陶瓷化复合木材复合方法与性能的基础性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷化复合木材是以木材为基体,无机非金属物质为增强体,通过适当的
    复合工艺而得到的一种新型复合材料。以复合材料理论和技术方法来研究陶瓷
    化复合木材,赋予木材和陶瓷这两种传统材料以新的内涵,具有明确的科学目
    的和意义,即:改进和提高人工林木材物理力学性能、耐腐性、阻燃性和尺寸
    稳定性:借鉴材料研究理论和技术,利用边缘学科、交叉学科研究的优势来开
    展创新研究,为开发新的木质材料制造技术提供科学依据和理论基础。
    本文以我国丰富的人工林I-69杨树(Populus deltoides)木材为原料,采
    用溶胶-凝胶的方法来制备陶瓷化复合木材。为了获得性能优良的材料,满足
    在家具用材、室内装饰用材和室外建筑用材等应用方面的要求,在制备方法上
    采用先制备溶胶,然后浸注木材的工艺技术,利用真空加压设备强化溶胶向木
    材的渗透和扩散,保证溶胶最大限度地进入木材内部,其目的是一方面在木材
    孔隙内形成凝胶,起到填充作用,另一方面为凝胶与木材细胞壁发生键合作用
    提供条件。
    研究结果表明:
    1. 凝胶对木材孔隙的填充是有效的。凝胶主要填充在导管和木纤维的细胞
    腔内,沿着细胞壁分布,凝胶紧密而充实,呈棒状、片装:在木材导管胞间层
    孔隙内凝胶呈串珠状,而细胞壁纹孔内的凝胶呈颗粒状。与利用细胞壁吸附水
    水解获得溶胶的研究方法相比,陶瓷化复合木材的平均增重率由36. 1%提高到
    81. 3%。
    2. 红外光谱研究表明,陶瓷化复合木材960cm-1处新增加了一个吸收峰,
    它是凝胶与木材细胞壁发生缩合反应形成了Si-O-C键引起的。比较X光电
    
    
    北京工业大学工学博士学位论文
    子能谱(xPs),陶瓷化复合木材与凝胶的siZp的谱峰产生了化学位移,说明
    其化学环境发生了变化,从另一个方面证实了Si一0一C的存在。
     3.溶胶进入木材后,所发生的核心反应是缩合反应,它一方面是自身的缩
    合反应,另一方面是溶胶与木材细胞壁上的轻基发生缩合反应,其结果是5102
    凝胶部分与纤维素发生键合,部分以物理填充方式存在于木材空隙内,从而实
    现将无机510:复合到木材组织内的目的,使材料性能得到优化或改善。与未处
    理杨树木材相比,陶瓷化复合木材顺纹抗压强度和径向抗压强度分别提高了
    60.4%和102.3%;弦向干缩率为未处理材的46.1%。
     4.通过甲基三乙氧基硅烷(MTES)与正硅酸乙醋(TEOS)共水解,在凝
    胶网络中引入一CH3,利用这种改性溶胶来制备陶瓷化复合木材,可以进一步改
    善材料的性能。一CH3可以降低凝胶网络内应力,改善凝胶的脆性,同时疏水
    基团一CH3还可以降低凝胶的吸水性,因而材料的尺寸稳定性、耐风化和耐腐
    朽性能都得到提高。试验表明陶瓷化复合木材在沸水煮沸1.5h,重量损失6.2%;
    在水中浸泡2h,吸水增重5.4%;在室温饱和蒸汽里处理12h,其吸湿性为无机
    质复合木材的40%,相当于对照木材的50%;增重率为80.5%的陶瓷化复合木
    材,其径向、弦向和体积干缩系数分别相当于对照杨木的50.4%、46.1%和49.6%。
    在室外风化27Od的陶瓷化复合木材重量损失率是3.4%,为对照杨木的49.3%,
    而顺纹抗压强度下降了20%;在土壤中自然腐朽27Od,重量减少8、9%,径向抗
    压强度下降了19.7%。陶瓷化复合木材有效减缓了木材热分解的温度,在750
    ℃时重量保存率为76%,提高了陶瓷化复合木材的阻燃性能。
     上述表明,本文在科学理论方面,提出了陶瓷化复合木材的复合结构模型,
    即凝胶既填充木材孔隙而且还与细胞壁发生键合作用。在工艺方法上,采用先
    制备溶胶,然后浸注木材的工艺方法具有原料利用率高、提高增重率的优点;
    采用甲基三乙氧基硅烷和正硅酸乙醋共水解的方法,将甲基引入陶瓷化复合木
    
    摘要
    材的凝胶内部,所制备的材料具有尺寸稳定性好、具有耐风化和耐腐朽性,强
    度高的特点;首次利用X射线光电子能谱,发现了SiZp、015和Cls谱峰发生
    了明显的化学位移,证实了Si一0一C键合作用的存在。
Ceramic-wood composite is a kind of new composite materials, which is produced by an appropriate composite method with wood as matrix and inorganic ceramic as reinforcement. The study of Ceramic-wood composite based on composite material's theory and technology endowed the wood and ceramic of those two traditional materials with new meaning and had specifically scientific and significant meaning as follows: Many properties of plantation wood were improved, such as mechanics, decay resistance, fire-resistance and dimensional stability. This creative research carried out by making use of theory and technology in materials research field and the superiorities of marginal and inter-cross disciplines provided the theoretical and scientific bases for the development new wood-based composite.
    In this paper, ceramic-wood composite was produced by the method of sol-gel with 1-69 poplar (Populus deltoides), which was abundant in our country, as the raw materials. In order to obtain materials of high performance to meet the need of furniture material, inner decorating material and outer building material, we took the method of preparing the Sol at first and then impregnating the wood. The sol was impregnated and diffused into the wood by force through a vacancy-press equipment, which insured the sol impregnate into the inner of the wood at its maximum, thus the sol can form gel in the holes of the wood reacting as the purpose of filling on the one hand, on the other hand, it provided the conditions for the happen of bonding effect between the gel and the cell wall of wood.
    The study showed:
    1.The gel was effective in filling the spaces of the wood, it mainly filled in the woody fibers and vessels of the cellular clearances and distributed along the cell wall. The gel grains were homogenously distributed and took the shape of stick and slice. The gel grains in the holes of wood's vessel cell looked like a string of beads, while the gel in pit of the cell wall took the form of grains. The average weight percent gain of the wood increased to 81.3% compared to the former studyof 36.1%.
    
    
    
    2.X-ray Photoelectron Spectroscopy (XPS) showed that a new absorbing apex came forth in the position of 960cm-1 owing to the form of Si-O-C as the result of condensation reactions between gel and cell wall.
    3.When sol entered into the wood, the core reaction was condensation, including the condensation reactions between sol itself and condensation reactions between the sol and the hydroxyls on the cell wall of the wood, which leaded to one part of SiO2 gel bonded with fibrin and another part of SiO2 Gel consisted in holes of wood in the physical filling way, it realized the goal of composite the inorganic SiO2 to the inner tissue of wood, thus the performances of the materials were optimized or improved. Compared to the untreated the Populous, the radial compress and longitudinal compress of ceramic-wood composite improved 60.4% and 102.3% respectively; the tangential shrink ratio of the ceramic-wood composite was 46.1% of the untreated wood.
    4.The performances of ceramic-wood composite were improved more when the methyl was imported to the net of gel by making use of co-hydroxylation between MTES (methyl triethoxy silane) and TEOS (tetraethyl orthosilicate). The performances of Ceramic-wood composite such as decay resistance, dimensional stability and effloresce resistance were improved owing to the introduction of the cymene, which reducing the inner stress of gel net, meliorating the brittleness and reducing the absorbility of gel. The study showed that when the ceramic-wood composite was soaked in the boiling water for 1.5 hours, the weight loss was 6.2%; the weight gain was 5.4% when it was marinated in the water for 2 hours; The hygroscopes of the ceramic-wood composite were only 40% and 50% of wood-inorganic composites and untreated the Populous respectively when it was treated under the saturated steam at normal temperature. As to the ceramic-wood composite of 80.5% WPG (weight percent gain), its radial, tangential and volume shrink c
引文
1. 左铁镛.材料产业可持续发展与环境保护.兰州大学学报(自然科学版)环境 材料专辑.1996(32) :1-8
    2. 山本良一著.环境材料.王天民译.北京:化学工业出版社.1997. 8:121-123
    3. 王恺,丁美蓉,潘海丽.21 世纪我国木材工业展望.林产工 业.2000,27(3) :3-6
    4. 吕健雄,紧紧围绕国家目标,加强开展人工林木材的研究,人造板通讯,2002 (10) :3-5
    5. 孙启祥,从生命周期角度评估木材的环境友好性,安徽农业大学学报,2001, 28(2) :170-175
    6. 傅峰.人工林杨木材性对单板层积材强度的贡献率.中国林业科学研究院博 士后研究工作报告.1997:1-2
    7. 王恺,傅峰.当代木材加工技术发展态势.木材工业.1997,11(5) :12-15
    8. 王新友.环境材料与绿色建材.建筑材料学报.1998,1(1) :88-93
    9. Toshihiro Okabe, Koji Saito. Development of Woodceramics. R.Yamamoto, Advanced Materials' 93, V/A: Ecomaterials. Elsevier Science B. V. (ISBN:0444 819959) , Printed in the Netherlands, 681-684
    10. Nobukazu Kondo, Toshikazu Suda, Toshihiro Okabe. Woodceramics Thin Films. R. Yamamoto, The Third International Conference on Ecomaterials, Tsukuba, Japan, Printed and Distributed by Ecomaterials Forum, The Society of Non-traditional Technology, 1997. 218-223
    11. Kakishita Kazuhiko, Toshikazu Suda. Woodceramics as Humidity Sensor. R.Yamamoto, The Fourth International Conference on Ecomaterials,
    
    Gifu,Japan,Printed and Distributed by Ecomaterials Forum,The Society of Non-traditional Technology,1999. 297-300
    12. Shin Itakura,Toshihiro Okabe,Kouji Saito.Properties of PhenoliC Resin Treated Wood Manufactured by Ultrasonic Wave Resin Impregnation Method.R.Yamamoto,The Third International Conference on EcomateralS, Japan,Tsukuba,Printed and Distributed by EcomaterialS Forum,The Society of Non-traditional Technology,1997. 178-181
    13. 马荣,乔冠军,金志浩.木材陶瓷.兵器材料科学与工程.1998,21(6) : 45-48
    14. 谢贤清,张荻,蔡建国等.结构功能一体化材料-木质陶瓷的发展及其应 用.功能材料.2001,32(2) :121-123
    15. Heino Sieber,Christiane Hoffmann,Annette Kaindl,Peter Greil. Biomorphic Cellular Ceramics. Advanced Engineering Materials. 2000,2(3) :105-109
    16. 谢绍安,晓晨.生物拟态可将木材转化为陶瓷.激光与光电子学进展.1998 (3) :40
    17. 顾钢.德国用木材制造碳化硅陶瓷.科技日报.1997-5-23(3)
    18. 马荣,乔冠军,金志浩.木材陶瓷的制备与性能研究.西安交通大学学报, 1998,32(8) :57-61.
    19. 陆文达.木材改性工艺学.东北林业大学出版社.1993:8-9
    20. 刘树勇,编著.国民科普大课堂.广西人民出版社.2000:64
    21. Li Jianzhang,Takeshi Furuno,Sadanobu Katoh.Preparation and Properties of Acetylated and propionylated Wood-Silicate Composites.Holzforschung.2001,55:93-96
    
    
    22. Hisashi Miyafuji,Shiro Saka,Akira Yamamoto.SiO2-P2O5-B2O3 Wood-InorganiC Composites Prepareed by Metal alkoxide Oligomers and their Fire-resisting Properties.Holzforchung.1998,52:410-416
    23. Fumie Tanno,Shiro Saka,Akira Yamamoto,et al.Antimicrobial TMSAH-Added wood-inorganiC composites Prepared by the Sol-Gel Process.Holzforchung.1998,52:365-370
    24. 王西成,田杰.陶瓷化木材的复合机理.材料研究学报,1996,10(4) : 435-440
    25. 王西成,程之强,莫小洪,等.木材/二氧化硅原位复合材料的界面研究.材料 工程,1998,5:16-18
    26. 王西成,史淑兰,程之强等.(Si-,Al-)陶瓷化木材的化学方法,材料研究 学报,2000(1) :51-55
    27. 廖秋霞,卢灿辉,许晨.原位溶胶-胶制备木材-PMMA-Si02复合材 料及其显微结构.福建化工.2001,1:21-23
    28. 李坚,吴玉章.无机质复合木材与复合人造板,中国木材,2001(3) :52-54
    29. Hamilton Hicks.Sodium silicate composition.US Patent 4612050, 1986-09-16
    30. Phil MccaffertY.Instant petrified wood.Popular SCience.1992(10) : 56-57
    31. 邱玉玲,董岩,姜日顺.稀土改性杨木材质初探.东北林业大学学报 1993,21(1) :85-88
    32. 安立超 纽红.陶瓷木材的制备方法.申请号:93115148. 1,公布日:1993. 06. 28
    33. 周卫平,樊芷芸,庄萍.陶瓷复合木材的处理过程研究(陶瓷复合木材研究之
    
    二).硅酸盐通报1997年增刊:11-13
    34. 周平,张志毅,粱树平.毛白杨无机复合木材研究.北京林业大学学报. 2000. 22(6) :39-42
    35. H.Yamaguchi.Low Molecular Weight Silicic Acid-inorganic Compound Complex as Wood Preservative.Wood Science and Technology.2002. 36:399-417
    36. Shinichi Kirita,Kunio Tsunoda,Munezoh Takahashi.Influence of Boric Acid Addition on the Biological ResiStance of Wood-inorganic Material composites by Double Diffusion Treatment.Wood Research.1994. 81:25-27
    37. Adya Singh,Bernard Dawson,Robert Franich,et al.The Relationship Between Pit Membrane Ultrastructure and Chemical Impregnability of Wood.Holzforschung.1999,(53) :341-346
    38. 范振德,陈载永.杉木粒片形质对木陶瓷复合吸音性之影响.林产工业(台 湾),1999,18(2) :167-76.
    39. 张剑峰,郑强,高长有,益小苏.溶胶-凝胶法制备高分子/无机复合材料. 功能材料.2000,31(4) :357-360
    40. 杨勇,朱子康,漆宗能.有机-无机纳米复合材料的研究进展.上海交通 大学学报.1998,32(9) :130-133
    41. Richard J.Brook.Processing of CeramiCS Part Ⅱ.Federal Republic of Germany.1996:9-12,47-49
    42. 徐建梅,张德.溶胶-凝胶法的技术进展与应用现状.地质科技情报.1999, 4:103-106
    43. 王喜贵,赵慧,张强,等.正硅酸乙酯水解过程的研究进展.内蒙古石油化
    
     工.2001,27:17-19
    44. G.M. Bond, R. H. Richman, W. P. Mcnaughton. Mimicry of Natural Material Designs and Processes.Journal of Materials Engineering and Performance.1995,4(3) :334-345
    45. 鲍甫成,江泽慧.中国主要人工林树种木材性质. 中国林业出版 社.1997:68-73,224-227
    46. 侯祝强、庄作峰.木材流体渗透性研究的发展与趋势.世界林业研 究,1999,12(1) :33-37.
    47. 李坚.新型木材.东北林业大学出版社.1993:12-127
    48. 李坚,木材保护学,东北林业大学出版社,哈尔滨,1999,9:218-219
    49. 于世林,李寅蔚,夏心泉.波谱分析.重庆大学出版社.1994:34-41
    50. Briggs,D.著.曹立礼,邓宗武,译.聚合物表面分析--X射线光电子谱 (XPS)和静态次级离子质谱(SSIMS).化学工业出版社.2000:50-74
    51. 丁星兆,何怡贞,董远达.溶胶-凝胶工艺在材料科学中的应用.材料科学与 工程.1994,12(2) :1-8
    52. 曹秀华,梁忠友.溶胶-凝胶法制备有机-无机复合功能玻璃研究进展.玻璃 与搪瓷.2000,28(5) :51-54
    53. 陈运法,金联明,张国昌,等.溶胶-凝胶法制备无机-有机杂化材料--无 机-有机杂化材料的分类及制备方法.功能材料.1999,30(5) :449-451.
    54. 张明华,张美琴,尹子康.译.溶胶-凝胶法制备木材-无机质复合材料(之 一)--具有多孔结构的无机质复合木材.吉林建材.1999,4:38-43
    55. 张明华,张美琴,尹子康.译.溶胶-凝胶法制备木材-无机质复合材料(之二)--超声波处理对制备木材-无机质复合材料的影响.吉林建材.2000,1:42-48
    
    
    56. 王丽秋,刘丽萍,朱彩云.溶胶粘度的影响因素与SiO2凝胶产品的合成.齐齐 哈尔师范学院学报.1997,17(4) :40-43
    57. 林健.催化剂对正硅酸乙酯水解聚合机理的影响.无机材料学 报.1997,12(3) :363-369
    58. 赵瑞玉,董鹏,梁文杰.单分散二氧化硅体系制备中正硅酸乙酯水解成核及颗 粒生长的关系.石油大学学报.1995,19(5) :89-92
    59. 陈胜利,董鹏,杨光华,等.单分散二氧化硅形成过程中TEM观察和形成机理. 无机材料学报.1998,13(3) :368-373
    60. 赵有科、鲍甫成.针叶树木材流体纵向渗透性与其构造关系的理论分析.林 业科学,1998,(34) 18:88-95.
    61. 张勤丽,张齐生,张彬渊.木材应用基础.上海科学技术出版社.1986:407-427
    62. 杜作栋.有机硅化学.高等教育出版社.1990:58-61
    63. 李光亮.有机硅高分子化学.科学出版社.1998:72-75
    64. G.Scrfield,E.R.Segint.Petrifaaction of wood by Silica mineralS. Sedimentary geology,1984,39:149-167.
    65. Adya Singh,Bernard dawson,Robert Franich,Faye Cowan and Jeremy Warnes.The Relationship Between pit Membrane Ultrastructure and Chemical Impregnability of Wood.Holzforschung.1999,53(4) :341-346
    66. Annica Bergilund,Harald Brelid,Anders Rindby and Engstrom.Spatial Distribution of Metal Ions in Spruce Wood by Synchrotron Radiation Microbeam X-Ray Flourescence Analysis.Holzforschung 1999,53(5) :474-480.
    67. F.c.Jorge,T.M.santos,J.pedrosa de Jesus and W.b.banks.Fioxation of Chromium in Wood from Trivalent Chromium Salt Solutions.
    
    Holzforschung.1999,53(5) :465-473.
    68. 吴谨光.近代傅立叶变换红外光谱技术及应用.北京.科学技术文献出版 社.1994,12:633-635
    69. 张叔良,易大年,吴天明.红外光谱分析与新技术.北京.中国医药科技出版局 社.1993:149-150
    70. 荆煦英,陈式隶,么恩云.红外光谱实用指南.天津.天津科学技术出版 社.1992:351-356
    71. 刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京.科学出版 社.1988:43-51
    72. Eero Sjostrom.wood chemistry fundamentalS and applications.AcademiC Press.INC.1981:14
    73. 张明华,赵文静.浅谈木材陶瓷材料的复合机理.吉林建材.2000,3:6-7
    74. Hisashi Miyafuji.Shiro Saka.Topochemistry of SiO2 wood-inorganic composites for enhancing watr-repellency.MaterialS Science forum.1999,5(4) :270-275
    75. 张明华,李敬博,尹子康.通过溶胶-凝胶法制备木材-无机质复合材料(之 三)--化学改性木材-无机质复合材料.吉林建材.2000,2:39-44
    76. 张明华,张美琴,尹子康.溶胶-凝胶法制备木材-无机质复合材料(之四)--木材和无机物质之间的化学键对提高性能的影响.吉林建 材.2000,3:38-43
    77. Agnes R.Denes,Mandla A.Tshabalala,Roger Rowell,et al. HexamethyldiSiloxane-Plasma Coating of Wood Surfaces for Creating water Repellent Characteristics.Holzforchung.1999,53:318-326
    78. Agnes R.Denes,Raymond A.Young.Reduction of Weathering Degradation
    
     of Wood Through Plasma-polymer Coating.Holzforchung.1999,53:632-640
    79. Eugene R.Du Fresne and Donald L.Campbell.Method for Fireproofing Wood and the Treated Wood.United Statas Patent Feb.28,1967. 3306765.
    80. 张刚生,童银洪.软体动物贝壳中的有机质研究进展.湛江海洋大学学 报,2000,20(1) :74-78.
    81. 唐敏、石安静.贝类钙代谢研究概况.水产学报,2000,24(1) :86-90.
    82. 杨洪,丁永涛,邬旭然,等.甲壳胺与SiO2杂化材料膜制备的研究.烟台大学 学报(自然科学与工程版),1999,12(1) :46-49.
    83. 杨洪,邬旭然,孔景临.壳聚糖/SiO2杂化材料膜制备的研究.功能高分子学 报.2000,13(3) :329-331
    84. 崔福斋,冯庆玲.生物材料学.科学出版社.1996:82-84
    85. 王华林,余锡宾,王长友.溶胶-凝胶法制备TiO2-SiO2玻璃的研究.玻 璃.1999,26(2) :1-4.
    86. 王华林,史铁钧,李学良.PDMS/SiO2杂化材料研究进展.高分子材料科学与 工程.2000,16(5) :5-8.
    87. 王华林,余锡宾,訾振军.PMMA/SiO2有机-无机杂化玻璃的研究.高分子材料 科学与工程.2000,16(4) :114-116
    88. 王华林,史铁军,李学良,等.PMTES/Fe2O3有机-无机杂化材料的研究.高分 子材料科学与工程.2000,16(6) :160-162.
    89. 王华林程继贵史铁均等非晶态 杂化材料的研究合肥工业大学学报200023 (4) :497-499
    90. 洪伟良,刘剑洪,田得余,等.有机无机复合材料的制备方法.化学研究与应用 2000. 12(2) :132-136
    91. 朱曾惠,编译.纳米技术在复合材料中的应用.化工新型学
    
    
    92. 章永化,龚克成. 法制备有机/无机纳米复合材料的进展高分子材料科学与 工程1997,13(4) :14-18
    93. 向卫东C60掺杂的SiO2-PDMS有机无机复合材料的光学性质.材料研究学报
    94. 解廷秀,周重光,冯圣玉.溶胶-凝胶法制备杂化材料及其性能研究.应用基 础与工程科学学报.1999,7(2) :158-162
    95. 邬润德,童筱莉,周安安,等.硅氧烷与丙烯酸树脂的原位和接枝聚合研究.浙 江工业大学学报.1999,27(3) :177-18.
    96. 王金平,俞志欣,何捷.用Sol-Gel法在PC上制备有机-无机复合耐磨涂层. 功能材料.1999,30(3) :323-325.
    97. 丁子上,翁文剑,杨娟.化学络合法在溶胶-凝胶过程中的应用.硅酸盐学
    98. 唐辉、徐兴伟,木塑复合材的生产及应用 中国塑料,1999,7 Vol 13
    99. 唐建国,胡克鳖.天然植物纤维的改性与树脂基复合材料.高分子通
    100. 朱玮,郭风平.塑合木研究的新动态.西北林学院学
    101. 曹冰,董文庭,朱从善.有机改性SiO2无支撑膜的溶胶凝胶法制备.光学 学报.1999,19(4) :574-576
    102. 吴盛全.甲基三氯硅烷的综合利用.有机硅材料.2000,14(1) :23-25.
    103. 肖燕平,聂昌颉.有机硅防水剂的制备剂应用.有机硅材料及应用.1999,4:23-24
    
    
    104. 郭广生、韩冬梅、王志华、石志敏、李化元、姜进展.有机硅加固材料 的合成及应用.北京化工大学学报,2000,Vol.27No.1:98-100.
    105. 杨雨,钱国栋,王民权.MTES-TEOS先驱液水解-缩聚机理及其凝胶玻璃 性能研究.材料科学与工程.2000,18(3) :52-56
    106. 王毓秀,邓介凡.胶粘剂生产工艺,中国林业出版社,1999:21
    107. 贺海燕.无机材料的表面羟基与性能.硅酸盐通报1997,增刊:85-88.
    108. L.M.Matuana,J.J.Balatinecz,R.N.Sodhi,etal.Surface characterization of esterifled cellulosic fibers by XPS and FTIR Spectroscopy.Wood SCience and technology.2001,35:191-201
    109. 肖纪美.材料学的方法论.冶金工业出版社.1994,12:360-363
    110. 滨谷徹,河野敏明,青野力三,等.磁化木材性能研究-酵素反应利用磁化木材制造法.木材保存.1996,22(6) :287-283

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700