影响.土壤肥料,1998(3):7-11
    史吉平,张夫道,林葆.长期定位施肥对土壤腐殖质理化性质的影响.中国农业科学,2002,35(2):174-180
    巨晓棠,刘学军,张福锁.长期施肥对土壤有机氮组成的影响.中国农业科学,2004,37(1):87-91
    关连珠,张伯泉,颜丽,等.有机肥料配施化肥对土壤有机质组分及生物活性影响的研究.土壤通报,1990,21(4):180-184
    刘芳.小麦吸收肥料氮和土壤氮的探讨。核农学报,1994,15(2):81-84
    刘京,常庆瑞,李岗,等.连续不同施肥对土壤团聚性影响的研究.水土保持通报,2000,20(4):24-26
    刘春光,李红光.不同培肥措施对潮土酶活性影响的研究.山东农业大学学报,1998,29(3):365-369
    刘振兴,杨振华,邱孝煊.肥料增产贡献率及对土壤有机质的影响.植物营养与肥料学报,1994,1:19-26
    刘鸿翔,王德禄,王守宇,等.黑土长期施肥及养分循环再利用的作物产量及土壤肥力质量变化Ⅰ.作物产量.应用生态学报,2001,12(1):43-46
    孙天聪,李世清,邵明安,等.半湿润农田生态系统长期施肥对土壤团聚体中有机氮组分的影响.应用生态学报,2007,18(10):2233-2238
    孙艳,张英莉.不同施肥条件下娄土中固定态铵的含量及其有效性.土壤通报,1991,22(4):160-161
    庄亚辉,李长生,高拯民.复合生态系统元素循环.中国环境科学出版社,1995:223-283
    庄绍东.施肥结构对红壤性稻田水稻生长的影响.中国农学通报,2003,19(1):16-18
    朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6
    朱兆良.我国氮肥的施用现状、问题和对策.见:李庆逵主编.中国农业持续发展中的问题.江西科学技术出版社,1998,25-31
    红黄壤利用改良区划协作组.中国红黄壤地区土壤利用改良区划.北京:农业出版社,1985
    许春霞,吴守仁.土有机氮的构成及其在施肥条件下的变化.土壤通报,1991,22(2):54-56
    许绣云,姚贤良,刘克樱,等.长期施用有机物料对红壤性水稻土的物理性质的影响.土壤,1996,(2):57-61
    吴建国,张小金,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响.林业科学,2002,38(4):19-29
    吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究.土壤学报,1999,36(2):162-166
    张夫道.长期施肥条件下土壤养分的动态和平衡.植物营养与肥料学报,1996,VOL.2,NO.1:39-47
    张夫道.氮素营养研究中几个热点问题.植物营养与肥料学报,1998,4(4):331-338
    张世熔,邓良基,周倩.等,耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系.土壤学报,2002,39(2):221-226
    张兴昌,邵明安.黄绵土不同形态有机氮径流流失规律.农业工程学报,2000,16(6):47-51
    张庆江,张文英.小麦夏玉米两熟制粮田氮的平衡运转动态及氮肥利用率.土壤通报,1997,28(4):164-166
    张杨珠,黄运湘,周清,等.高产土壤条件下双季杂交稻施磷效应研究.湖南农业大学学报,2000,26(3):209-213
    张国粱,章申.农田氮素淋失研究进展.土壤,1998,(6):291-296
    张奇春,王光火.长期不同施肥下杂交稻与常规稻的产量与土壤养分平衡.植物营养与肥料学报2006,12(3):340-345
    张俊清,朱平,张夫道.有机肥和化肥配施对黑土有机氮形态组成及分布的影响.植物营养与肥料学报,2004,10(3):245-249
    张璐,沈善敏,廉鸿志,等.辽西褐土施肥及养分循环再利用中长期试验I.作物产量.土壤与环境,2000,9(3):239-242
    李世清,李生秀,邵明安,等.半干旱农田生态系统长期施肥对土壤有机氮组分和微生体氮的影响.中国农业科学,2004,37(6):859-864
    李伟波,吴留松,廖海秋,等.太湖地区高产稻田的氮肥施用与作物吸收利用研究.土壤学报,1997,34(1):61-73
    李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1998
    李江涛,张斌,彭新华,等.施肥对红壤性水稻土颗粒有机物形成及团聚稳定性的影响.土壤学报,2004,41(6):913-917
    李实烨.吨粮田土壤的培育和管理.土壤肥料,1992,4:1-5
    李忠佩,张桃林,陈碧云,等.红壤性稻田土壤有机质的积累过程特征分析.土壤学报,2003,40(3):344-352
    李勇.试论土壤酶活性与土壤肥力.土壤通报,1989,20(4):190-193
    李映强,曾觉廷.不同耕作制度下水稻土有机质变化及其团聚作用.土壤学报,1991,28(4):404-409
    李科江,张素芳,贾文竹,等.半干旱区长期施肥对作物产量和土壤肥力的影响.植物营养与肥料学报,1999,5(1):21-25
    李菊梅,李生秀.可矿化氮与各有机氮组分的关系.植物营养与肥料学报,2003,9(2):158-164
    李萍,徐雅梅.不同培肥措施对藏东南土壤酶活性的影响.土壤肥料,2002,33-35
    李辉信,胡锋,郭和生,等.添加碳源、磷和石灰对红壤氮素矿化和硝化作用的影响.土壤,2001,3:135-137
    李慧琳,韩勇,蔡祖聪.上海地区水稻土氮素矿化及其模拟.土壤学报,2004,41(4):503-510
    杨长明,欧阳竹,董玉红.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响.生态学杂志2005,24(8):887-892
    杨志谦,王维敏.秸秆还田后碳、氮在土壤中的积累和释放.土壤肥料,1991,(5):43-46
    杨武雄,戴教藩,陈宗献,等.武夷山不同林型土壤酶活性与林木生长关系的研究.福建林业科技,1994,21(4):1-12
    杨培岭,罗远培,石元春.用粒径重量分布表征土壤的分形特征.科学通报,1993,38(20):1896-1899
    沈宏,曹志宏.施肥对土壤不同碳形态及碳库管理指数的影响.土壤学报2000,37(2):166-173
    沈其荣,史瑞和.不同土壤有机氮的化学组成及其有效性的研究.土壤通报,1990,21:54-57
    沈善敏.长期土壤肥力试验的科学价值.植物营养与肥料学报,1995,1(11):1-9
    沈善敏.国外的长期肥料试验.土壤通报,1984:2-4,85-91,134-138,184-185
    苏成国,尹斌,朱兆良,等.农田氮素的气态损失与大气氮湿沉降及其环境效应.土壤,2005,37(2):113-120
    苏宝林.水稻栽培技术.金盾出版社,1996
    苏德纯,王敬国,曹一平.麦田土壤可矿化氮的动态与供氮规律的研究.北京农业大学学报,1995,21(增刊):57-60
    陈恩凤,周礼恺,邱凤琼.土壤肥力实质的研究.土壤学报,1985,22(2):113-119
    陈恩凤,关连珠,汪景宽,等.土壤特征微团聚体的组成比例与肥力评价.土壤学报,2001,38(1):49-53
    卓苏能,文启孝.土壤未知态氮.土壤学进展,1992,20(2):1-18
    周卫军,王凯荣,谢小立.红壤稻田施肥制度与土壤持续生产力关系的研究.农业现代化研究,1998,19(6):388-390
    周礼恺.不同来源的植物物质在棕壤中分解特征与土壤酶活性.土壤通报,1984,4:163-167
    周克瑜,施书莲.石灰性土壤的氨基酸组成特征.土壤,1994,26(4):213-215
    周克瑜,施书莲.我国几种主要土壤中氮素形态分布及其氨基酸组成.土壤,1992,24(6):285-288
    和文祥,朱铭莪.陕西土壤脲酶与土壤肥力关系分析.土壤学报,1997,34(4):392-398
    和文祥,来航线,武永军.培肥对土壤酶活性影响的研究.浙江大学学报(农业与生命科学版),2001,27(3):265-268
    於忠祥,汪维云,沙宗珩,等.合肥郊区菜园土土壤酶活性研究.土壤通报,1996,27(4):179-181
    林先贵.土壤微生物学的研究和发展方向.土壤,1991,23(4):210-213
    林葆,林继雄,李家康.长期施肥处理作物产量和土壤肥力变化.北京:中国科学技术出版社,1996
    林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化.植物营养与肥料学报,1994,16-18
    武冠云.土壤有机态氮的形态、分布及其易解性.土壤通报,1986,17(2):90-95
    范业成,叶厚专.江西红壤性水稻土肥力特性及其管理.江西农业学报,1998,10(3):70-74
    郑勇,高勇生,张丽梅,等.长期施肥对旱地红壤微生物和酶活性的影响.植物营养与肥料学报,2008,14(2):316-321
    南京农业大学主编,土壤农化分析,农业出版社,1980
    姚贤良,于德芬.关于集约农作制下的土壤结构问题:Ⅰ.有机物料及其利用方式对土壤结构的影响.土壤学报,1985,22(3):319-327
    施书莲,文启孝,廖海秋,等.耕垦对土壤氮素形态分布和氨基酸组成的影响.土壤,1992,24(1):14-18
    施书莲,周克瑜,杨文醒.土壤剖面土同粒级中氨基酸组成特征.土壤,1998,30,209-213
    施书莲,周克瑜.施肥对土壤含氮组分的影响.土壤,1995,27(3):138-140
    柳金来,赵世龙,王常湘,等.稻田培肥与肥料效应的研究.土壤肥料,1992(3):20-22
    胡之廉.配方施肥.北京:农业出版社,1989,16-41
    赵其国,孙波,张桃林.土壤质量与持续环境.Ⅰ.土壤质量的定义与评价方法.土壤,1997,29(3):113-120
    赵其国,谢为民贺湘逸,等.江西红壤.南昌:江西科学技术出版社,1988
    郝文英.土壤微生物研究工作的回顾—为庆祝建国40周年而作.土壤,1989,21(4):185-191
    骆东奇,侯春霞,魏朝富,等.旱地紫色土团聚体特征的指标比较.山地学报,2003,21(3):348-353
    徐阳春,沈其荣.长期施用不同有机肥对土壤各粒级复合体中C、N、P含量与分配的影响.中国农业科学,2000,33(5):65-71
    徐阳春,沈其荣.有机肥和化肥长期配合施用对土壤及不同粒级供氮特性的影响.土壤学报,2004,41(1):87-92
    徐琪,杨林章,董元华,等.中国稻田生态系统.中国农业出版社,1998
    晏维金,章申,王嘉慧.长江流域氮的生物地球化学循环及其对输送无机氮的影响.地理学报, 2001,56(5):505-514
    殷士学.土壤微生物量及其养分循环关系的研究进展.土壤学进展,1993,21(4):1-8
    莫建林,盛利民,项彩花,等.嘉湖平原稻田施肥与土壤肥力关系的研究.浙江农业学报,1995,7(3):161-164
    袁玲,邦俊,郑兰君,等.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报,1997,3(4):300-306
    高亚军,黄东迈,朱培立,等.稻麦轮作条件下长期不同土壤管理对氮素肥力的影响.土壤学报,2000,37(4):456-463
    曹志洪,林先贵,杨林章,等.论“稻田圈”在保护城乡生态环境中的功能Ⅱ.稻田土壤氮素养分的累积、迁移及其生态环境意义.土壤学报,2006,43(2):56-260
    梁国庆,林葆,林继雄,等.长期施肥对石灰性潮土氮素形态的影响.植物营养与肥料学报,2000,6(1):3-10
    章明奎,何振力,陈国潮,等.利用方式对红壤水稳性团聚体形成的影响.土壤学报,1997,11,34(4):359-365
    彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103
    彭令发,郝明德,来璐.长期施肥对土壤有机氮影响研究Ⅰ.氮肥及其配施下土壤有机氮组分变化.水土保持研究,2003,10(1):53-54
    彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,2003,23(10):2177-2183
    谢建昌.中国土壤的钾素肥力及农业中的钾管理.见:沈善敏主编.中国土壤肥力.北京:中国农业出版社,1981
    韩晓日,陈恩凤,郭鹏程,等.长期施肥对作物产量及土壤氮素肥力的影响.土壤通报,1995,(26):244-246
    韩晓日,郭彭城,陈思凤,等.长期施肥对土壤固定态铵含量及其有效性的影响.植物营养与肥料学报,1998,4(1):29-36
    韩晓日,郭鹏程.长期不同施肥对氮肥利用率的影响.土壤通报,1997(5):12-15
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000
    鲁如坤.东部红壤区农田养分平衡的时空演变.见:赵其国主编.中国东部红壤地区土壤退化的时空变化和机理及调控措施.北京:科学出版社,2002,57-60
    谭雪明,石庆华,潘晓华,等.江西省4种水稻土养分限制因子的初步研究.江西农业大学学报,1998,20(4):427-432
    霍习良,张俊梅,许皞,等.河北省冲积平原区潮土的土壤养分限制谱序研究与应用.河北农业大 学学报,2001,24(4):32-47
    戴伟,陈晓东.北京低山地区土壤酶活性与土壤理化性质的关系.河北林学院学报,1995,10(1):13-18
    藏双.我国土壤学的过去及面临的机遇和挑战.土壤学进展,1996,23(1):9-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700