有机改性蒙脱土在非极性介质中的分散及其稳定的Pickering乳液
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒙脱土由于具有很强的吸附能力和膨胀性等特殊的性质,因而有着广泛的应用,但其表面亲水性强,限制了其在非水介质中的应用。利用蒙脱土层间阳离子的可交换性,将阳离子表面活性剂引入蒙脱土层间对其进行有机改性,使其表面疏水化,增大粘土的层间距,从而提高其与有机物的相容性。由于有机改性的蒙脱土(又称有机土)在涂料、胶黏剂、润滑油脂、复合材料、污水处理和钻井液等行业中具有广泛的应用,因而人们对有机土从基础理论和应用方面进行了广泛研究。有机土最重要的特性之一就是可以在有机介质中膨胀形成具有触变性的凝胶结构,同时由于其具有廉价易得,用量低,抗高温性能好,不易受其他化学物质影响等优点,因而有机土在很多领域被用作增粘剂或胶凝剂。
     最近有机土在纳米复合材料领域的应用引起了人们的极大关注。粘土颗粒由于其特殊的层状结构和物理性能,被认为是优良的填充材料,可以提高材料的强度和耐温性等性能。但是由于蒙脱土的强亲水性,与有机物的亲和力较差,这就需要对蒙脱土进行有机改性。由于蒙脱土的有机化改性降低了其与有机物之间的界面能,从而使有机土可以和聚合物相容。其次,由于有机改性分子可与聚合物分子上的基团发生反应,进一步增强有机土与聚合物分子之间的相互作用力,从而制备出均一的复合材料。
     油基钻井液是以油作为连续相的钻井液。与水基钻井液相比较,油基钻井液具有抗高温,很强的抑制性和抗盐、抗钙污染的能力,润滑性能好,并可有效地减轻对油气层的损害等优势,因此在深井、高温井、复杂地层复杂井、大位移井等特殊结构井及储层保护要求高的井中具有显著优势,并且已在国内外大量使用。但是随着人们对环境保护越来越重视,当人们用毒性较低的白油等芳烃含量少的非极性油来代替原油、柴油作为基础油时,有机土存在着在白油中成胶、分散能力弱的问题。另外,在油包水(W/O)钻井液中,有机土可以吸附在油水界面,提高乳液的稳定性,增加钻井液的粘度。
     本文基于以上背景,研究了有机土的制备和有机土在非极性溶剂中的分散以及改进其分散稳定性的方法,测定了分散体系的流变行为,并对有机土稳定的乳液和影响乳液稳定性的因素进行了研究。
     1.有机土的制备及其在白油中的流变行为
     用双十八烷基二甲基氯化铵对蒙脱土进行表面疏水改性制备有机土,并用傅里叶转变红外光谱(FTIR)、X-射线衍射(XRD)、热重分析(TGA)和扫描电子显微镜(SEM)等手段对有机土进行了表征。考察了反应时间、反应温度、反应体系的pH值以及改性剂用量对有机土层间距、有机物含量及其在非极性分散介质中沉降稳定性的影响,确定最佳反应时间为3h,反应温度50~90℃,不需要调节反应体系的pH值,改性剂用量为蒙脱土土阳离子交换容量的1.0倍即1.0CEC。增大改性剂用量,有机土的层间距增大,热稳定性降低。当改性剂用量增大至1.4CEC时,改性剂在蒙脱土上双层吸附。
     随着石油勘探开发的不断深入和社会对环保问题的逐渐重视,毒性较小,更加环保的矿物油如白油等逐渐取代了芳烃含量较高的柴油作为油基钻井液的基础油。有机土在白油基钻井液中分散能力较差,增粘效果不理想,需要增大有机土的浓度来调整体系的流变性能。但是当有机土的浓度较高时,油基钻井液的塑性粘度也会随之上升,即体系的剪切稀释性变差。因而本文研究了有机土在白油中的流变行为,发现随着改性剂用量的增大,有机土/白油分散体系的粘度先增大后减小,1.0CEC有机土在白油中的分散稳定性、增粘效果和分散体系的剪切稀释性最好。同时对比了有机土和纳米二氧化硅颗粒的白油分散体系的流变性能,发现亲水性的纳米二氧化硅颗粒的分散体系的稳定性、粘度和剪切稀释性要远优于有机土/白油分散体系。
     2.有机土在非极性介质中的分散
     颗粒在非极性分散介质中的分散体系在工业中具有广泛应用,例如陶瓷制备、显影技术、油墨、油漆和化妆品等。但是颗粒在非极性介质中的分散体系的稳定性往往较差,通常需要加入分散剂来提高其稳定性。关于分散剂的作用机理,一般认为是空间稳定作用起主导作用。由于分散介质的介电常数较低,颗粒间的静电斥力作用一般被忽略。然而最近的一些研究发现,在非极性介质中静电稳定作用起着重要的作用。人们对球型颗粒在非极性介质中的分散体系研究较多,而对于非等轴胶体颗粒的分散体系研究较少。有机土在非极性介质中的均匀分散是制备纳米复合材料和提高其性能的关键一步,另外研究有机土在非极性介质中的分散状态对于有机土在润滑油脂和油基钻井液中的应用具有指导意义。
     有机土在非极性介质中的分散性较差,颗粒迅速沉降。向分散体系中加入非离子表面活性剂脱水山梨醇单油酸酯(Span80)、脱水山梨醇三油酸酯(Span85)和甘油单油酸酯以及阴离子表面活性剂2-乙基己基)磺化琥珀酸钠(AOT)都可以提高有机土分散体系的稳定性。通过紫外、元素分析、小角X-射线衍射等手段,我们发现表面活性剂在有机土表面发生吸附,增大有机土表面的疏水性;表面活性剂吸附在有机土颗粒表面,可以阻碍颗粒聚集,提供空间稳定作用;表面活性剂不仅吸附在有机土表面,而且能够进入有机土层间,进一步增大有机土的层间距,有利于有机土片层在分散介质中剥离,使有机土颗粒尺寸减小;通过测定有机土在非极性分散介质中的zeta电势,发现表面活性剂吸附在颗粒上可以增大颗粒的zeta电势,表面活性剂与有机土颗粒表面通过酸碱相互作用发生电荷转移,使有机土颗粒表面带电,增大了颗粒之间的静电斥力,从而有助于分散体系的稳定性的提高。表面活性剂通过空间稳定和静电稳定作用提高有机土/非极性介质分散体系的稳定性。
     3.有机土稳定W/O乳液的研究
     有机土在油基钻井液中一般是用作增粘剂,在W/O钻井液中,有机土可以吸附在油水界面,提高乳液的稳定性,增加体系的粘度。油基钻井液的水相通常含有较高浓度的盐,因而研究有机土稳定的W/O乳液以及盐对乳液稳定性的影响具有重要意义,本文考察了有机土的改性剂用量和水相中的盐浓度对有机土稳定的W/O乳液稳定性的影响。
     固定体系的油水比和颗粒浓度,改变有机土改性剂用量可以改变有机土稳定的乳液类型。蒙脱土自身亲水性强,不能够形成稳定的乳液;用季铵盐对其进行有机改性,使颗粒表面疏水性增强,当改性剂用量低于0.8CEC时,由于颗粒表面亲水,形成水包油(O/W)乳液;当改性剂用量在0.8~1.2CEC时,颗粒表面的疏水性增强,形成W/O乳液。继续增大改性剂用量,改性剂通过烷基链段间的疏水作用在有机土上双层吸附,使颗粒表面重新亲水,但是却得到O/W乳液,这可能是由于有机土制备过程中的洗涤步骤去除了游离的表面活性剂,而在乳化过程中通过疏水作用吸附的改性剂从颗粒表面发生脱附,颗粒表面的亲水性不够强,因此乳液类型不再随改性剂浓度的进一步增加反转为O/W型。
     一般来说,向颗粒水分散体系中加入盐,会屏蔽带电颗粒间的静电斥力同时还会使颗粒表面的亲水性降低,从而促使粘土水分散体系发生絮凝。当盐浓度较低时,颗粒水分散体系会发生弱絮凝,有利于形成稳定的乳液;当盐浓度较高时,颗粒水分散体系发生强絮凝,不利于形成稳定的乳液。本文首次研究了盐浓度对W/O乳液稳定性的影响。将有机土分散在液体石蜡中,改变水相中的盐浓度,发现随着水相中盐浓度的增大,W/O乳液的稳定性降低,当水相中盐浓度超过一定值时,不能形成稳定的乳液。在相同的盐浓度条件下,1.2CEC有机土制备的乳液的稳定性优于1.0CEC有机土,0.8CEC有机土制备的乳液的稳定性最差。通过测定有机土/盐水体系离心后上清液中有机物含量,发现随着盐浓度增大,改性剂在有机土上的脱附量增大。通过测定有机土和不同浓度盐水的接触角,发现随着盐浓度的增大,有机土颗粒表面亲水性增强。综上所述,随着盐浓度的增加有机土稳定的W/O乳液的稳定性降低,这是由于盐的加入促使吸附在有机土外表面的季铵盐发生脱附,导致有机土表面亲水性增强。
Montmorillonite finds wide range of applications for its special properties:natural abundance, fine size, easy modification. The applications of montmorillonite in nonaqueous media were limited for the strong hydrophilicity. However, cation-exchange reactions with organic cationic surfactants have been exploited to render the clay mineral hydrophobic at the surface and increase the basal spacing. Organic modification of montmorillonite (organoclay) has been widely used in industrial applications such as oil-field drilling fluids, paints, lubricating greases, wastewater treatment, and composite material. Thus the modifications of clay minerals have been widely studied fundamentally and in practical applications. One of the most important properties of organoclay is the ability for swelling and thixotropic gel formation in organic media. The advantages of organoclay as flow modifiers include:low volume fractions, good thermal stability, resistant to gel-breaking effects from other chemicals. Organoclay is generally used to control the rheologic property of hydrocarbon fluids.
     Recently, the use of organoclay in materials science and technology has attracted considerable attention. Clay, having a large aspect ratio and size, has been recognized as potential candidates for filler materials, because it exhibits superior physical and mechanical properties when compared with the pure polymer. Organic modification of clay mineral, making it hydrophobic and compatible with polymers is necessary due to the hydrophilic nature of clay. The surface energy of clay and polymer could be reduced by organic modification. Additionally, the organic cations may contain various functional groups, which can react with the polymers and enhance the adhesion between clay particles and the matrix. Thus, it is possible to obtain nanocomposites with good dispersion quality.
     Oil-based drilling fluid is the mud using oil as the continuous phase. The advantages of selecting an oil-based drilling fluid include:superior hole stability, enhanced shale inhibition, excellent lubrication, high temperature stability. For these benefits, oil-based drilling fluid is a better selection for drilling in deep well, high temperature well and complex conditions. For environment protection, miner oil of lower toxic was used to replace the crude oil or diesel which contains high content of aromatic hydrocarbons, but there is a problem that the organoclay could not disperse and gelling well in miner oil. In the water-in-oil (W/O) drilling fluid, orgaoclay can be adsorbed on the interface of oil and water, improving the stability of emulsion and the viscosity of drilling fluid.
     In this context, we studied the dispersion of organoclay in octane in attempt to improve their stability. The rheological properties of organoclay suspensions were also investigated. The emulsion stabilized by organoclay was prepared, and the factors affecting their stability were evaluated.
     The present dissertation includes three topics.
     1. Preparation, characterization of organocaly and rheological properties of organoclay suspension
     Cationic surfactant dimethyldioctadecylammoniurn chloride (DODMAC1) was used as the modifier to prepare organoclay, and the product was characterized by fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM). The effects of reaction time, temperature, pH value and the amounts of organic modifier on the basal spacing and amounts of organic compounds of organoclay and the stability of organoclay suspension were investigated. The optimal reaction condition was carried at50-90℃for3h with1.0cation exchange capacity (CEC) cationic surfactant. If the amount of surfactant was increased, the thermal stability of the organoclay would decrease. When the addition of surfactant was more than1.4CEC, bilayer adsorption of surfactant would occur.
     When organoclay is used as thickener in nonpolar miner oil such as white oil based drilling fluid, ideal result could not be achieved. Therefore we studied the rheological properties of organoclay/white oil suspension. The viscosity of the suspension increased with the dosage of DODMAC1first, and then decreased. The suspension containing organoclay of1.0CEC exhibited the maximum stability, viscosity and share thinning property. The rheological properties of silica nanoparticles suspended in a non-polar mineral oil were also investigated. The stability, viscosity and thixotropic property of silica nanoparticles are much better than organoclay.
     2. Dispersion of organoclay in nonpolar media
     Dispersions of particles in nonpolar media have many applications in ceramics, paints, lubricants and oil-based drilling fluid. Usually, dispersions of particles in nonpolar media are unstable, and dispersants are used to improve the stability of the dispersions. The mechanism of dispersant to improve the stability of dispersions is steric stabilization. Usually, electrostatic stabilization in nonpolar media was neglected because of the low dielectric constant. However, many recent studies have shown that electrostatic stabilization can play an important role. To improve the dispersion stability of organoclay in nonpolar media is important for improving the properties of polymer-clay nanocomposites, lubricants and oil-based drilling fluids. Thus we investigated the stabilization mechanism of organoclay in octane.
     The dispersion of organoclay can be improved by the addition of the nonionic surfactants sorbitan monoleate (Span80), sorbitan trioleate (Span85) and1-oleoyl-rac-glycerol and anion surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The relation between the adsorption of surfactants on organoclay particles and the stability of the dispersions was investigated. The effects of the surfactants on the basal spacing of particles, electrostatic interactions between particles and rheological properties of dispersions were also measured. Based on the decrease of the particle size and the increase of the zeta potential, the improvement of the dispersion stability could be interpreted by steric and electrostatic stabilization. This work sheds some light on the selection of dispersants for improving the dispersion stability of particles in nonpolar media.
     3. Pickering emulsion stabilized by organoclay
     Organoclay typically is used to control the rheology in oil-based drilling fluid. In drilling fluid, the organoclay could also adsorb at the surface of water droplets to stabilize the W/O emulsions and improve the viscosity of mud. The aqueous phase of mud is usually comprised of high concentration of salt, to minimize water exchange between drilling fluid and the formation being drilled. Because the wettability of organoclay and salt concentration in the aqueous phase could affect the stability of the emulsion, we investigated the effects of modifier dosage of organoclay and salt concentration in the aqueous phase on the stability of W/O emulsions stabilized by organoclay.
     Emulsion inversion could be induced by increasing the addition of cationic surfactant modifier, as the wettability of organoclay was changed from hydrophilicity to hydrophobicity. When the amount of surfactant was less than0.8CEC, the emulsions stabilized by organoclay were O/W. When the amount of surfactant was more than0.8CEC, W/O emulsions were prepared by the hydrophobic organoclay. If the addition of surfactant was increased further, O/W emulsions were not obtained. This may be due to the removal the free surfactant in the washing process in the preparation of organoclay and the reduction of organoclay hydrophobicity by desorption of the adsorbed bilayer surfactant in emulsification process.
     The addition of salt could increase the hydrophobicity of particles and decrease particle zeta potential leading particle adsorption at the oil-water interface. Salts could also flocculate the particles to form visco-elastic three-dimensional network, which enhance the creaming stability of emulsion. Here, the effect of salt concentration on the W/O emulsions stabilized by organoclay was studied. The stability of emulsions decreased with the salt concentration, and stable emulsion could not be prepared when the salt concentration was above a certain value. The emulsion prepared with organoclay of1.2CEC was more stable than organoclay of1.0CEC and0.8CEC. The desorption of cationic surfactant from organoclay was measured by Total Organic Carbon Analyzer. The amount of surfactant desorbed increased with salt concentration. The desorption of cationic surfactant modifier would increase the hydrophilicity of organoclay, which is not conductive for the formation of W/O emulsion. The reasons of the decrease of the emulsion stability caused by the addition of salt were the reduction of organoclay hydrophobicity and the desorption of cationic surfactant at high salt concentration.
引文
[1]J.W. Gilman, C.L. Jackson, A.B. Morgan, R. Harris Jr., E. Manias, E.P. Giannelis, M. Wuthenow, D. Hilton, S.H. Phillips; Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites [J], Chem. Mater,2000,12 (7):1866-1873.
    [2]Y.-H. Shen; Phenol sorption by organoclays having different charge characteristics [J], Colloids Surf., A,2004,232 (2-3):143-149.
    [3]Y. Park, G.A. Ayoko, R.L. Frost; Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media [J], J. Colloid Interface ScL, 2011,354(1):292-305.
    [4]H. He, R.L. Frost, T. Bostrom, P. Yuan, L. Duong, D. Yang, Y. Xi, J.T. Kloprogge; Changes in the morphology of organoclays with HDTMA+surfactant loading [J], Appl. Clay Sci.,2006,31 (3-4):262-271.
    [5]H.J. Butt; Controlling the flow of suspensions [J], Science,2011,331:868-869.
    [6]E.S.H. Leach, A. Hopkinson, K. Franklin, J.S. van Duijneveldt; Nonaqueous suspensions of laponite and montmorillonite [J], Langmuir,2005,21 (9): 3821-3830.
    [7]V.M.B. Moloney, D. Parris, M.J. Edirisinghe; Rheology of zirconia suspensions in a nonpolar organic medium [J], J. Am. Ceram. Soc.,2005,78 (12):3225-3232.
    [8]鄢捷年;钻井液工艺学[M],中国石油大学出版社2001,pp.236-270.
    [9]W. Ramsden; Separation of solids in the surface-layers of solutions and 'suspensions' (Observations on surface-membranes, bubbles, emulsions, and mechanical coagulation) [J], Proc. R. Soc. London,1903,72:156-164.
    [10]A.J. Morse, D. Dupin, K.L. Thompson, S.P. Armes, K. Ouzineb, P. Mills, R. Swart; Novel pickering emulsifiers based on pH-responsive poly(tert-butylaminoethyl methacrylate) latexes [J], Langmuir,2012,28 (32):11733-11744.
    [11]G. Lagaly, M. Reese, S. Abend; Smectites as colloidal stabilizers of emulsions:I. Preparation and properties of emulsions with smectites and nonionic surfactants [J], Appl. Clay Sci.,1999,14(1):83-103.
    [12]H.A. Wege, S. Kim, V.N. Paunov, Q. Zhong, O.D. Velev; Long-term stabilization of foams and emulsions with in-situ formed microparticles from hydrophobic cellulose [J], Langmuir,2008,24 (17):9245-9253.
    [13]C.P. Whitby, D. Fornasiero, J. Ralston; Effect of oil soluble surfactant in emulsions stabilised by clay particles [J], J. Colloid Interface Sci.,2008,323 (2):410-419.
    [14]K. Larson-Smith, D.C. Pozzo; Pickering emulsions stabilized by nanoparticle surfactants [J], Langmuir,2012,28 (32):11725-11732.
    [15]H. Liu, C. Wang, S. Zou, Z. Wei, Z. Tong; Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification [J], Langmuir,2012,28 (30):11017-11024.
    [16]S. Abend, G. Lagaly; Bentonite and double hydroxides as emulsifying agents [J], Clay Miner.,2001,36 (4):557-570.
    [17]Y. Nonomura, N. Kobayashi; Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles [J], J. Colloid Interface Sci.,2009,330 (2):463-466.
    [18]N. Yan, J.H. Masliyah; Characterization and demulsification of solids-stabilized oil-in-water emulsions Part 1. Partitioning of clay particles and preparation of emulsions [J], Colloids Surf. A,1995,96 (3):229-242.
    [19]W. Wang, Z. Zhou, K. Nandakumar, Z. Xu, J.H. Masliyah; Effect of charged colloidal particles on adsorption of surfactants at oil-water interface [J], J. Colloid Interface Sci.,2004,274 (2):625-630.
    [20]S.S. Ray, M. Okamoto; Polymer/layered silicate nanocomposites:a review from preparation to processing [J], Prog. Polym. Sci.,2003,28 (11):1539-1641.
    [21]C.C. Harvey, H.H. Murray; Industrial clays in the 21st century:A perspective of exploration, technology and utilization [J],Appl. Clay Sci.,1997,11 (5),285-310.
    [22]T.A. de Souza, A.P. Scheer, M.C. Khalil, C.I. Yamamoto, L.F.L. Luz Jr; Emulsion inversion using solid particles [J], J. Petrol. Sci. Eng.,2012,96-97:49-57.
    [23]F. Kadar, L. Szazdi, E. Fekete, B. Pukanszky; Surface characteristics of layered silicates:Influence on the properties of clay/polymer nanocomposites [J], Langmuir, 2006,22(18),7848-7854.
    [24]T. Peprnicek, J. Duchet, L. Kovarova, J. Malac, J.F. Gerard, J. Simonik; Poly (vinyl chloride)/clay nanocomposites:X-ray diffraction, thermal and rheological behaviour [J], Polym. Degrad. Stabil,2006,91 (8):1855-1860.
    [25]M. Gelfer, C. Burger, A. Fadeev, I. Sics, B.S. Chu, B. Hsiao, A. Heintz, K. Kojo, S-L. Hsu, M. Si, M. Rafailovich; Thermally induced phase transitions and morphological changes in organoclays [J], Langmuir,2004,20 (9):3746-3758.
    [26]Y. Xi, Z. Ding, H. He, R.L. Frost; Structure of organoclays—an X-ray diffraction and thermogravimetric analysis study [J], J. Colloid Interface Sci.,2004,277 (1): 116-120.
    [27]H. He, R.L. Frost, Y. Xi, J. Zhu; Raman spectroscopic study of organo-montmorillonites [J], J. Raman Spectrosc,2004,35 (4):316-323.
    [28]Y. Xi, Z. Ding, H. He, R.L. Frost; Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide [J], Spectrochim. Acta A, 2005,61 (3):515-525.
    [29]Y. Xi, R.L. Frost, H. He, T. Kloprogge, T. Bostrom; Modification of Wyoming montmorillonite surfaces using a cationic surfactant [J], Langmuir,2005,21 (19): 8675-8680.
    [30]Y. Xi, R.L. Frost, H. He; Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides [J],J. Colloid Interface Sci.,2007,305 (1):150-158.
    [31]R. Liu, R.L. Frost, W.N. Martens, Y. Yuan; Synthesis, characterization of mono, di and tri alkyl surfactant intercalated Wyoming montmorillonite for the removal of phenol from aqueous systems [J], J. Colloid Interface Sci.,2008,327 (2):287-294.
    [32]F. Kooli, Y.Z. Khimyak, S.F. Alshahateet, F. Chen; Effect of the acid activation levels of montmorillonite clay on the cetyltrimethylammonium cations adsorption [J], Langmuir,2005,21 (19):8717-8723.
    [33]F. Kooli, M. Li, S.F. Alshahateet, F. Chen, Y. Zhu; Characterization and thermal stability properties of intercalated Na-magadiite with cetyltrimethylammonium (C16TMA) surfactants [J],J. Phys. Chem. Solids,2006,67 (5-6):926-931.
    [34]F. Kooli, P.C. Hian, Q. Weirong, S.F. Alshahateet, F. Chen; Effect of the acid-activated clays on the properties of porous clay heterostructures [J], J. Porous Mater,2006,13 (3):319-324.
    [35]F. Kooli, Y. Liu; Thermal stable cetyltrimethylammonium-cagadiites:Influence of the surfactant solution type [J], J. Phys. Chem.C,2009,113 (5):1947-1952.
    [36]F. Kooli; Exfoliation properties of acid-activated montmorillonites and their resulting organoclays [J], Langmuir,2009,25 (2):724-730.
    [37]F. Kooli, Y. Liu, S.F. Alshahateet, M. Messali, F. Bergaya; Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution [J], Appl. Clay Sci.,2009,43 (3):357-363.
    [38]Z. Zhao, T. Tang, Y. Qin, B. Huang; Relationship between the continually expanded interlayer distance of layered silicates and excess intercalation of cationic surfactants [J], Langmuir,2003,19 (22):9260-9265.
    [39]Z. Zhao, T. Tang, Y. Qin, B. Huang; Effects of surfactant loadings on the dispersion of clays in maleated polypropylene [J], Langmuir,2003,19 (18):7157-7159.
    [40]邱俊,崔学奇,吕宪俊,宋吉勇;对蒙脱石层电荷的测定[J],矿业快报,2005,21(6):6-9.
    [41]邱俊,吕宪俊;蒙脱石的有机改性工艺及凝胶性能研究[J],化工矿物与加工2008,(1):7-10.
    [42]吴新明,王林江,谢裹漓,张坤;钙基膨润土的有机化及其表征[J],矿产综合利用,2007,(2):13-15.
    [43]Z. Zhang, D.L. Sparks, N.C. Scrivner; Sorption and desorption of quaternary amine cations on clays [J], Environ. Sci. Technol.1993,27 (8):1625-1631.
    [44]于志纲,贾朝霞;蒙脱土改性的研究进展[J],精细石油化工进展,2005,6(8): 5-8.
    [45]M.A. Osman, M. Ploetze, U.W. Suter; Surface treatment of clay minerals-thermal stability, basal-plane spacing and surface coverage [J], J. Mater. Chem.,2003,13 (9): 2359-2366.
    [46]J.U. Calderon, B. Lennox, M.R. Kamal; Thermally stable phosphonium-montmorillonite organoclays [J], Appl. Clay Sci.,2008,40 (1):90-98.
    [47]谭绍早,张葵花,李笃信,刘应亮,张渊明;季磷盐改性蒙脱土的制备及性能[J],中南大学学报(自然科学版),2006,37(2):280-285.
    [48]曾少雁,吴平霄;C10TAB, C14TAB, C18TAB柱撑蒙脱石层间域有机柱排布研究[J],矿物岩石2005,25(101):52-62.
    [49]B. Ha, K. Char; Conformational behavior of dodecyldiamine inside the confined space of montmorillonites [J], Langmuir,2005,21 (18):8471-8477.
    [50]X. Feng, G. Hu, X. Meng, Y. Ding, S. Zhang, M. Yang; Influence of ethanol addition on the modification of montmorillonite by hexadecyl trimethylammonium bromide [J],Appl. Clay Sci.,2009,45 (4):239-243.
    [51]叶巧明,刘兴奋;CTMAB插层有机膨润土的结构分析[J],硅酸盐通报2004,23(5):40-43.
    [52]索大鹏,陈志刚,杨娟;季铵盐插层钠基蒙脱土的工艺研究[J],硅酸盆通报,2004,23(4):98-100.
    [53]P. Maiti, K. Yamada, M. Okamoto, K. Ueda, K. Okamoto; New polylactide/layered silicate nanocomposites:role of organoclays [J], Chem. Mater.,2002,14 (11): 4654-4661.
    [54]R. Muller, J. Hrobarikova, C. Calberg, R. Jerome, J. Grandjean; Structure and dynamics of cationic surfactants intercalated in synthetic clays [J], Langmuir,2004, 20 (7):2982-2985.
    [55]M.A. Osman, M. Ploetze, P. Skrabal; Structure and properties of alkylammonium monolayers self-assembled on montmorillonite platelets [J], J. Phys. Chem. B,2004, 108 (8):2580-2588.
    [56]S.T. Lim, Y.H. Hyun, H.J. Choi, M.S. Jhon; Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites [J], Chem. Mater.,2002,14 (4): 1839-1844.
    [57]Y. Wang, X. Zhao, D. Wang; Electrophoretic ink using urea-formaldehyde microspheres[J],J. Microencapsul,2006,23 (7):762-768.
    [58]E. Georges, J.-M. Georges, S. Hollinger; Contact of two carbon surfaces covered with a dispersant polymer [J], Langmuir,1997,13(13):3454-3463.
    [59]S. Zurcher, T. Graule; Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions [J], J. Eur. Ceram. Soc,2005, 25 (6):863-873.
    [60]R.I. Keir, Suparno, J.C. Thomas; Charging behavior in the silica/Aerosol OT/decane system [J], Langmuir,2002,18 (5):1463-1465.
    [61]M. Gacek, G. Brooks, J.C. Berg; Characterization of mineral oxide charging in apolar media [J], Langmuir,2012,28 (5):3032-3036.
    [62]S.M. Notley, V.S.J. Craig, A. Fogden, D.R. Evans; Adsorption of dispersants at a polyester resin-alkane interface [J], Colloids Surf., A,2011,377 (1-3):318-324.
    [63]F.M. Fowkes, R.J. Pugh; Steric and electrostatic contributions to the colloidal properties of nonaqueous dispersions, in Polymer Adsorption and Dispersion Stablity [M], ACS Publications,1984, pp.331-354.
    [64]M.-Cl. Dubois-Clochard, J.-P. Durand, B. Delfort, P. Gateau, L. Barre, I. Blanchard, Y. Chevalier, R. Gallo; Adsorption of polyisobutenylsuccinimide derivatives at a solid-hydrocarbon interface [J], Langmuir,2001,17 (19):5901-5910.
    [65]Y. Yang, E.A. Grulke, Z.G. Zhang, G. Wu; Temperature effects on the rheological properties of carbon nanotube-in-oil dispersions [J], Colloids Surf., A,2007,298 (3): 216-224.
    [66]G.S. Roberts, R. Sanchez, R. Kemp, T. Wood, P. Bartlett; Electrostatic charging of nonpolar colloids by reverse micelles [J], Langmuir,2008,24 (13):6530-6541.
    [67]S. Poovarodom, J.C. Berg; Effect of particle and surfactant acid-base properties on charging of colloids in apolar media [J], J. Colloid Interface Sci.,2010,346 (2): 370-377.
    [68]M.F. Hsu, E.R. Dufresne, D.A. Weitz; Charge stabilization in nonpolar solvents [J], Langmuir,2005,21 (11):4881-4887.
    [69]M. Gacek, D. Bergsman, E. Michor, J.C. Berg; Effects of trace water on charging of silica particles dispersed in a nonpolar medium [J], Langmuir,2012,28 (31): 11633-11638.
    [70]P.G. Smith Jr, M.N. Patel, J. Kim, T.E. Milner, K.P. Johnston; Effect of surface hydrophilicity on charging mechanism of colloids in low-permittivity solvents [J], J. Phys. Chem. C,2007,111 (2):840-848.
    [71]B.I. Lee, U. Paik; Dispersion of alumina and silica powders in non-aqueous media: mixed-solvent effects [J], Ceram. Int.,1993,19 (4):241-250.
    [72]U. Paik, V.A. Hackley, S.-C. Choi, Y.-G. Jung; The effect of electrostatic repulsive forces on the stability of BaTiO3 particles suspended in non-aqueous media [J], Colloids Surf, A,1998,135 (1):77-88.
    [73]V.N. Moraru; Structure formation of alkylammonium montmorillonites in organic media [J],Appl. Clay Sci.,2001,19 (1):11-26.
    [74]P. Jenkins, S. Basu, R.I. Keir, J. Ralston, J.C. Thomas, B.M.A. Wolffenbuttel; The electrochemistry of nonaqueous copper phthalocyanine dispersions in the presence of a metal soap surfactant:a simple equilibrium site binding model [J], J. Colloid Interface Sci.,1999,211 (2):252-263.
    [75]P. Jenkins, J. Ralston, J.C. Thomas, S.L. Nicholls, P.E. Staples; Copper phthalocyanine-mica interactions in nonaqueous media [J], J. Colloid Interface Sci.,1999,211 (1):11-17.
    [76]肖进新,赵振国;表面活性剂应用原理[M],化学工业出版社,2003,pp.285-313.
    [77]D.L. Ho, C.J. Glinka; Effects of solvent solubility parameters on organoclay dispersions [J], Chem. Mater.,2003,15 (6):1309-1312.
    [78]R.F. Tabor, J. Eastoe, P. Dowding; Adsorption and desorption of cationic surfactants onto silica from toluene studied by ATR-FTIR [J], Langmuir,2010,26 (2):671-677.
    [79]R.F. Tabor, J. Eastoe, P. Dowding; Adsorption and desorption of nonionic surfactants on silica from toluene studied by ATR-FTIR [J], Langmuir,2009,25 (17):9785-9791.
    [80]Y. Chevalier, M.-C. Dubois-Clochard, J.-P. Durand, B. Delfort, P. Gateau, L. Barre, D. Frot, Y. Briolant, I. Blanchard, R. Gallo; Adsorption of poly (isobutenylsuccinimide) dispersants at a solid-hydrocarbon interface [J], Progr. Colloid Polym. Sci.,2001,118:110-114.
    [81]L.B. de Paiva, A.R. Morales, F.R.V. Diaz; Organoclays:properties, preparation and applications [J],Appl. Clay Sci.,2008,42 (1):8-24.
    [82]S. Chen, G.(?)ye, J. Sjoblom; Rheological properties of silica particle suspensions in mineral oil [J], J. Disper. Sci. Technol.,2005,26 (6):791-798.
    [83]E. Vignati, R. Piazza, T.P. Lockhart; Pickering emulsions:interfacial tension, colloidal layer morphology, and trapped-particle motion [J], Langmuir,2003,19 (17):6650-6656.
    [84]P. Wilde, A. Mackie, F. Husband, P. Gunning, V. Morris; Proteins and emulsifiers at liquid interfaces [J],Adv. Colloid Interface Sci.,2004,108:63-71.
    [85]S.O. Asekomhe, R. Chiang, J.H. Masliyah, J.A.W. Elliott; Some observations on the contraction behavior of a water-in-oil drop with attached solids [J], Ind. Eng. Chem. Res.,2005,44 (5):1241-1249.
    [86]M.F. Hsu, M.G. Nikolaides, A.D. Dinsmore, A.R. Bausch, V.D. Gordon, X. Chen, J.W. Hutchinson, D.A. Weitz, M. Marquez; Self-assembled shells composed of colloidal particles:fabrication and characterization [J], Langmuir,2005,21 (7): 2963-2970.
    [87]R. Pichot, F. Spyropoulos, I.T. Norton; O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles:the effect of surfactant type and concentration [J], J. Colloid Interface Sci.,2010,352 (1):128-135.
    [88]J.H. Schulman, J. Leja; Control of contact angles at the oil-water-solid interfaces. Emulsions stabilized by solid particles (BaSO4) [J], Trans. Faraday Soc.,1954,50: 598-605.
    [89]B.P. Binks, S.O. Lumsdon; Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica [J], Langmuir,2000,16 (6):2539-2547.
    [90]M. Okada, H. Maeda, S. Fujii, Y. Nakamura, T. Furuzono; Formation of picketing emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase [J], Langmuir,2012,28 (25): 9405-9412.
    [91]P. Finkle, H.D. Draper, J.H. Hildebrand; The theory of emlsion [J], J. Am. Chem. Soc.,1923,45 (12):2780-2788.
    [92]A. Gelot, W. Friesen, H.A. Hamza; Emulsification of oil and water in the presence of finely divided solids and surface-active agents [J], Colloids Surf., A,1984,12: 271-303.
    [93]B. Binks, S. Lumsdon; Influence of particle wettability on the type and stability of surfactant-free emulsions [J], Langmuir,2000,16 (23):8622-8631.
    [94]D.E. Tambe, M.M. Sharma; Factors controlling the stability of colloid-stabilized emulsions:I. An experimental investigation [J], J. Colloid Interface Sci.,1993,157 (1):244-253.
    [95]B.P. Binks, C.P. Whitby; Silica particle-stabilized emulsions of silicone oil and water:aspects of emulsification [J], Langmuir,2004,20 (4):1130-1137.
    [96]B.P. Binks, J. Philip, J.A. Rodrigues; Inversion of silica-stabilized emulsions induced by particle concentration [J], Langmuir,2005,21 (8):3296-3302.
    [97]J. Frelichowska, M.A. Bolzinger, Y. Chevalier; Effects of solid particle content on properties of O/W Pickering emulsions [J], J. Colloid Interface Sci.,2010,351 (2): 348-356.
    [98]N.P. Ashby, B.P. Binks; Pickering emulsions stabilised by Laponite clay particles [J], Phys. Chem. Chem. Phys.,2000,2 (24):5640-5646.
    [99]T. Kostakis, R. Ettelaie, B.S. Murray; Effect of high salt concentrations on the stabilization of bubbles by silica particles [J], Langmuir,2006,22 (3):1273-1280.
    [100]T.S. Horozov, B.P. Binks, T. Gottschalk-Gaudig; Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles [J], Phys. Chem. Chem. Phys.,2007,9 (48):6398-6404.
    [101]F. Yang, S. Liu, J. Xu, Q. Lan, F. Wei, D. Sun; Pickering emulsions stabilized solely by layered double hydroxides particles:the effect of salt on emulsion formation and stability [J], J. Colloid Interface Sci.,2006,302 (1):159-169.
    [102]J. Zhang, L. Li, J. Wang, H. Sun, J. Xu, D. Sun; Double inversion of emulsions induced by salt concentration [J], Langmuir,2012,28 (17):6769-6775.
    [103]N. Yan, J.H. Masliyah; Effect of pH on adsorption and desorption of clay particles at oil-water interface [J], J. Colloid Interface Sci.,1996,181 (1):20-27.
    [104]B.R. Midmore; Effect of aqueous phase composition on the properties of a silica-stabilized W/O emulsion [J],J. Colloid Interface Sco.,1999,213 (2):352-359.
    [105]B.P. Binks, J.A. Rodrigues; Inversion of emulsions stabilized solely by ionizable nanoparticles [J],Angew. Chem.,2005,117 (3):445-448.
    [106]B.P. Binks, R. Murakami, S.P. Armes, S. Fujii; Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles [J], Langmuir,2006,22 (5):2050-2057.
    [107]T. Ngai, H. Auweter, S.H. Behrens; Environmental responsiveness of microgel particles and particle-stabilized emulsions [J], Macromol,2006,39 (23): 8171-8177.
    [108]J. Li, H.D.H. Stover; Doubly pH-responsive pickering emulsion [J], Langmuir, 2008,24(23):13237-13240.
    [109]F. Yang, Q. Niu, Q. Lan, D. Sun; Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles [J], J. Colloid Interface Sci.,2007,306 (2):285-295.
    [110]Q. Lan, C. Liu, F. Yang, S. Liu, J. Xu, D. Sun; Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions [J], J. Colloid Interface Sci.,2007,310 (1):260-269.
    [111]J. Tan, J. Wang, L. Wang, J. Xu, D. Sun; In situ formed Mg (OH)2 nanoparticles as pH-switchable stabilizers for emulsions [J], J. Colloid Interface Sci.,2011,359 (1): 155-162.
    [112]N. Yan, M.R. Gray, J.H. Masliyah; On water-in-oil emulsions stabilized by fine solids [J], Colloids Surf., A,2001,193 (1):97-107.
    [113]B.P. Binks, S.O. Lumsdon; Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity [J], Phys. Chem. Chem. Phys.,2000,2 (13):2959-2967.
    [114]B.P. Binks, J.H. Clint; Solid wettability from surface energy components: relevance to pickering emulsions [J], Langmuir,2002,18 (4):1270-1273.
    [115]B.P. Binks, S.O. Lumsdon; Transitional phase inversion of solid-stabilized emulsions using particle mixtures [J], Langmuir,2000,16 (8):3748-3756.
    [116]J. Thieme, S. Abend, G. Lagaly; Aggregation in Pickering emulsions [J], Colloid Polym. Sci.,1999,277 (2):257-260.
    [117]S. Abend, N. Bonnke, U. Gutschner, G. Lagaly; Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides [J], Colloid Polym. Sci.,1998,276 (8):730-737.
    [118]G. Lagaly, M. Reese, S. Abend; Smectites as colloidal stabilizers of emulsions:Ⅱ. Rheological properties of smectite-laden emulsions [J],Appl. Clay Sci.,1999,14(5): 279-298.
    [119]B.P. Binks, J.A. Rodrigues; Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation [J], Langmuir,2007,23 (14): 7436-7439.
    [120]B.P. Binks, J.A. Rodrigues, W.J. Frith; Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant [J], Langmuir, 2007,23 (7):3626-3636.
    [121]B.P. Binks, A. Desforges, D.G. Duff; Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant [J], Langmuir,2007,23 (3): 1098-1106.
    [122]T.E. Havre, J. Sjoblom; Emulsion stabilization by means of combined surfactant multilayer (D-phase) and asphaltene particles [J], Colloids Surf., A,2003,228 (1): 131-142.
    [123]Q. Lan, F. Yang, S. Zhang, S. Liu, J. Xu, D. Sun; Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions [J], Colloids Surf., A,2007,302 (1):126-135.
    [124]李财富,张水燕,王君,冯绪胜,孙德军,徐健;Brij类表面活性剂与Laponite纳米颗粒的相互作用及其稳定乳液的研究[J],化学学报,2008,66(21):2313-2320.
    [125]J. Wang, F. Yang, C. Li, S. Liu, D. Sun; Double phase inversion of emulsions containing layered double hydroxide particles induced by adsorption of sodium dodecyl sulfate [J], Langmuir,2008,24 (18):10054-10061.
    [126]J. Wang, F. Yang, J. Tan, G. Liu, J. Xu, D. Sun; Pickering emulsions stabilized by a lipophilic surfactant and hydrophilic platelike particles [J], Langmuir,2009,26 (8): 5397-5404.
    [127]J. Wang, G. Liu, L. Wang, C. Li, J. Xu, D. Sun; Synergistic stabilization of emulsions by poly(oxypropylene)diamine and Laponite particles [J], Colloids Surf, A,2010,353 (2):117-124.
    [128]C. Vashisth, C.P. Whitby, D. Fornasiero, J. Ralston; Interfacial displacement of nanoparticles by surfactant molecules in emulsions [J], J. Colloid Interface Sci., 2010,349 (2):537-543.
    [129]A.R. Mackie, A.P. Gunning, P.J. Wilde, V.J. Morris; Orogenic displacement of protein from the air/water interface by competitive adsorption [J], J. Colloid Interface Sci.,1999,210 (1):157-166.
    [130]A.R. Mackie, A.P. Gunning, P.J. Wilde, V.J. Morris; Orogenic displacement of protein from the oil/water interface [J], Langmuir,2000,16 (5):2242-2247.
    [131]A.R. Mackie, A.P. Gunning, M.J. Ridout, P.J. Wilde, V.J. Morris; Orogenic displacement in mixed β-lactoglobulin/β-casein films at the air/water interface [J], Langmuir,2001,17 (21):6593-6598.
    [132]A.R. Mackie, A.P. Gunning, P.J. Wilde, V.J. Morris; Competitive displacement of β-lactoglobulin from the air/water interface by sodium dodecyl sulfate [J], Langmuir, 2000,16 (21):8176-8181.
    [133]P. Gunning, A. Mackie, A. Gunning, P. Wilde, N. Woodward, V. Morris; The effect of surfactant type on protein displacement from the air-water interface [J], Food Hydrocolloids,2004,18 (3):509-515.
    [134]V. Pradines, V.B. Fainerman, E.V. Aksenenko, J. Kragel, R. Wustneck, R. Miller; Adsorption of protein-surfactant complexes at the water/oil interface [J], Langmuir, 2010,27 (3):965-971.
    [1]Y.-H Shen; Phenol sorption by organoclays having different charge characteristics [J], Colloids Surf., A,2004,232 (2-3):143-149.
    [2]E.S.H. Leach, A. Hopkinson, K. Franklin, J.S. van Duijneveldt; Nonaqueous suspensions of laponite and montmorillonite [J], Langmuir,2005,21 (9): 3821-3830.
    [3]T. Peprnicek, J. Duchet, L. Kovarova, J. Malac, J.F. Gerard, J. Simonik; Poly(vinyl chloride)/clay nanocomposites:X-ray diffraction, thermal and rheological behaviour [J], Polym. Degrad. Stabil,2006,91 (8):1855-1860.
    [4]F. Kadar, L. Szazdi, E. Fekete, B. Pukanszky; Surface characteristics of layered silicates:influence on the properties of clay/polymer nanocomposites [J], Langmuir, 2006,22 (18):7848-7854.
    [5]F. Bergaya, G. Lagaly; Surface modification of clay minerals [J], Appl. Clay Sci., 2001,19(1):1-3.
    [6]L.B. de Paiva, A.R. Morales, F.R. Valenzuela Diaz; Organoclays:properties, preparation and applications [J], Appl. Clay Sci.,2008,42 (1):8-24.
    [7]T. Kwolek, M. Hodorowicz, K. Stadnicka, J. Czapkiewicz; Adsorption isotherms of homologous alkyldimethylbenzylammonium bromides on sodium montmorillonite [J], J. Colloid Interface Sci.,2003,264(1):14-19.
    [8]Y. Xi, R.L. Frost, H. He; Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides [J], J. Colloid Interface Sci.,2007,305 (1):150-158.
    [9]R. Liu, R.L. Frost, W.N. Martens, Y. Yuan; Synthesis, characterization of mono, di and tri alkyl surfactant intercalated Wyoming montmorillonite for the removal of phenol from aqueous systems [J], J. Colloid Interface Sci.,2008,327 (2):287-294.
    [10]Y. Xi, Z. Ding, H. He, R.L. Frost; Structure of organoclays—an X-ray diffraction and thermogravimetric analysis study [J], J. Colloid Interface Sci.,2004,277 (1): 116-120.
    [11]Z. Zhao, T. Tang, Y. Qin, B. Huang; Relationship between the continually expanded interlayer distance of layered silicates and excess intercalation of cationic surfactants [J], Langmuir,2003,19 (22):9260-9265.
    [12]H. He, R.L. Frost, T. Bostrom, P. Yuan, L. Duong, D. Yang, Y. Xi, J.T. Kloprogge; Changes in the morphology of organoclays with HDTMA+surfactant loading [J], Appl. Clay Sci.,2006,31 (3-4):262-271.
    [13]S.I. Marras, A. Tsimpliaraki, I. Zuburtikudis, C. Panayiotou; Thermal and colloidal behavior of amine-treated clays:the role of amphiphilic organic cation concentration [J], J. Colloid Interface Sci.,2007,315 (2):520-527.
    [14]Y. Xi, R.L. Frost, H. He, T. Kloprogge, T. Bostrom; Modification of Wyoming montmorillonite surfaces using a cationic surfactant [J], Langmuir,2005,21 (19): 8675-8680.
    [15]索大鹏,陈志刚,杨娟;季铵盐插层钠基蒙脱土的工艺研究[Jl,硅酸盐通报,2004,23(4):98-100.
    [16]A. Tsutsumi, K. Yoshida; Rheological behaviour of coal-solvent slurries [J], Fuel, 1986,65 (7):906-909.
    [17]M. Hassan, N. Abdel-Khalek; Beneficiation and applications of an Egyptian bentonite [J],Appl. Clay Sci.,1998,13 (2):99-115.
    [18]N. Adachi, M. Hashiba, O. Sakurada; Rheological properties of slurries prepared using a planetary mixer [J], Ceram. Int.,2004,30 (6):1055-1058.
    [19]H.E. King Jr, S.T. Milner, M.Y. Lin, J.P. Singh, T. Mason; Structure and rheology of organoclay suspensions [J],Phys. Rev. E,2007,75 (2):021403.
    [20]D.L. Ho, C.J. Glinka; Effects of solvent solubility parameters on organoclay dispersions [J], Chem. Mater.,2003,15 (6):1309-1312.
    [21]S. Chen, G.(?)ye, J. Sjoblom; Rheological properties of silica particle suspensions in mineral oil [J], J. Disper. Sci. Technol.,2005,26 (6):791-798.
    [22]F. Kooli, Y.Z. Khimyak, S.F. Alshahateet, F. Chen; Effect of the acid activation levels of montmorillonite clay on the cetyltrimethylammonium cations adsorption [J], Langmuir,2005,21 (19):8717-8723.
    [23]F. Kooli, L. Yan; Thermal stable cetyltrimethylammonium-magadiites:influence of the surfactant solution type [J],J. Phys. Chem. C,2009,113 (5):1947-1952.
    [24]F. Kooli, Y. Liu, S.F. Alshahateet, M. Messali, F. Bergaya; Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution [J],Appl. Clay Sci.,2009,43 (3):357-363.
    [25]F. Kooli; Exfoliation properties of acid-activated montmorillonites and their resulting organoclays [J], Langmuir,2009,25 (2):724-730.
    [26]B. Ha, K. Char; Conformational behavior of dodecyldiamine inside the confined space of montmorillonites [J], Langmuir,2005,21 (18):8471-8477.
    [27]何雪寒,李春生,许凤林,刘清辉;有机膨润土制备及结构变化探讨[J],中国非金属矿工业导刊,2007,61(3):39-40.
    [28]应根其,甘学锋,胡爱连;有机膨润土的制备研究[J],化工矿物与加工,2007,36(12):5-8.
    [29]K.G. Fournaris, M.A. Karakassides, D. Petridis, K. Yiannakopoulou; Clay-polyvinylpyridine nanocomposites [J], Chem. Mater,1999,11 (9):2372-2381.
    [30]L. Wang, S. Liu, T. Wang, D. Sun; Effect of poly (oxypropylene) diamine adsorption on hydration and dispersion of montmorillonite particles in aqueous solution [J], Colloids Surf., A,2011,381 (1):41-47.
    [31]V. Moloney, D. Parris, M.J. Edirisinghe; Rheology of zirconia suspensions in a nonpolar organic medium [J], J. Am. Ceram. Soc.,2005,78 (12):3225-3232.
    [32]D. Burgentzle, J. Duchet, J.F. Gerard, A. Jupin, B. Fillon; Solvent-based nanocomposite coatings:I. Dispersion of organophilic montmorillonite in organic solvents [J], J. Colloid Interface Sci.,2004,278 (1):26-39.
    [33]H. He, J. Duchet, J. Galy, J.F. Gerard; Influence of cationic surfactant removal on the thermal stability of organoclays [J], J. Colloid Interface Sci.,2006,295 (1): 202-208.
    [34]V.N. Moraru; Structure formation of alkylammonium montmorillonites in organic media [J],Appl. Clay Sci.,2001,19 (1-6):11-26.
    [35]H. He, Y. Ma, J. Zhu, P. Yuan, Y. Qing; Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration [J], Appl. Clay Sci.,2010,48 (1-2):67-72.
    [1]S. Zurcher, T. Graule; Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions [J], J. Eur. Ceram. Soc.,2005,25 (6): 863-873.
    [2]V.M.B. Moloney, D. Parris, M.J. Edirisinghe; Rheology of zirconia suspensions in a nonpolar organic medium [J], J. Am. Ceram. Soc.,1995,78 (12):3225-3232..
    [3]R.I. Keir, Suparno, J.C. Thomas; Charging behavior in the silica/aerosol OT/decane system [J], Langmuir,2002,18 (5):1463-1465.
    [4]Y.T. Wang, X.P. Zhao, D.W. Wang; Electrophoretic ink using urea-formaldehyde microspheres [J], J. Microencapsul.,2006,23 (7):762-768.
    [5]S.M. Notley, V.S.J. Craig, A. Fogden, D.R. Evans; Adsorption of dispersants at a polyester resin-alkane interface [J], Colloids Surf., A,2011,377 (1-3):318-324.
    [6]E.S.H. Leach, A. Hopkinson, K. Franklin, J.S. van Duijneveldt; Nonaqueous suspensions of Laponite and montmorillonite [J], Langmuir,2005,21 (9): 3821-3830.
    [7]F.M. Fowkes, R.J. Pugh; Steric and electrostatic contributions to the colloidal properties of nonaqueous dispersions, in:Polymer adsorption and dispersion stability [M],Am. Chem. Soc,1984, pp.331-354.
    [8]E. Georges, J.-M. Georges, S. Hollinger, Contact of two carbon surfaces covered with a dispersant polymer [J], Langmuir,1997,13 (13):3454-3463.
    [9]M.-Cl. Dubois-Clochard, J.-P. Durand, B. Delfort, P. Gateau, L. Barre, I. Blanchard, Y. Chevalier, R. Gallo; Adsorption of polyisobutenylsuccinimide derivatives at a solid-hydrocarbon interface [J], Langmuir,2001,17 (19):5901-5910.
    [10]Y. Yang, E.A. Grulke, Z.G. Zhang, G. Wu; Temperature effects on the rheological properties of carbon nanotube-in-oil dispersions [J], Colloids Surf., A,2007,298 (3): 216-224.
    [11]P.G. Smith, M.N. Patel, J. Kim, T.E. Milner, K.P. Johnston; Effect of surface hydrophilicity on charging mechanism of colloids in low-permittivity solvents [J], J. Phys. Chem. C,2007,111 (2):840-848.
    [12]M. Gacek, G. Brooks, J.C. Berg; Characterization of mineral oxide charging in apolar media [J], Langmuir,2012,28 (5):3032-3036.
    [13]Q. Guo, V. Singh, S.H. Behrens; Electric charging in nonpolar liquids because of nonionizable surfactants [J], Langmuir,2010,26 (5):3203-3207.
    [14]S. Poovarodom, J.C. Berg; Effect of particle and surfactant acid-base properties on charging of colloids in apolar media [J], J. Colloid Interface Sci.,2010,346 (2): 370-377.
    [15]H. Koelmans, J.T.G. Overbeek; Stability and electrophoretic deposition of suspensions in non-aqueous media [J], Discuss. Faraday Soc,1954,18:52-63.
    [16]M.F. Hsu, E.R. Dufresne, D.A. Weitz; Charge stabilization in nonpolar solvents [J], Langmuir,2005,21 (11):4881-4887.
    [17]D. Burgentzle, J. Duchet, J.F. Gerard, A. Jupin, B. Fillon; Solvent-based nanocomposite coatings:I. Dispersion of organophilic montmorillonite in organic solvents [J], J. Colloid Interface Sci.,2004,278 (1):26-39.
    [18]P.A. Mirau, J.L. Serres, D. Jacobs, P.H. Garrett, R.A. Vaia; Structure and dynamics of surfactant interfaces in organically modified clays [J], J. Phys. Chem. B,2008, 112(34):10544-10551.
    [19]J. Li, J.M. Fitz-Gerald, J.P. Oberhauser; Novel wet SEM imaging of organically modified montmorillonite clay dispersions [J], Appl. Phys. A,2007,87 (1):97-102.
    [20]V.N. Moraru; Structure formation of alkylammonium montmorillonites in organic media [J],Appl.Clay Sci.,2001,19 (1):11-26.
    [21]Y. Xi, R.L. Frost, H. He, T. Kloprogge, T. Bostrom; Modification of Wyoming montmorillonite surfaces using a cationic surfactant [J], Langmuir,2005,21 (19): 8675-8680.
    [22]Y. Zhang, D.I. Gittins, D. Skuse, T. Cosgrove, J.S. van Duijneveldt; Nonaqueous suspensions of surface-modified kaolin [J], Langmuir,2007,23 (6):3424-3431.
    [23]Y. Xi, R.L. Frost, H. He; Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides [J], J. Colloid Interface Sci.,2007,305 (1):150-158.
    [24]F. Kooli; Exfoliation properties of acid-activated montmorillonites and their resulting organoclays [J], Langmuir,2009,25 (2):724-730.
    [25]Z. Zhao, T. Tang, Y. Qin, B. Huang; Relationship between the continually expanded interlayer distance of layered silicates and excess intercalation of cationic surfactants [J], Langmuir,2003,19 (22):9260-9265.
    [26]W.-F. Lee, Y.-C. Chen; Effect of bentonite on the physical properties and drug-release behavior of poly(AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive [J], J. Appl. Polym. Sci.,2004,91 (5):2934-2941.
    [27]K.G. Fournaris, M.A. Karakassides, D. Petridis, K. Yiannakopoulou; Clay-polyvinylpyridine nanocomposites [J], Chem. Mater.,1999,11 (9): 2372-2381.
    [28]F. Kadar, L. Szazdi, E. Fekete, B. Pukanszky; Surface characteristics of layered silicates:influence on the properties of clay/polymer nanocomposites [J], Langmuir, 2006,22 (18):7848-7854.
    [29]R. Kemp, R. Sanchez, K.J. Mutch, P. Bartlett; Nanoparticle charge control in nonpolar liquids:insights from small-angle neutron scattering and microelectrophoresis [J], Langmuir,2010,26 (10):6967-6976.
    [30]B.I. Lee, J.P. Rives; Dispersion of alumina powders in nonaqueous media [J], Colloids Surf.,1991,56:25-43.
    [31]P. Jenkins, S. Basu, R.I. Keir, J. Ralston, J.C. Thomas, B.M.A. Wolffenbuttel; The electrochemistry of nonaqueous copper phthalocyanine dispersions in the presence of a metal soap surfactant:a simple equilibrium site binding model [J], J. Colloid Interface Sci.,1999,211 (2):252-263.
    [32]S. Williams-Daryn, R.K. Thomas, M.A. Castro, A. Becerro; The structures of complexes of a vermiculite intercalated by cationic surfactants, a mixture of cationic surfactants, and a mixture of cationic and nonionic surfactants [J],J. Colloid Interface Sci.,2002,256 (2):314-324.
    [1]G. Lagaly, M. Reese, S. Abend; Smectites as colloidal stabilizers of emulsions:Ⅰ. Preparation and properties of emulsions with smectites and nonionic surfactants [J], Appl. Clay Sci.,1999,14(1):83-103.
    [2]A.J. Morse, D. Dupin, K.L. Thompson, S.P. Armes, K. Ouzineb, P. Mills, R. Swart; Novel pickering emulsifiers based on pH-responsive poly(tert-butylaminoethyl methacrylate) latexes [J], Langmuir,2012,28 (32):11733-11744.
    [3]E. Vignati, R. Piazza, T.P. Lockhart; Pickering emulsions:interfacial tension, colloidal layer morphology, and trapped-particle motion [J], Langmuir,2003,19 (17):6650-6656.
    [4]P. Wilde, A. Mackie, F. Husband, P. Gunning, V. Morris; Proteins and emulsifiers at liquid interfaces [J], Adv. Colloid Interface Sci.,2004,108:63-71.
    [5]M.F. Hsu, M.G. Nikolaides, A.D. Dinsmore, A.R. Bausch, V.D. Gordon, X. Chen, J.W. Hutchinson, D.A. Weitz, M. Marquez; Self-assembled shells composed of colloidal particles:fabrication and characterization [J], Langmuir,2005,21 (7): 2963-2970.
    [6]R. Pichot, F. Spyropoulos, I.T. Norton; O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles:the effect of surfactant type and concentration [J], J. Colloid Interface Sci.,2010,352 (1):128-135.
    [7]J.H. Schulman, J. Leja; Control of contact angles at the oil-water-sol id interfaces. Emulsions stabilized by solid particles (BaSO4) [J], Trans. Faraday Soc.,1954,50: 598-605.
    [8]B.P. Binks, S.O. Lumsdon; Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica [J], Langmuir,2000,16 (6):2539-2547.
    [9]M. Okada, H. Maeda, S. Fujii, Y. Nakamura, T. Furuzono; Formation of pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase [J], Langmuir,2012,28 (25): 9405-9412.
    [10]B.P. Binks, S. Lumsdon; Influence of particle wettability on the type and stability of surfactant-free emulsions [J], Langmuir,2000,16 (23):8622-8631.
    [11]N. Yan, M.R. Gray, J.H. Masliyah; On water-in-oil emulsions stabilized by fine solids [J], Colloids Surfaces., A,2001,193 (1):97-107.
    [12]S. Arditty, C.P. Whitby, B.P. Binks, V. Schmitt, F. Leal-Calderon; Some general features of limited coalescence in solid-stabilized emulsions [J], Eur. Phys. J. E, 2003,11 (3):273-281.
    [13]B.P. Binks, J.A. Rodrigues, W.J. Frith; Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant [J], Langmuir, 2007,23 (7):3626-3636.
    [14]L.G. Torres, R. Iturbe, M.J. Snowden, B.Z. Chowdhry, S.A. Leharne; Preparation of O/W emulsions stabilized by solid particles and their characterization by oscillatory rheology [J], Colloids Surfaces., A,2007,302 (1-3):439-448.
    [15]Z.-G. Cui, L.-L. Yang, Y.-Z. Cui, B.P. Binks; Effects of surfactant structure on the phase inversion of emulsions stabilized by mixtures of silica nanoparticles and cationic surfactant [J], Langmuir,2010,26 (7):4717-4724.
    [16]J. Wang, G. Liu, L. Wang, C. Li, J. Xu, D. Sun; Synergistic stabilization of emulsions by poly(oxypropylene)diamine and Laponite particles [J], Colloids Surfaces., A,2010,353 (2):117-124.
    [17]Y.Cui, M. Threlfall, J.S. van Duijneveldt; Optimizing organoclay stabilized Pickering emulsions [J], J. Colloid Interface Sci.,2011,356 (2):665-671.
    [18]J. Wang, F. Yang, C. Li, S. Liu, D. Sun; Double phase inversion of emulsions containing layered double hydroxide particles induced by adsorption of sodium dodecyl sulfate [J], Langmuir,2008,24 (18):10054-10061.
    [19]T.S. Horozov, B.P. Binks, T. Gottschalk-Gaudig; Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles [J], Phys. Chem. Chem. Phys.,2007,9 (48):6398-6404.
    [20]T. Kostakis, R. Ettelaie, B.S. Murray; Effect of high salt concentrations on the stabilization of bubbles by silica particles [J], Langmuir,2006,22 (3):1273-1280.
    [21]B.P. Binks, C.P. Whitby; Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability [J], Colloids Surfaces., A,2005,253 (1):105-115.
    [22]B.P. Binks, S.O. Lumsdon; Stability of oil-in-water emulsions stabilised by silica particles [J], Phys. Chem. Chem. Phys.,1999,1 (12):3007-3016.
    [23]F. Yang, S. Liu, J. Xu, Q. Lan, F. Wei, D. Sun; Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability [J],J. colloid Interface Sci.,2006,302 (1):159-169.
    [24]J. Zhang, L. Li, J. Wang, H. Sun, J. Xu, D. Sun; Double inversion of emulsions induced by salt concentration [J], Langmuir,2012,28 (17):6769-6775.
    [25]C.C. Harvey, H.H. Murray; Industrial clays in the 21st century:a perspective of exploration, technology and utilization [J], Appl. Clay Sci.,1997,11 (5-6):285-310.
    [26]H.H. Murray; Traditional and new applications for kaolin, smectite, and palygorskite:a general overview [J],Appl. Clay Sci.,2000,17 (5-6):207-221.
    [27]V.N. Moraru; Structure formation of alkylammonium montmorillonites in organic media [J],Appl. Clay Sci.,2001,19 (1-6):11-26.
    [28]F. Bergaya, B.K.G. Theng, G. Lagaly; Clays in industry, in Handbook of clay science [M], Elsevier Sci.,2006, pp.499-622.
    [29]R.R. Tiwari, K.C. Khilar, U. Natarajan; Synthesis and characterization of novel organo-montmorillonites [J], Appl. Clay Sci.,2008,38 (3-4):203-208.
    [30]B.P. Binks, J.A. Rodrigues; Double inversion of emulsions by using nanoparticles and a di-chain surfactant [J],Angew. Chem.,2007,119 (28):5485-5488.
    [31]Z.-G. Cui, K.-Z. Shi, Y.-Z. Cui, B.P. Binks; Double phase inversion of emulsions stabilized by a mixture of CaCO3 nanoparticles and sodium dodecyl sulphate [J], Colloids Surfaces., A,2008,329 (1):67-74.
    [32]Z.-G. Cui, C.-F. Cui, Y. Zhu, B.P. Binks; Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of fatty acids [J], Langmuir,2011,28 (1):314-320.
    [33]J. Tan, M. Zhang, J. Wang, J. Xu, D. Sun; Temperature induced formation of particle coated non-spherical droplets [J], J. Colloid Interface Sci.,2011,359 (1): 171-178.
    [34]A.B. Pawar, M. Caggioni, R. Ergun, R.W. Hartel, P.T. Spicer; Arrested coalescence in Pickering emulsions [J], Soft Matter,2011,7 (17):7710-7716.
    [35]B.P. Binks, S.O. Lumsdon; Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity [J], Phys. Chem. Chem. Phys.,2000,2 (13):2959-2967.
    [36]B.P. Binks, J.H. Clint, C.P. Whitby; Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles [J], Langmuir,2005,21 (12): 5307-5316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700