射频磁控溅射法制备FC/ZnO有机—无机杂化材料及其结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂化材料处于多学科的交叉点,是近年来国内外研究的前沿和热点。由于其整合了有机和无机材料的优势特点,可在更广泛的范围内调控材料的性能,达到多功能的目的。杂化材料已成为继单组分材料、复合材料和梯度材料之后的第四代材料。
     杂化材料最初是通过溶胶.凝胶法制备的,经过几十年的发展,新的制备方法不断出现和完善。目前主要可以分为六类:溶胶.凝胶法、共混法、插层法、自组装法、电解聚合法和原位聚合法等,采用镀膜技术中常用的磁控溅射的方法来制备有机-无机杂化材料还未见报道。该法具有制备步骤简单、速度快、无须水和任何溶剂,环保无污染,制得的杂化材料纯度高等优点。我们还可以通过控制条件将粒子的产生和分散两个过程一并进行,避免了以往困扰制备纳米材料的粒子易聚结成大颗粒的问题。前期的研究中发现,该法制备的氟碳膜有泛黄现象,说明分子中含有一定量的共轭双键,共轭双键中的电子跃迁-吸收可产生明显的紫外吸收作用,再加上纳米氧化锌所具有的强紫外屏蔽作用,由这两种物质结合而成的杂化材料会产生较强的紫外吸收作用。氟碳膜具有优异的疏水性,和ZnO膜形成杂化材料以后,疏水性能是否发生变化也是本文研究的内容。这些研究为以后制备出既具有较强抗紫外性能又具有良好疏水性的新型功能材料提供了一种新方法。
     本文采用射频磁控溅射的方法,首先以聚四氟乙烯(PTFE)为靶材,以Ar为载气,在聚对苯二甲酸乙二醇酯(PET)基底上沉积氟碳高分子有机膜;然后再以金属Zn为靶材,以氩气为载气,以氧气为反应气体,且体积比O_2:Ar:3:1,利用二次反应溅射,Zn与O_2反应生成ZnO无机小分子膜沉积在氟碳高分子膜上,从而得到FC/ZnO的有机-无机杂化材料。利用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X-射线光电子能谱(XPS)、傅立叶变换红外光谱仪(FT-IR)、紫外分光光度计以及接触角测定仪对所制备的氟碳膜以及FC/ZnO杂化膜进行了测试和表征,找出其形貌、结构以及性能随溅射条件的不同而变化的规律。
     利用SEM和AFM观察了氟碳膜、FC/ZnO杂化膜的表面形貌和生长情况,初步探讨了FC/ZnO杂化膜的成膜机理以及表面形貌与溅射工艺条件的关系。结果表明:由双高分子体系(基底-溅射靶)制备得到的氟碳膜是一种基本由纳米粒子/纳米孔隙组成的双纳米结构高分子沉积膜。随着溅射压力和放电功率的增加,沉积在PET基底上的氟碳粒子逐渐变小、变密,形状从不规则变成较为规则的近圆形,粒子间的孔隙逐渐变小,覆盖度增加。在氟碳膜上再沉积一层ZnO膜而形成FC/ZnO杂化材料后,其形貌发生了一些变化:如果ZnO的沉积时间短(2min以内),ZnO粒子的沉积量少,杂化膜可以继续延续原氟碳膜的表面形貌,只是ZnO粒子的直径较大,所形成的花纹线条较粗,但仍能保持在100nm左右;当ZnO的沉积时间在5min以上时,由于ZnO的沉积量较多,完全覆盖了原氟碳膜的形貌。杂化膜的生长模式较为特殊,是一种依附于有机核的沉积-扩散生长模式。在FC/ZnO杂化膜的生长过程中,ZnO粒子优先沉积到氟碳膜高耸的部位,先以顶部的氟碳大分子为核生长,然后再向四周扩散,沉积到氟碳膜的其它部位。AFM的测试结果表明:沉积膜是一种垂直于基底表面的圆锥形岛状结构,每个岛又由许多纳米粒子组成,是一种较为复杂的团簇状二次结构。随着ZnO沉积时间的增加,岛的高度增加,岛的表面先变的比较尖耸,而后逐渐变得平整了,在这20分钟时间内,杂化膜的生长速率基本上是恒定的,大约为5nm/min。
     用X-射线光电子能谱(XPS)研究了氟碳膜以及FC/ZnO杂化膜表面结构随功率和压力的变化规律,发现该法制备的沉积膜F/C较低,严重偏离靶材PTFE的化学计量比,说明膜中氟不足而产生不饱和双键和支化结构,在空气中不饱和双键容易被氧化而使氟碳膜表面泛黄。所以氟碳膜可能对紫外光产生一定的吸收作用。对于氟碳高分子有机膜,随着压力的增加,F/C增加,功率增加,F/C减小。氟碳膜表面溅射沉积氧化锌粒子形成较薄覆盖层杂化膜后,由于两层膜的原子和基团间的相互作用,其表面结构发生很大变化。功率和压力对杂化膜F/C的影响与氟碳高分子膜正好相反:随着溅射功率的增加,杂化膜的F/C逐渐增大,而工作压力增加,杂化膜的F/C呈减小的趋势。随着ZnO沉积时间的增加,杂化膜的F/C呈现逐渐增加的趋势。该法制备的杂化膜中ZnO的组成良好。尝试用刮削法得到PET基底上的沉积膜粉末,用KBr压片法得到沉积膜的红外谱图,验证了部分XPS的分析结果。
     紫外分光光度计的测试结果表明:氟碳膜的吸收峰只有一个,最大吸收在310-320nm之间,紫外最大吸光度随着溅射功率和溅射压力的增加呈现逐渐增大的趋势。这主要是由于功率和压力的增大使得沉积的氟碳粒子变小、变圆、数量增多,这些粒子对紫外光的散射作用增强所致。形成杂化材料以后,在与沉积氟碳膜相同的功率和压力下杂化膜的紫外吸收有了很大提高,且吸收带的尾部拖入了可见光区(>400nm),在可见光区也有一定的吸收。这是由于ZnO纳米粒子吸收为主,ZnO及氟碳高分子纳米粒子及纳米孔洞散射反射为辅,以及相互影响的结果。当ZnO沉积时间短(2min以内),FC/ZnO杂化膜的紫外最大吸光度与氟碳膜紫外吸收相比变化不大;若增加ZnO的沉积时间到5min以上时,杂化膜的紫外最大吸光度出现较大幅度的提高。随着ZnO沉积时间的延长,杂化膜的紫外最大吸光度逐渐增大。FC/ZnO杂化膜是一种具有多重紫外线吸收-散射的功能膜,其紫外吸收性能明显优于氟碳膜也优于纯ZnO膜。
     静态接触角的测试表明:沉积膜的接触角都大于90°,是一种疏水性能较好的膜。对于氟碳膜,随着功率的增加,接触角逐渐减小,表面张力增大;而压力增加,接触角逐渐增大,表面张力减小;形成FC/ZnO杂化膜以后,功率、压力对其接触角和表面张力的影响正好与氟碳膜相反。由AFM的观察发现:磁控溅射法所制备的氟碳膜洗涤60分钟后膜厚度下降了50nm,而FC/ZnO杂化膜由于沉积了耐磨性较好的ZnO无机膜,洗涤后厚度基本上没有变化。不同功率、压力下的样品经洗涤后接触角均有不同程度的下降,XPS的分析从微观角度分子层面上解释了沉积膜接触角下降的原因主要是由于洗涤后沉积膜中氟含量的下降所致;另外,膜厚的减小、膜表面变得平滑以及洗涤剂的作用也可以使沉积膜的接触角下降。
The study on the hybrid materials is the crossing of multi-subjects,which is also the forefront and hotspot studied all over the world.The hybrid materials are synthesizing advantages of organic and inorganic materials.It has the multi-function effect and it has become the fourth generation materials following the single component materials, composite materials and grads materials.
     The first prepared method of the hybrid materials was sol-gel method.The new methods have appeared continuously in the decades,which are mainly 6 kinds at present,including sol-gel process,blending,intercalation,self-assemble,electrolysis polymerization and in-situ polymerization method and so on.The method of RF magnetron sputtering has never been noticed.The advantages of RF sputtering process are simplicity,time saving, environment friendly and high purity of the hybrid materials.The sputtering process can be proceeding with production and separation of particles at the same time,so,avoid nanometer particles congregated together.The prepared fluorocarbon films were yellowish, indicating that there are large numbers of C=C conjugate double bonds on the surface.The transition-absorption of electron produced certain absorption property on UV-visible light, and,it is well-known that ZnO is a wide band gap semiconductor,which has been exhibited the excellent absorption property on UV-visible light,so,co-deposition of mixed FC/ZnO maybe show more intensive UV absorption properties.Fluorocarbon films exhibited the good hydrophobicity,while,after becoming hybrid materials with ZnO,is it changed or not? These studies can provide us a new method to prepare new-style mluti-function materials.
     In this paper,hybrid fluorocarbon/ZnO materials were prepared by RF magnetron sputtering.At first,the polytetrafluoroethylene(PTFE) is used as the targets.Argon was used as working gas.Fluorocarbon macromolecular organic films were deposited onto polyethylene terephalate(PET) substrates.And then,the Zinc is used as targets,argon and oxygen were used as the working and reacting gas respectively,with oxygen:argon volume ratio 3:1.Zinc reacted to oxygen and the inorganic micro molecular films of zinc oxide got through reaction were deposited on the fluorocarbon films.The fluorocarbon/ZnO hybrid materials were obtained.The obtained films were characterized by means of SEM,AFM,XPS,FT-IR,UV-visible spectrophotometer and static contact angle apparatus,so as to find the regular that morphology,structure and properties vary as the sputtering conditions.
     The surface morphology and growth mode of fluorocarbon films and fluorocarbon/ZnO were observed by SEM and AFM.The growing mechanism of FC/ZnO,the relationship of surface morphology and sputtering conditions were discussed.It was found that the fluorocarbon films prepared by double macromolecular system(target-substrate) were the deposited ones with double nano-structure of nano-particles and nano-holes.Fluorocarbon grains deposited on the PET substrates tended to be finer,more uniformly dispersed,more globular and more densely with increasing the power and pressure.After the hybrid materials formed,the surface morphology changed a little:at early stage(within 2 minutes), surface morphology of the composite films kept primary regular structure of fluorocarbon films because the deposited ZnO particles were very few.Diameter of ZnO particles was bigger than that of fluorocarbon particles'.So the lines of weave-like network structure were thicker but can be about one hundred nanometer.With the deposited time of ZnO increased,5 minutes later,primary surface morphology of fluorocarbon films were covered with ZnO particles completely.The growth mode of hybrid films is especial,which is a mode of deposited-expansion adhering to organic core.That is,when the composite films formed,ZnO particles deposited on fluorocarbon films had the feature of selectivity:first deposited on the top,then expanded all around and grew on the nucleus of the fluorocarbon macromolecular.AFM shows that the surface of the films is undulate.Particles grow vertically to the film surface,and then form a taper-like structure.They are complicated islands-like structure.Each island is composed of many nanometer particles.The height of islands increased gradually with the deposited time of ZnO increased.At first the top of the islands is smooth and then become cuspidal,at last become flatter.The deposit speed of
引文
[1]李学丹、万英超等编著,真空沉积技术,1994,浙江大学出版社,杭州,22-24。
    [2]郑伟涛等编著,薄膜材料与薄膜技术,2004,化学工业出版社,北京,58-62。
    [3]王玫,北京工业大学博士学位论文,2002,北京。
    [4]杨邦朝,王文生,薄膜物理与技术,1994,电子科技大学出版社,成都,44-48。
    [5]田民波,刘德令,《薄膜科学与技术手册》,1991,机械工业出版社,北京,105-110。
    [6]Musil J.Recent advances in magnetron sputtering technology.Surface and Coatings Technology,1998,100-111:280-286.
    [7]Penning F M.Glow discharge between coaxial cylinders at low pressures in an axial magnetic field,Physica(Utrecht).1936,3:873-894;U S Patent,"Coating by Cathode Disintegration",No.2146025(Feb.7,1939)
    [8]Kay E.Magnetic Field Effects on an Abnormal Truncated Glow Discharge and Their Relation to Sputtered Thin-Film Growth,Journal of Applied physics,1963,34:760-768;
    [9]Gill W D,Kay E.Efficient Low Pressure Sputtering in a Large Inverted Magnetron Suitable for Film Synthesis,Rev.Sci.Instrum.1965,36:277;
    [10]Wasa K,Hayakawa S.Low Pressure Sputtering System of the Magnetron Type,Rev.Sci.Instrum.1969,40:693-697;
    [11]Mullay J R.Res/Dev.1971,22(2):40;
    [12]Chapin J S.Res.and Develop.1974:25(1):37;
    [13]Chapin J S.U S Patent,"Sputtering Process and Apparatus",No.4166018(Aug.28,1979)
    [14]刘云峰,东南大学博士学位论文,1999,南京。
    [15]Kesaev I G,Pashkova V V.Sov.The Electromagnetic Anchoring of the Cathode Spot,Soviet Physics-Technical Physics.1959,4(3):254-264;
    [16]Vossen J L,Kern W.Thin Solid Film Processes.New York:Academic Press,1978.342-348;
    [17]John A.Thornton.High rate sputtering techniques,Thin Solid Films.1981,80(1-3): 1-11;
    [18]Nyaiesh A R.The Characteristics of a Planar Magnetron Operated at a High Power Input,Thin Solid Films.1981,86(2-3):267-277;
    [19]Thornton J A.Metallkd Z.1984,75(11):847;
    [20]Wright M,Beardow T.Design advances and applications of the rotatable cylindrical magnetron,J Vac.Sci.Technol.1986,A4:388-392;
    [21]Window B,Savvides N.Charged particle fluxes from planar magnetron sputtering sources,J Vac.Sci.Technol A.,1986,4(2):196-202;
    [22]Window B,Savvides N.Unbalance dc magnetrons as sources of high ion fluxes.J.Vac.Sci.Technol A.,1986,4(3):453-456;
    [23]Window B,Harding G L.Characterization of radio frequency unbalanced magnetrons,J Vac.Sci.Technol A.,1992,10(5):3300-3304;
    [24]Window B,Harding G L.Ion-assisting magnetron sources:principles and uses,J.Vac.Sci.Technol A.,1990,8(3):1277-1282;
    [25]Window B.Recent advances in sputter deposition.Surface and Coatings Technology,1995,71(2):93-97;
    [26]陈国平,薄膜物理与技术,1993,东南大学出版社,南京,35-39;
    [27]Schiller S,Heisig U,Goedicke K.Use of the ring gap plasmatron for high rate sputtering,Thin Solid Films.1977,40:327-334;
    [28]Laegreid N,Wehner G K.Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 e.v.,Journal of Applied Physics,1961,32:365;
    [29]Nelson R S.Phil.Mag.1965,11:291;
    [30]Maissel L I,Glang R.Handbook of Thin Film Technology,1970,McGraw-Hill.Inc.,New York.
    [31]Stuart R V,Wehner G K.Energy distribution of sputtered Cu atoms,J Appli.Phys.,1964,35(6):1819-1824;
    [32]Wehner G K,Rosenberg D,Angular Distibution of Sputtered Material,J.Appli.Physi.,1960,31(1):177-179;
    [33]Window B,Savvides N.Charged particle fluxes from planar magnetron sputtering sources,J.Vac.Sci.Technol.A,1986,4(2):196-202.
    [34]陈达,华南理工大学硕士学位论文,2004,广州。
    [35]李思殿,西安交通大学博士学位论文,2002,西安。
    [36]韩雷刚,电子科技大学硕士学位论文,2004,成都。
    [37]Sigmund P,Theory of sputtering.I.Sputtering yield of amorphous and polycrystalline targets,Phys.Rev.,1969,184:383-416;
    [38]Harrison D E J,Delaplain C B.Computer simulation of the sputtering of clusters,J.Appli.Phys.,1976,47(6):2252-2259;
    [39]Ishitani T,Shimizu R,Computer simulation of atomic mixing during ion bombardment,Appl.Phys.A,1974,6(2):241-248;
    [40]赵化侨编著,《等离子体化学与工艺》,1993,中国科技大学出版社,合肥,146-148:
    [41]温宇峰,天津大学硕士学位论文,2004,天津。
    [42]钱根苗主编,材料表面技术及其应用手册,1998,机械工业出版社,北京,700-708;
    [43]Graham M E,Sproul W D,Society of Vacuum Coaters,37~(th) Annual Technical Conference Proceedings,1994,p275-279;
    [44]Okamoto A,Serikawa T,Magnetron-sputtered silicon films for gate electrodes in MOS devices,Thin Solid Films,1986,137:143-151;
    [45]Maniv S,Westwood W D.Oxidation of an aluminum magnetron sputtering target in Ar/Oz mixtures,J.Appl.Phys.1980,51(1):718-725;
    [46]Hollands E,Campbell D S.The mechanism of reactive sputtering,J.Mater.Sci.,1968,3(5):544-552;
    [47]Shinoki F,Itoh A.Jpn.J.Appli.Phys.Suppl.2,Part Ⅰ(1974)505;
    [48]Hammarberg E,Roos A,Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance,Thin Solid Films,2003,442(1-2):222-226;
    [49]Novak B M.Hybrid Nanocomposite Materials-Between Inorganic Glasses and Organic Polymers,Adv.Mater.,1993,5(6):422;
    [50]崔福斋,冯庆玲,生物材料学,1997,科学出版社,北京,77-78;
    [51]Mann S,The phenomenology of modulated phases,J.Mater Chem.,1995,5(7): 935-946;
    [52]唐有祺主编,当代化学前沿,1997,中国致公出版社,北京,58-62;
    [53]Bayer A G.,US4102696,DOS2734690,DOS2734692;
    [54]李旭华,袁荞龙,王得宁等。杂化材料的制备、性能及应用。功能高分子学报,2000,13(2):211-218;
    [55]Hobson S T,Shea K J.Bridged bisimide polysilses quioxane xer ogels:New hybrid organic-inorganic materials,Chem.Mater.,1997,9:616-623;
    [56]Zerg W X,Qin W L,J.S.Liu,et al.Synthesis and characterization of polyimide from metal-containing(Ba,Sr,Pb,Zr) diamide,Polymer,1995,36(19):3761-3765;
    [57]Nobuyuki,Furukawa,Masatoshi Y,Yoshiharu K.Characterization of polysiloxane -b-polyimides with silicate group in the polysiloxane segments.Polymer,1999,40:1853-1862;
    [58]Lee G R,Crayston J A,Sol-gel processing of transition-metal alkoxides for electronics,Adv.Mater.,1993,5(6):434-442;
    [59]Klein L C,Sol-gel processing of silicates,Ann.Rev.Mater.Sci.,1985,15:227-248;
    [60]Hench L L,West J K,The sol-gel process,Chem.Rev.,1990,90(1):33-72;
    [61]Wang B,Wilkes G L,J.Macromol.Sci.Pure Appl.Chem,,A,1994,31(2):249-254
    [62]Dire S,Bois L,Babonneau F,et al.,Polym.Prepr.,1991,32(3):501-508;
    [63]Smith M I H,Wark TA,et al.,Polym.Prepr.,1991,32(3):510-516
    [64]Ellsworth M W,Novak B M,'Inverse' Organic-Inorganic Composite Materials.3.High Glass Content "Non-Shrinking" Sol-Gel Composites via Poly(Silicic Acid Esters),Chem.Mater.,1993,5:839-844;
    [65]Hench L L,West J K,The Sol-Gel Process,Chem.Rev.,1990,90:33-72;
    [66]Shang S W,Wiuiams J W,Preparation and properties of EVA/SiO2 hybrid material,J.Mater.Sci.,1992,27:4949-4954.
    [67]张立群,王一中。粘土/丁苯橡胶纳米复合材料的制备和性能,特种橡胶制品,1998,19(2):6-10。
    [68]Vaia R A,Giarnnelis E P,Synthesis and properties of two-uimens ional nanostructues by direct intercalation of polymer melts in layered silicates,Chem.Mater.,1993,(5): 1694-1696.
    [69]胡平,范守善。碳纳米管/UHMWPE复合材料的研究,工程塑料应用,1998,26(1):1-3。
    [70]章永化,龚克成。聚合物/层状无机物纳米复合材料的研究进展,材料导报,1998,12(2):61-65;
    [71]李强,王佛松。尼龙6/蒙脱土纳米复合材料的结晶行为,高分子学报,1997,(2):188-193;
    [72]Orialchi C O,Lerner M M,Poly(pyrrole)andpoly(thiophene)/claynanocomposites,Mater.Res.Bull.,1995,30(6):723-729;
    [73]Ansell M A,Zeppenfeld A C,Yoshimoto K.Self-Assembled Cobalt -Diisocyanobenzene Multilayer Thin Films,Chem.Mater.,1996,8(3):591-594;
    [74]Li J,Josowicz M,Synthesis and characterization of electropolymerizedpoly (cyclophosphazene-benzoquinone),Chem.Mater.,1997,9:1451-1462;
    [75]丁星兆,董远达。溶胶-凝胶工艺在材料科学中的应用,材料科学与工程,1994,12(2):1-8;
    [76]张剑峰,益小苏。溶胶-凝胶法制备高分子/无机复合材料,功能材料,2000,31(4):357-360;
    [77]Ahmad Z,Sarwar M I,Mark J E,Chemically bonded silica-polymer composites from linear and branched polyamides in a sol-gel process,J.Mater.,Chem.,1997,7(2):259-263;
    [78]Nass R,Arpac E,Glaubitt W,et al.,Modelling of Ormocer Coating by Processing,J.Non-Cryst.Solids,1990,121:370-374;
    [79]Kasemann R,Schmidt H,Coatings for mechanical and.chemical protection based on organic-inorganic sol-gel.Composites,New J.Chem.,1994,18:1117-1123;
    [80]Schubert U,Husing N,Lorenz A.Hybrid inorganicorganic materials by sol-gel processing of organofunctional metal alkoxides,Chemistry of Materials,1995,7(11):2010-2027;
    [81]官建国,袁润章,光学透明材料的现状和研究进展Ⅰ:光学透明高分子材料,武汉工业大学学报,1998,20(2):11-13,19;
    [82]叶辉,姜中宏。有机染料掺杂的凝胶基质的制备及其性能,材料研究学报,1999,13(1):68-72;
    [83]Levy D,Einhorn S,Avnir D,Applications of the sol-gel process for the preparation of photochromic information-recording materials:synthesis,properties,mechanisms,J Non-Cryst.Solids,1989,113(2-3):137-145;
    [84]Ruiz-hitzky E,Conducting Polymers Intercalated in Layered Solids,Adv.Mater.,1993,5(5):334-340;
    [85]Ahmad M I,Thermal transport in opalified silica monolithic aerogels,J Non-Cryst.Solids,1992,145(5):207-214;
    [86]Granauer M,Fricke J,Acoustic properties of microporous SiO_2-aerogel,Acustia,1986,59(1):177-181;
    [87]Reetz M T,Zontra A,Simpelkanp J,Efficient heroseneous biocatalysts by entrapment of lipases in hydrophobic materials.,Angew.Chem.Int.Ed.Engl.,1995,34(3):301-309;
    [88]Yamanaka S A,Dunn B,Valentine J S,et al.,Nicotinamide adenine dinucleotide phosphate fluorescence and absorption motoring of enzymatic activing in silicate sol-gels for chemical sensing application.,J..Am.Chem.Soc.,1995,117(4):9095-9096;
    [89]王华林,余锡宾。PMTES/SiO_2有机无机杂化材料的研究,高分子材料科学与工程,1999,15(6):92-94;
    [90]王华林,程继贵。聚烯丙醇/SiO_2有机无机杂化材料的研究,应用化学,1999,16(4):91-93;
    [91]Stumpf C K,G(?)ssler V,Reichenauer G,Dynamic gas flow measurements on aerogels,J.Non-Cryst.Solids,1992,145:180-184.
    [1]麻立男著,陈昌存等译,薄膜技术基础,1988,电子工业出版社,北京,25;
    [2]John L V,Werner K,Thin Film Processing,1978,Academic Press(USA),42;
    [3]Boeing H V.Advances in Plasma Deposition of Thin Films:Review I.Plasma Chemical Vapor Deposition of Organic Thin Films.Advances in Low-Temperature Plasma Chemical,Technology,Applications.Volume I.Edited by Herman V.Boeing.Technomic Publishing Company,Inc.1984,153-194;
    [4]吕建国,浙江大学博士学位论文,2005,杭州,15;
    [5]马勇,重庆大学博士学位论文,2004,重庆,8;
    [6]贺洪波,中国科技院上海光学精密机械研究所博士学位论文,1999,上海,10;
    [7]姜银方主编,现代表面工程技术,2006,化学工业出版社,北京,28;
    [8]左演声,陈文哲,梁伟主编,材料现代分析方法,2000,北京工业大学出版社,北京,76;
    [9]BriddsD著,桂琳琳,黄惠忠,郭国霖译,X-射线与紫外光电子能谱,1984,北京大学出版社,北京,54。
    [1]杨邦朝,王文生,薄膜物理与技术,1994,电子科技大学出版社,成都,35;
    [2]李学丹,万英超,蒋祥祺,真空沉积技术,1994,浙江大学出版社,杭州,47;
    [3]郑伟涛等编著,薄膜材料与薄膜技术,2004,化学工业出版社,北京,28;
    [4]薛增泉,吴全德,李洁编著,薄膜物理,1991,电子工业出版社,北京,73;
    [5]田民波,刘德令编译,薄膜科学与技术手册(上册),1991,机械工业出版社,北京,67;
    [6]Venables J A,Spiller G D T,Hanbucken M,Nucleation and growth of thin films.Reports on Progress in Physics,1984,47(4):399-459;
    [7]Joseph E G.Nucleation,Growth and Microstructure Evolution.Handbook of Deposition Technologies for Films and Coatings,Second Edition,Edited by Bunshah R F,Noyes Publications,1994,U.S.A;
    [8]朱永法主编,纳米材料的表征与测试技术,2006,化学工业出版社,北京,104;
    [9]Biederman H.Deposition of polymer films in low pressure reactive plasmas.Thin Solid Films,1981,86(2-3):125-136;
    [10]Inagaki S,Guan S,Ohsuna T,et al.,An ordered mesoporous organosilica hybrid material with a crystal-like wall structure,Nature,2002,416(6878):304-307.
    [1]Baddour R F,Bronfin B R.Production of Tetrafluoroethylene by Reaction of Carbon with Carbon Tetrafluoride in Electric Arc.Industrial and Engineering Chemistry Process Design Development,1965,4:162-166;
    [2]Morrison D T,Robertson T.R.F.Sputtering of Plastics.Thin Solid Films,1973,15(1):87-101;
    [3]徐寿昌主编,有机化学,1993,第二版,高等教育出版社,北京,78;
    [4]董炎明编,高分子材料实用剖析技术,1997,中国石化出版社,北京,56;
    [5]Ruan S,Wu F,Zhang T et al.,Surface state studies of TiO_2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO_2 dispersions.Materials Chemistry and Physics,2001,69(1-3):7-9;
    [6]Feldman L C,Mayer J W著,严燕来,蒋平译,表面与薄膜分析基础,1989,复旦大学出版社,上海,126;
    [7]Clark D T,Advances in esca applied to polymer characterization.Pure and Applied Chemistry,1982,54(2),415-438;
    [8]Iwao S,Shojiro M.Ultraviolet-light irradiation of a radio frequency plasma applied to fluoropolymer sputtering deposition.Journal of Applied physics,1988,64(5):2700-2705;
    [9]Iwao S,Shojiro M.Solid lubricating fluorine-containing polymer film synthesized by perfluoropolyether sputtering.Thin Solid Films,1988,158(1):51-60;
    [10]Nabot J P,Aubert A,Gillet R et al.,Cathodic sputtering for preparation of lubrication films.Surface and Coating Technology,1990,43-44,part 2:629-639;
    [11]Mar(?)chal N,Pauleau Y.Radio frequency sputtering process of a polyteterafluoroethylene target and characterization of fluorocarbon polymer films.Journal of Vacuum Science and Technology A,1992,10(3):477-483;
    [12]Yashinori Y,Ioshiji K.X-ray photoelectron spectroscopy of fluorocarbon films deposited by R.F.sputtering.Japanese Journal of Applied Physics,1993,32,5090-5094;
    [13]Ryan M E,Fonseca J L C,Tasker S et al.,Plasma polymerization of sputtered polytetrafluoroethylene.Journal of Physical Chemistry,1995,99(18):7060-7064;
    [14]Hishmeh G A,Barr T L,Sklyarov A et al.Thin Polymer Films Prepared by Radio Frequency Plasma sputtering of Polytetrafluoroethylene and Polyetherimide Targets.Journal of Vacuum Science and Technology A,1996,14(3):1330-1338;
    [15]李有宏,宫泽祥,龙振湖等,氢离子束溅射沉积PTFE高分子膜,大连理工大学学报,1996,36(3):124-1270;
    [16]Morton A,Golub,Theodore W,Allen L J.XPS Study of Plasma- and Argon Ion-Sputtered Polytetrafluoroethylene.Langmuir,1998,14(8):2217-2220;
    [17]Oelichmann J,Fresenius Z.Surface and depth-profile analysis using FT-IR spectroscopy.Analytical Chemistry,1989,333:353-359;
    [18]李万程,张源涛,杜国同等,RF磁控溅射法在Si衬底上生长ZnO薄膜界面的XPS研究,吉林大学学报,2003,41(4):493-496;
    [19]李伙全,宁兆元,程珊华等,射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移,物理学报,2004,53(3):867-890;
    [20]付延鲍,硕士毕业论文,1999,青岛大学,青岛;
    [21]王东,硕士毕业论文,2000,青岛大学,青岛;
    [22]吴刚主编,材料结构表征及应用,2002,化学工业出版社,北京,379;
    [23]Briggs D著,桂琳琳,黄惠中,郭国霖译,X-射线与紫外光电子能谱,1984,北京大学出版社,北京,211-213;
    [24]王建祺,吴文辉,冯大明编著,电子能谱学引论,1992,国防工业出版社,北京,506-512;
    [25]Holland L,Biederman H,Ojha S M,Sputtered and plasma polymerized fluorocarbon films.Thin Solid Films,1976,35(2):L19-L21;
    [26]Biederman H,Ojha S M,Holland L.The properties of fluorocarbon films prepared by rf sputtering and plasma polymerization in inert and active gas.Thin Solid Films,1977,41(3):329-339;
    [27]Biederman H.Deposition of polymer films in low pressure reactive plasmas.Thin Solid Films,1981,86(2-3):125-136;
    [28]Herman V.Boenig.Advances in Low-Temperature Plasma Chemistry,Technology,Applications.Technomic Publishing Company,Inc,1991;
    [29]Golub M A,Wydeven T,Fluoropolymer Films Deposited by RF Plasma Sputtering of Polytetrafluoroethylene Using Inert gases.Polym.Prepr.Div.Polym.Chem.,1998,39(2):930-931;
    [30]Quaranta F,Valentini A,Favia P,Lamendola R,d'Agostino R.Ion-beam sputtering deposition of flluoropolymer thin films.Applied Physics Letters,1993,63(1):10-11;
    [31]Mathias E,Miller G H,The decomposition of polytetrafluoroethylene in a glow discharge.Journal of Physics and Chemistry,1967,71(8):2671-2675;
    [32]Loh I H,Klausner M,Baddour R F,Cohen R E.Surface modifications of polymers with fluorine-containing plasmas:deposition versus replacement reactions.Polymer Engineering and Science,1987,27(11):861-868;
    [33]李剑光,叶志镇,汪雷等,用于制备GaN的硅基ZnO过渡层的高温热处理研究,半导体学报,1999,20(10):862-866;
    [34]李庚伟,吴正龙,杨锡震等,氧离子束辅助激光淀积生长ZnO/Si的XPS研究,北京师范大学学报,2001,37(2):174-179;
    [35]Dalchiele E A,Giorgi P,Maroti R E,et al.,Electrodeposition of ZnO Thin Films on n-Si(100).Sol.Energy Mater.Sol.Cells,2001,70:245-254;
    [36]马继承,硕士毕业论文,2004,东北师范大学,长春;
    [37]翁诗甫编著,傅里叶变换红外光谱仪,2005,化学工业出版社,北京,164。
    [1]左演声,陈文哲,梁伟主编,材料现代分析方法,2000,北京工业大学出版社,北京,49;
    [2]张尊听,高子伟,“四谱”提供的结构信息与特点,陕西师范大学继续教育学院报,2001,18(4):104-107;
    [3]杨丽,杨俊玲,织物抗紫外线整理,印染助剂,2006,23(8):15-17,21;
    [4]余爱萍,陈忠伟,陈雪花等,无机纳米抗紫外粉体及其在化妆品中的改性应用,材料导报,2001,15(12):38-39,26;
    [5]杨红英,潘宁,朱苏康,无机紫外线屏蔽剂的功能机理研究,东华大学学报(自然科学版),2003,29(6):8-14:
    [6]王彦华,无机纳米抗紫外剂的研究进展,上海建材,2003,4:6-8;
    [7]Mossotti R,Innocenti R,Dimechelis R,et al.Changes in the properties of wool fibres by using alternative materials.10~(th) International Wool Textile Research Conference Processdings,Aachen,Germany,2000,58-64;
    [8]Bohringer B.UV protection by textiles,International Man-Made Fibres Congress,Dornbirn,Austria,1998,25-30;
    [9]杨锦钊,日本紫外线屏蔽整理与产品开发综述,国际纺织品动态,1992,(6):44-51;
    [10]薛迪庚,织物的功能整理,2000,中国纺织工业出版社,北京,82;
    [11]徐英莲,许红燕,纺织品的紫外线防护性能研究,丝绸,2002,(4):14-17;
    [12]市川通夫,防紫外线纤维“ナヒェ-クィ”,加工技术,1991,26(10):5-9;
    [13]宋心远,沈煜如,新型染整技术,1999,中国纺织出版社,北京,104;
    [14]汪苏南,抗紫外线技术及其产品效果测试,北京纺织,1996,17(3):30-33;
    [15]李全明,王崇礴,王浩,防紫外线织物的研究,高科技纤维及应用,2002,27(3):19;
    [16]Gupta K K,Tripathi V S,Hirday R et al.,Sun protective coatings,Co lourage,2002,6:35-40;
    [17]Thiry M C,Here comes the sun,AATCC Review,2002,2(6):13-17;
    [18]Wedler M,Hirthe B,UV-absorbing micro additives for synthetie fibers,Chemical Fibers International,1999,49(6):528;
    [19]Mitumasa A,Antibacterial,deodorizing,and UV absorbing materials obtained with zinc oxide(ZnO) coated fabrics,Journal of Coated Fabrics,1993,23(10):151-159;
    [20]张立德,牟季美,纳米材料和纳米结构,2001,科技出版社,北京,82;
    [21]陈崇正,路建军,射频溅射法制备氟碳高分子膜的泛黄问题研究,青岛大学学报:自然科学版,2002,15(3):8-11;
    [22]叶玉堂,饶建珍,肖峻等编著,光学教程,2005,清华大学出版社,北京,245;
    [23]吴锦雷编著,纳米光电功能薄膜,2006,北京大学出版社,北京,158。
    [1]David A B,Gerald P,Yves D.Application of the Microbond Technique IV.Improved Fibre-Matrix Adhesion by RF Plasma Treatment of Organic Fibre.Journal of Applied Polymer Science,1993,47(5):883-894.
    [2]Koh S,Park S,Kim Set al.Surface Modification of Polytetrafluoroethylene by Ar~+Irradiation for Improved Adhesion to other Materials.Journal of Applied Polymer Science,1997,64(10):1913-1921.
    [3]Sarmadi A M,Kwon Y A.Improved Water Repellency and Surface Dyeing of Polyester Fabrics by Plasma Treatment.Textile Chemist and Colorist,1993,25(12):33-40.
    [4]Toshiharu Y,Attila E P,Allen G P.Grafting Fluorocarbons to Polyethylene in Glow Discharge.Journal of Applied Polymer Science,1982,27(10):4019-4028.
    [5]Kang K,Tomiji W.Surface Characteristics of Sputter-etched Polyester and Nylon 6Films.Chemistry Express,1990,5(2):85-88.
    [6]Wang H Z,Bembold M W,Wang J Q,Characterization of Surface Properties of Plasma-polymerized Fluorinated Hydrocarbon Layers:Surface Stability as a Requirement for Permanent Water Repellency.Journal of Applied Polymer Science,1993,49:701-710.
    [7]Wang J,Feng D,Wang H et al.An XPS Investigation of Polymer Surface Dynamics.Ⅰ.A Study of Surface Modified by CF4 and CF_4/CH_4 Plasmas.Journal of Applied Polymer Science,1993,50(4):585-599.
    [8]Tomasino C,Cuomo J J,Smith C B.Plasma Treatments of Textiles.Journal of Coated Fabrics,1995,25(2):115-127.
    [9]Yasuda T,Okuno T,Yoshida K.A study of surface dynamics of polymers.Ⅱ:Investigation by plasma surface implantation of fluorine-containing moieties.Journal of Polymer Science.Part B.Polymer Physics,1988,26(8):1781-1794.
    [10]Sharma A K,Yasuda H.Polymerization of Methane.Journal of Applied Polymer Science,1989,38,741-754.
    [11]Sarmadi A M,Kwon Y A.Improved Water Repellency and Surface Dyeing of Polyester Fabrics by Plasma Treatment.Textile Chemist and Colorist,1993,25(2):33-40.
    [12]Tomiji W,Toknja G,Huishun L et al.Effect of Washing and Subsequent Heat Treatment on the Water Repellency of Poly(ethyleneterephthalate) Fabric and Film Treated with Carbon Tetrafluorodde and Trifluoromethane Low-Temperature Plasmas.纤维学会志,1994,50(11),533-537.
    [13]吴人洁等著,高聚物的表面与界面,1998,科学出版社,北京,256。
    [14]Wu S,Polymer Interface and Adhesion,1982,MARCEL DEKKER,INC.,New York.
    [15]Shafrin E G,Zisman W A,Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers,Journal of Physical Chemistry,1960,64(5):519-524.
    [16]杨邦朝,王文生著,薄膜物理与技术,1994,电子科技大学出版社,成都,174。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700