复合荧光二氧化硅纳米颗粒的制备及其在生物分析和光催化降解中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是纳米技术的一个重要部分。由于在纳米尺度下物质中电子的量子力学性质和原子的相互作用将受到尺度大小的影响,因此纳米材料具有许多普通材料不可比拟的优良性能,也正因为如此,纳米材料的研制和应用一直是人们关注的焦点。复合纳米颗粒,尤其是核壳型复合纳米颗粒,克服了普通单组分纳米颗粒物质组成单一的不足,将不同物质所拥有的多种功能有机地结合在一起,显示出普通单组分纳米颗粒无可比拟的优越的理化性能,在生化检测、医学成像、生物物质分离等生物医学领域显示出了广阔的应用前景。本论文在对当前迅速发展的复合纳米颗粒进行简要综述的基础上,以几种复合纳米颗粒的制备、性能表征及其在生物医学领域中以及环境方面的应用为主线,主要开展了以下几个方面的研究工作:
     1.使用异硫氰酸荧光素(FITC)与3-氨基丙基三甲氧基硅烷(APTMS)反应制得前驱体FITC-APTMS,然后采用油包水微乳液法,制备了FITC-APTMS前驱体掺杂的二氧化硅核壳型荧光纳米粒子。对其进行透射电镜,紫外可见光谱,荧光光谱及光稳定性实验与染料泄露实验等表征。由于这种纳米颗粒对pH敏感,在实验范围pH值3.6~ 9.7范围内,荧光强度与溶液酸度有良好的响应,此外,由于二氧化硅壳层是多孔网状立体结构,裸露的质子能穿透过去,对pH有良好的响应,而且该纳米颗粒能被单个小鼠神经干细胞吞噬,因此可望用做纳米pH传感器件,实现对单个细胞的pH实时监测。
     2.以三联吡啶钌为内核材料,通过反相微乳液法合成了具有核壳结构的二氧化硅荧光纳米粒子Ru(bpy)32+/SiO2,利用透射电子显微镜、荧光光谱、紫外-可见光谱等手段进行表征,并进行了光稳定性、荧光分子泄露与纳米粒子表面氨基测定等实验,结果表明所合成的纳米粒子为规则的球形,大小均一,平均粒径为60±6 nm,有较高的荧光强度,呈单分散性,具有很好的光稳定性,在水溶液中不易发生染料泄露。通过硅烷化试剂APTMS与TEOS共水解与聚合作用,在纳米粒子的表面直接引入氨基活性基团,因而纳米粒子不需要进行表面修饰而直接标记生物分子。以该纳米粒子作为荧光探针标记链霉亲合素,建立了高灵敏度的小鼠IgG荧光免疫分析法。结果表明在实验值0.02 ng/mL ~350 ng/mL MIgG浓度范围内,荧光强度与MIgG浓度有良好的正相关性,最低检测限为10pg/mL。首次将此纳米粒子作为荧光探针应用于蛋白质微阵列芯片检测HIV p24抗原,结果显示荧光强度与p24浓度呈良好的正相关性,分析灵敏度为2.1ng/mL。同时我们还进行了纳米粒子的小鼠神经干细胞荧光成像实验。
     3.以2 MeV 10mA GJ-2-Ⅱ电子加速器为辐射源,EDTA为稳定剂,采用电子束辐照法在水溶液中室温合成了CdSe量子点,然后采用油包水微乳液法,制备了表面带氨基的二氧化硅包覆CdSe量子点的核壳型荧光纳米粒子。经表征该纳米粒子粒径为200±8 nm,具有良好的荧光性能,其荧光强度及光稳定性均较CdSe量子点高。小鼠神经干细胞的荧光成像实验结果表明,该纳米粒子亦可应用于细胞成像并得到清晰的荧光成像图。
     4.用电子束辐照法制备得的CdSe量子点,首次将其作为光催化剂用于光催化降解处理甲基橙进行了研究。对光催化的必要条件,CdSe量子点浓度,甲基橙浓度,催化剂种类以及CdSe量子点光催化反应的动力学进行了初步研究。研究表明,甲基橙浓度以及催化剂CdSe量子点的浓度对光催化效果有一定的影响,紫外灯照射和光催化剂CdSe量子点都是不可缺少的降解条件,在本实验条件下, CdSe量子点的光催化降解效果要略优于纳米TiO2,反应体系基本遵守一级反应动力学方程。
Compared with conventional single component nanoparticles,Composite nanoparticles, especially core-shell structure composite nanoparticles, have more unique chemical and physical properties due to the combination of binary or multi-component nanocomposites. In recent years, various core-shell composite nanoparticles have been synthesized and studied, and their applications in the fields of biology and medicine have gained increasing attention and shown broad prospects in medical imaging, molecular diagnosis, fluorescent immunoassay, biochip, biosensor, biomaterial separation, and so on. Aiming at this important research direction, this thesis mainly focused on the study of synthesis, characterization and biomedical application of several types of dye-doped core-shell silica composite nanoparticles.
     First, a novel type of amino functionalized core-shell fluorescein isothiocyanate-doped silica nanoparticles was synthesized using a simple and effective approach of reverse microemulsion. Isothiocyanate coupled with a silane coupling agent, 3-aminopropyl-trimethoxysilane, was incorporated into silica sphere and the dye molecules were bound with silica sphere through hydrolysis and polymerization of tetraethoxysilane and 3-aminopropyl-trimethoxysilane. With the covalent binding between the dye molecules and silica sphere, the leakage of the dye was avoided. With amino groups on the surface, the nanoparticles can be directly conjugated with biological molecules with no need of complicated surface modification. The nanoparticles were spherical, monodisperse, uniform in size, pH sensitive, highly fluorescent and highly photostable. The pH response range was 3.6~9.7, respectively. More interestedly, the nanoparticles could be phagocytosed by murine neural stem cell and could be applied to detect pH value for single live cell.
     Second, Ru(bpy)32+ doped silica fluorescent nanoparticles were prepared using the water-in-oil (W/O) microemulsion method. Characterizations by transmission electron microscopy, fluorescent spectra, UV-Vis absorption spectra, photostable experiments and dyeleaking experiments show that the nanoparticles were monodisperse, uniform in size with the diameter being 60±6 nm. Due to a lot of fluorescent dye molecules of Ru(bpy)32+ encapsulated in the silica matrix that also severed to protect Ru(bpy)32+ dye from photodamaging oxidation, the nanoparticles were extremetly bright, photostable and chemical stable. The nanoparticles utilized as fluorescent probe were conjugated with streptavidin and successfully applied in fluorescent immunoassay of mouse IgG and detection of HIV p24 with protein microarray. Results show that good positive correlations between fluorescence intensities and concentrations of mouse IgG or p24 were presented with 10 pg/mL and 2.1ng/mL of analytical sensitivities, respectively. The nanoparticles also could be effectively swallowed by mouse neural stem cells and highly resolute images were obtained.
     Third, CdSe quantum dots was first prepared in aqueous solution at room temperature by a electron beam irradiation method using 2MeV 10mA GJ-2-II electronic accelerator as irradiation source and EDTA as stabilizer. Then a core-shell CdSe quantum dots-doped silica fluorescent nanoparticle were developed using the water-in-oil (W/O) microemulsion. It was found that the nanoparticles were spherical, monodisperse and uniform in size of 200±8 nm. Compared with pure CdSe quantum dots, the core-shell CdSe quantum dots-doped silica nanoparticle exhibited higher fluorescent intensity and higher photostability.
     Finally, the synthesized CdSe quantum dots wer utilized as a photocatalyst for degradation of methyl orange (MO). The impact factors including the sorts of catalyst, concentrations of catalyst and MO, were studied. Moreover, the reaction kinetics of photocatalysis was also investigated. Results demonstrated that degradation efficiency was affected by the concentrations of MO and CdSe quantum dots. Interestedly, the degradation efficiency of CdSe quantum dots was better than TiO2 under optimal conditions in this study.
     In conclusions, several different types of core-shell composite nanoparticles have been successfully synthesized. These dye or quantum dots doped composite silica nanoparticles exhibit excellent properties including photo,physics, and chemistry. They all can be applied in highly sensitive fluorescent immunoassay, sensor, cell imaging and biochip, and the CdSe quantum dots can be utilized as a photocatalyst for photocatalytic degradation.
引文
【1】. Crandall, B. C., Nanotechnology: molecular speculations on global abundance. Cambridge: The MIT Press, 1996, 58~70.
    【2】. Crandall, B. C., Lewis J. Nanotechnology: research and perspectives. Cambridge: The MIT Press, 1992, 40~42.
    【3】.白春礼.纳米科技及发展前景.微纳电子技术, 2002, 1, 2~5.
    【4】.李民乾.纳米科学技术——面向21世纪的新科技.物理, 1996, 21, 65~69.
    【5】. Ferrari, M., Cancer nanotechnology: opportunities and challenges.Nature Reviews Cancer, 2005, 5, 161~171.
    【6】. Bruchez, M. J., Moronne.M.,Alivisatos A.P., et al., Semiconductor Nanocrystais as Fluorescent Biological labels [J].Science,1998, 281, 2013~2016.
    【7】. Chan, W.C.W., Nie, S.M., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J].Science,1998, 281, 2016~2018.
    【8】. Balogh,L., Swanson,D.R., Tomalia,D.A., etal., Dendrimer-Silver Complexes and Nanocomposites as Antimicrobial Agents [J].Nano Letters, 2001,1,18~21.
    【9】. Cheng. S.F., Chau. L.K., Colloidal gold-modified optical fiber for chemical and biochemical sensing [J].Anal Chem, 2003, 75, 16~21.
    【10】. Kalugin. N. G., Vasilyev. Y. B., Suchalkin. S. D., et al. Dynamics of the far-infrared photoresponse in quantum Hall systems [J]. Physical Review B, 2002, 66, 085308.
    【11】. Narayanan. S. S., Sinha. S. S., Verma. P. K., et al. Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA [J]. Chemical Physics Letters, 2008, 463, 160~165.
    【12】. Wargnier. R., Baranov. A. V., Maslov. V. G., et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies [J]. Nano Letters, 2004, 4, 451~457.
    【13】. Kroutvar. M., Ducommun. Y., Heiss. D., et al. Optically programmable electron spin memory using semiconductor quantum dots [J]. Nature, 2004, 432, 81~84.
    【14】. Han. M. Y.,Gao. X. H., Nie. S. M., et al.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J].Nature biotechnology, 2001, 19, 631~635.
    【15】. Chan. W. C., Nie. S. M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].Science, 1998, 281, 2016~2018.
    【16】. Bruchez. Jr. M., Morone. M., Gin. P., et al. Semiconductor nanocrystals as fluorescent biological labels [J].Science, 1998, 281, 2013~2016.
    【17】. Dubertret. B., Skourides. P., Norris. D. J.,et al.In vivo imaging of QDs encapsulated in phospholipid micelles [J].Science, 2002, 298, 1759-1762.
    【18】. Wang. F., Tan. W., Zhang. Y., Fan. X., et al. Luminescent nanomaterials for biological labeling [J], Nanotechnology, 2006, 17, Rl~Rl3.
    【19】. Haugland. R. P.,The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, Molecular Probes, Eugene, OR, 10th edn, 2005.
    【20】. Maria. A., et al, Electrogenerated Chemiluminescence Sensors Using Ru(bpy)32+ Doped in Silica Nanoparticles [J]. Langmuir, 2005, 21, 4277~4280.
    【21】. Bagwe. R. P., Hilliard. L. R., Tan. W., Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding [J].langmuir, 2006; 22, 4357~4362.
    【22】. Peng. J. F., Wang. K. M., et al. Influence of anions on the formation and properties of chitosan-DNA nanoparticles [J]. Journal of Nanoscience and Nanotechnology, 2005, 713~717.
    【23】.段著华,王柯敏,谭蔚泓等.有机荧光染料纳米颗粒的制备及其包埋机制的研究[J].化学传感器,2002,22 ,14~19.
    【24】. Santra. S., et al. Fluorescence lifetime .measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability [J]. Journal of Luminescence, 2006, 117, 75~82.
    【25】.李杜,何晓晓,王柯敏等,无机硅壳类纳米颗粒对细胞的毒性检测[J].湖南大学学报(自然科学版), 2002, 29, 1~6.
    【26】. Zhu. H. G.., Michael. J., DNA Detection Using Highly Fluorescent Bioconjugated Nanoparticles [J]. J Am Chem Soc, 2003, 125, 11474~11475.
    【27】. Santra. S., Wang. K. M., Tapec. R., Tan. W. H., Development of novel dye-doped silica nanoparticles for biomarker application [J]. J Biomed Opt 2001, 6, 160~166.
    【28】. Santra. S., Zhang. P., Wang. K. M., Tapec. R., Tan. W.H., Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers [J].Anal Chem, 2001, 73, 4988~4993.
    【29】. Van.A. B., Vrij. A., Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres [J]. Langmuir, 1992, 8, 2921~2931.
    【30】. Nynke. A. M. Verhaegh., Van.A. B., Dispersions of Rhodamine-Labeled Silica Spheres: Synthesis, Characterization, and Fluorescence Confocal Scanning Laser Microscopy [J]. Langmuir, 1994, 10, 1427~1438.
    【31】. Liu. Li. Y., Wang. X. F., Zhang. H. X., Cheng B., Preparation of SiO2 Microspheres Used in photonic Crystals via Improving Stober Method [J]. Materials Review, 2008, 22, 113~115.
    【32】.何晓晓,王柯敏,谭蔚泓等.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用[J].科学通报, 2001, 46, 1353~1356.
    【33】.原茵,何晓晓,王柯敏等.嵌合异硫氰酸罗丹明B核壳荧光纳米颗粒制备新方法的研究[J].高等学校化学学报,2005,26, 446~448.
    【34】.彭姣凤.纳米传感与传输技术研究及其生物医学应用.[湖南大学博士学位论文].长沙:湖南大学,2006.
    【35】.李朝辉,王柯敏,谭蔚泓,李军,付志英,王益林,刘剑波,羊小海.硅壳包被的核壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用[J].科学通报,2005,50,1318~1322.
    【36】. Clark. H. A., Kopelman. R., Tjalkens. R., et al. Optical nanosensor for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors [J]. Anal. Chem, 1999, 71, 4837~4843.
    【37】. Clark. H. A., Hoyer. M., Parus. S., et al. Optochemical nanosensors and subcellular applications in living cells [J]. Mikrochim. Acta, 1999, 131,121~128.
    【38】. Xu. H., Aylott. J. W., Kopelman. R., et al. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma [J]. Anal. Chem, 2001, 73, 4124~4133.
    【39】. Park. E. J., Brasuel. M., Behrend. C., et al. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells [J].Anal. Chem, 2003, 75, 3784~3791.
    【40】. Brasuel. M., Kopelman. R., Miller. T. J., et al. Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells [J]. Anal. Chem, 2001, 73, 2221~2228.
    【41】. Santra. S., Zhang. P., Wang. K., Tapec. R., Tan. W. H.,Conjugaion of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers [J].Anal.Chem,2001, 73, 4988~4993.
    【42】. Karel. U., Vladimir. S., Polymeric anticancer drugs with pH-controlled activation [J]. Adv Drug Deliv Rev, 2004, 56, 1023~1050.
    【43】. Zhao. X. J., Hilliard. L. R., Mechery. S. J., Wang. Y. P., Bagwe. R. P., Jin. S. G., Tan. W. H., A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles [J].Pro Natl Acad Sci Usa , 2004, 101, 15027~15032.
    【44】. Deng. T., Li. J. S., Jiang. J. H., Shen. G. L., Yu. R. Q., Preparation of Near-IR Fluorescent Nanoparticles for Fluorescence Anisotropy-Based Immunoagglutination Assay in Whole Blood [J]. Adv Funct Mater, 2006, 16, 2147~2155.
    【45】.刘海波,庄峙厦,陈成祥,黄荣夫,谭芳,鄢庆枇,王小如.纳米荧光小球标记在蛋白质微阵列检测中的应用研究[J].分析化学, 2006, 34, 1227~1230.
    【46】. Wu.H., Huo. Q. S., Varnum. S. S., et al. Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers [J]. The Analyst, 2008, 133, 1550~1555.
    【47】. Liu. H. B., Zhuang. Z. X., Chen. C. X., et al. Luminophore-doped silica nanoparticles as fluorescent probe in protein microarray assay [J]. Chinese J of Analytical Chemistry, 2006, 34, 1227~1230.
    【1】. Mitchell. P., Turning the Spotlight on Cellular Imaging[J].Nat Biotecnol., 2001, 19 , 1013~1017.
    【2】.罗国安,王义明.单细胞水平的分析方法研究及进展[J].分析化学,1995, 23, 953~959.
    【3】. Darzynkiewicz. Z., Bedner. E., Li. X., Gorczyca. W., Melamed. M. R., Exp. Laser-scanning cytometry: A new instrumentation with many applications [J].Cell. Res, 1999,249, 1~12.
    【4】. Johson. I., Fluorescent probes for living cells [J]. Histochem. J, 1998, 30, 123~140.
    【5】. Zoumi. A., Yeh. A., Tromberg. B. J., Imaging Cells and Extracellular Matrix in vivo by Using Second-harmonic Generation and Two-photon Excited Fluorescence [J].Proc Natl Acad Sci USA, 2002, 99, 11014~11019.
    【6】. Cluzel P, Surette M, Leibler S. An Ultrasensitive Bacterial Motor Revealed by Monitoring Signaling Proteins in Single Cells [J]. Science, 2000, 287, 1652~1655.
    【7】. Mitchell. P., Turning the spotlight on cellular imaging [J].Nature Biotechno1ogy, 2001, 19, 1013~1017.
    【8】.段菁华,何晓晓,王柯敏.基于核壳荧光纳米颗粒的一种新型pH纳米传感器[J].湖南大学学报(自然科学版), 2003, 30, 1~5.
    【9】. Ji. J., Rosenzweig. N., Griffin. C., et al.Synthesis and application of submicrometer fluorescence sensing particles for lysosomal pH measurements in murine macrophages [J].Analytical Chemistry, 2000, 72, 3497~3503.
    【10】. Price. J. M., Xu. W., Demas. J. N., et al.Polymer-supported pH sensors based on hydrophobically bound luminescent ruthenium(II)complexes [J].Analytical Chemistry, 1998, 70, 265~270.
    【11】. Xin. Q., Wightman. R. M., Simultaneous detection of catecholamine exocytosis and Ca2+ release from single bovine chromaffin cells using a dual microsensor [J]. Analytical Chemistry, 1998, 70, 1677~1681.
    【12】. Rosenzweig. Z., Kopelman. R., Development of a submicrometer optical fiber oxygen sensor [J].Analytical Chemistry, 1995, 67, 2650~2654.
    【13】. Santras. S., Wang. K. M., Tapec. R., Tan. W. H., Development of novel dye-doped silica nanoparticles for biomarker application [J]. J Boimedical Optics, 2001, 6, 160~166.
    【14】.何晓晓,王柯敏,谭蔚泓,肖丹,李军,羊小海.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用[J].科学通报, 2001, 46 , 1353~1356.
    【15】. Santras. S., Zhang. P., Wang. K. M., Tapec. R., Tan. W. H., Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers[J]. Anal Chem, 2001, 73, 4988~4993.
    【16】. Clark. H. A., Hoyer. M., Philbert. M. A.,et al.Optical nanosensor for chemical analysis inside single living cells.1.Fabrication,characterization,and methods for intracellular delivery of PEBBLE sensors [J].Analytical Chemistry, 1999,71,4831~4836.
    【17】. Clark. H. A., Kopelman. R., Tjalkens. R.,et al.Optical nanosensor for chemical analysis inside single living cells.2.Sensors for pH and Calcium and the intracellular application of PEBBLE sensors [J].Analytical Chemistry,1999,71,4837~4843.
    【18】. McNamara. K. P., Nguyen. T., Rosenzweig. Z., et al.Synthesis, characterization, and application of fluorescence sensing Lipobeads for intracellular pH measurements [J].Analytical Chemistry, 2001, 73, 3240~3246.
    【19】. He. X. X.,Wang. Y., Wang. K. M., Peng. J. F., Liu. F.,Tan. W. H., Research of the relationship of Intracellular Acidification and Apoptosis in Hela Cells Based on pH Nanosensors [J]. Chinese Science, in press, paper number: 032006~19.
    【20】. Taton. T. A., Mirkin. C. A., Letsinger. R. L., Scanometric DNA array detection with nanoparticle probes [J]. Science, 2000, 289 (8), 1757~1760.
    【1】. Raab. A., Han. W., Badt. D., Smith-Gill. S. J., Lindsay. S. M., Schindler. H., Hinterdorfer. P., Antibody recognition imaging by force microscopy [J]. Nature Biotech, 1999, 17, 902~905.
    【2】. Sato. K., Tokeshi. M., Kimura. H., Kitamor, T., Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis [J]. Anal Chem, 2001, 73, 1213~1218.
    【3】. Yuan. J., Wang. G., Matsumoto. K., Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay [J]. Anal. Chem, 2001, 73, 1869~1876.
    【4】. Nardello. V., Bogaert. S., Alsters. P. L., Aubry. J. M., Singlet oxygen generation from H2O2/MoO42-: peroxidation of hydrophobic substrates in pure organic solvents [J]. Tetrahedron Lett, 2002, 43, 8731~8734.
    【5】. Wilson. G.. J., Launikonis. A., Sasse. W. H. F., Mau. A. W. H., Excited-state processes in ruthenium (II) bipyridine complexes containing covalently bound arenas [J]. J Phys Chem A, 1997, 101, 4860~4866.
    【6】. Donkers. R. L., Workentin. M. S., Elucidation of the electron transfer reduction mechanism of anthracene endoperoxides[J]. J Am Chem Soc, 2004, 126, 1688~1698.
    【7】. Arakawa. H., Macda. M., Tsuji. A., Enzyme immunoassay of cortisol by chemiluminescence reaction of luminol-peroxidase [J], Bunseki Kagaku, 1977, 26, 322~326.
    【8】. Knapp. W., Holubar. K., Wick. G. E., I. Wiede In immunofluorescence and related staining techniques; proceedings of the 11t" international conference on immunofluorescence and related staining technigues, Elsevier (North Holland Biomedical Press: Amsterdam), 1978, 67~80.
    【9】.裘法祖,武宗弼,吴在德,龚非力,现代免疫学实验技术,湖北科技出版社,2002.1.
    【10】. Blakeslee. D., Baines. M., Immunofluorescence using dichlorotriazinyl aminofluorescein (DTAF) I. Preparation and fractionation of labelled IgG [J], J Immunol Methods, 1976, 13, 305~320.
    【11】. Brandtzaeg. P., Conjugates of immunoglobulin G with different fiuorochromes.I and II.Scand [J].J Immunol, 1973, 2, 273 and 333.
    【12】. Mujumdar. R.B., Ernst. L.A., Mujumdar. S.R., Lewis. C.J., Waggoner. A.S., Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters [J], Bioconjugate Chem, 1993, 4, 105~111.
    【13】. Soini. E., Hemmila. I., Fluoroimmunoassay: present status and key problems [J]. ClinChem, 1979, 25, 353~361.
    【14】. Costa-Fernandez. J. M., Pereiro. R., Sanz-Medel. A., The use of luminescent quantum dots for optical sensing [J]. Trends Anal Chem, 2006, 25, 207~218.
    【15】.邹明强,杨蕊,李锦丰,马吉湘,王楠.量子点的光学特征及其在生命科学中的应用[J].分析测试学报, 2005, 24 , 133~137.
    【16】. Kim. S., Lim. Y. T., Soltesz. E. G., et al., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping [J]. Nat Biotechnol, 2004, 22, 93~97.
    【17】.赵承军,唐军民,沙印林.量子点在生物医学中的应用[J].解剖学报, 2006, 37 ,484~486.
    【18】. Andrew. T., Taton. D., Chad. A. Mirkin., Robert .L., Letsinger. Scanometric DNA array detection with nanoparticle probes [J]. Science, 2000, 289, 1757~1760.
    【19】. Nam. J. M., Thaxton. C. S., Mirkin. C. A., Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins [J]. Science, 2003, 301, 1884~1886.
    【20】. Shusheng. Z., Hua. Z., Caifeng. D., Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Signal DNA Probe Modified with Au and CuS Nanoparticles [J]. Anal. Chem, 2008, 80, 7206~7212.
    【21】. Bruchez. Jr. M., Moronne. M., Gin. P., Weiss. S., Alivisatos. A. P., Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281, 2013~2016.
    【22】. Choi. J. H., Chen. H. K., Strano. M. S., Aptamer-cappednanocrystal quantum dots: a new method for label-free protein detection [J]. J Am Chem Soc, 2006, 128, 15584~15585.
    【23】. Peng. H., Zhang. L., Kjallman. T. H. M., Soeller. C., Travas-Sejdik. J., DNA Hybridization Detection with BlueLuminescent Quantum Dots and Dye-Labeled Single-Stranded DNA [J]. J Am Chem Soc, 2007, 129, 3048~3049.
    【24】. Da. X. C., Bi. F. P., Hong. Z., Feng. G., Rina. W., Jing. P. W., Rong. H., Toru. A., Self-assembly of CNTs and Quantum dots for ultrasensitive DNA and antigen detection [J]. Anal Chem, 2008, 80, 7996~8001.
    【25】. Gao. H. F., Zhao. Y. Q., Fu. S. K., Li. B., Li .M. Q., Preparation of a novel polymeric fluorescent nanoparticle. Colloid [J]. Polym. Sci., 2002, 280, 653~660.
    【26】. Wu. H., Huo. Q. S., Varnum. S. S., et al. Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers [J]. The Analyst, 2008, 133,1550~1555.
    【27】. Zhao. X. J., Tapec. R., Tan. W. H., Ultrasensitive DNA Detection Using Highly Fluorescent Bioconjugated Nanoparticles [J]. J Am Chem Soc, 2003, 125, 11474~11475.
    【28】. Yang. W., Zhang. C. G., Qu. H. Y., Yang. H. H., Xu. J. G., Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays [J]. Anal Chim Acta, 2004,503, 163~169.
    【29】. Santra. S., Zhang. P., Wang. K. M., Rovelyn. T., Tan. W. H., Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers [J].Anal Chem, 2001, 73, 4988~4993.
    【30】. Hama. H., Soukka. T., Lonnberg. S., Paukkunen. J., Tarkkinen. P., L?vgren. T., Zeptomole detection sensitivity of prostate-specific antigen in a rapid microtitre plate assay using time-resolved fluorescence [J]. Luminescence, 2000, 15, 351~355.
    【31】. Tehe. A., Maurice. C., Hanson. D. L., Borget. M.Y., Quantification of HIV-1 p24 by a highly improved ELISA: An alternative to HIV-1 RNA based treatment monitoring in patients from Abidjan, Cote d’Ivoire. Clinical Virology [J]. 2006, 37, 199~205.
    【32】. Herbein. G., Illei. P., Montaner. L. J., James. W., Gordon. S., Comparison of p24 measurement by ELISA versus indicator cells for detecting residual HIV infectivity in vitro. Virological Methods [J]. 1996, 58, 167~173.
    【33】. Janvier.B., Lasarte. J.J., Sarobe. P., Hoebeke. J., B cell epitopes of HIV type 1 p24 capsid protein: a reassessment [J].AIDS Research Human Retroviruses, 1996, 12, 519~525.
    【34】. Workman. S., Wells. S.K., Pau. C.P., Dong. X. F. Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT) [J]. Virological Methods, 2009, 160, 14~21.
    【35】. Biancotto. A., Brichacek. B., Chen. S. S., Fitzgerald. W., Lisco. A., A highly sensitive and dynamic immunofluorescent cytometric bead assay for the detection of HIV-1 p24 [J]. Virological Methods, 2009, 157, 98~101.
    【36】. Gutierrez. G., Alvarez. I., Fondevila. N., Politzki. R., Lomonaco. M., Detection of bovine leukemia virus specific antibodies using recombinant p24-ELISA [J]. Veterinary Microbiology, 2009,137, 224~234.
    【37】.范金坪.生物芯片技术及其应用研究[J].中国医学物理学杂志,2009,26, 1115~1117.
    【38】.梁建工,何志柯.蛋白质芯片及其分析应用新进展[J].分析化学,2004, 2, 244~247.
    【39】. Li. Q. S., Smith. A. J., Schacker. T. W., Carlis. J .V., Duan. L., Reilly. C. S., Haase. A. T., Microarray Analysis of Lymphatic Tissue Reveals Stage-Specific, Gene Expression Signatures in HIV-1 Infection [J]. Immunology, 2009, 183, 1975~1982.
    【40】. Wu. J. Q., Wang. B., Belov. L., Chrisp. J., Learmont. J., Dyer. W. B., Zaunders. J., Cunningham. A. L., Dwyer. D. E., Saksena. N. K., Antibody microarray analysis of cell surface antigens on CD4+ and CD8+ T cells from HIV+ individuals correlates with disease stages [J]. Retrovirology, 2007, 4, 83.
    【41】. Burgess. S.T. G., Kenyon. F., O'Looney. N., Ross .A.J., Kwan. M. C., Beattie. J. S., Petrik. J., Ghazal. P., Campbell. C. J., A multiplexed protein microarray for the simultaneous serodiagnosis of human immunodeficiency virus/hepatitis C virusinfection and typing of whole blood [J]. Anal Chem, 2008, 382, 9~15.
    【42】. Henry. A. C., Tutt. T. J., Galloway. M., Davidson. Y. Y., McWhorter. C. S., Soper. S. A., McCarley. R. L., Surface modification of poly (methyl methacrylate) used in the fabrication of microanalytical devices[J].Anal Chem, 2000, 72, 5331~5337.
    【1】. Kagan. C. R., Murray. C. B., Bawendi. M. G., Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids [J]. Phys Rev B, 1996, 54, 8633~8643.
    【2】. Klimov. V. I., Mikhailovsky. A. A., Xu. S., et al. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots [J]. Science, 2000, 290, 314~317.
    【3】. Koberling. F., Mews. A., Basche. T., Oxygen-Induced Blinking of Single CdSe Nanocrystals [J]. Adv Mater, 2001, 13, 672~676.
    【4】. Lee. J., Sundar. V. C., Heine. J. R., et al. Full color emission fromⅡ-Ⅵsemiconductor quantum dot-polymer composites [J]. Adv Mater, 2000, 12, 1102~1105.
    【5】. Schlamp. M. C., Peng. X. G., Alivisatos. A. P., Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals and a semiconducting polymer [J]. J Appl Phys, 1997, 82, 5837~5842.
    【6】. Artemyev. M. V., Woggon. U., Jaschinski. H., et al. Spectroscopic study of electronic states in an ensemble of close-packed CdSe nanocrystals [J]. Phys Chem B, 2000, 104, 11617~11621.
    【7】. Greenham. N. C., Peng. X. G., Alivisatos. A. P., Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Phys Rev B, 1996, 54, 17628~17637.
    【8】. Bruchez. M. Jr., Moronne. M., Gin. P., et al. Semiconductor nanocrystals as fluorescent biological labels [J].Science, 1998, 281, 2013~2016.
    【9】. Chan. W .C, Nie. S. M., Quantum Dot Bioconjugates and Nanoparticles [J]. Science, 1998, 281, 2016~2018.
    【10】. Chakraborty. S. K., Fitzpatrick. J. A. J., Phillippi. J. A., et al. Cholera Toxin B Conjugated Quantum Dots for Live Cell Labeling [J]. Nano Lett, 2007, 7, 2618~2626.
    【11】. Gao. X. H., Cui. Y. Y., Levenson. R .M., et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J].Nat Biotechnol, 2004, 22, 969~976.
    【12】. Medintz. I. L., Uyeda. H. T., Goldman. E. R., et al. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nat Mater, 2005, 4, 435~446.
    【13】. Wen. J., Eli. P. P., Hans. F. C., et al. Quantum dot bioconjugates for imaging, labelling and sensing [J] .Trends Biotechnol, 2004, 22, 607~609.
    【14】. Sage.L., Finding cancer cells with quantum dots[J],Anal Chem, 2004, 76, 453A~453A .
    【15】. Chen. G. Y. J., Yao. S. Q., Lighting the cancer cells with the dots [J]. Lancet, 2004, 364,2001~2003.
    【16】.石志霞,王元凤,刘建军,等.水溶性荧光CdSe量子点的合成及其在指纹显现中的应用[J].无机化学学报, 2008, 24, 1186~1190.
    【17】.邓大伟,于俊生.柠檬酸稳定的水溶性CdSe和CdSe/CdS量子点的荧光特性[J]. 无机化学学报, 2008, 24, 701~707.
    【18】.刘应凡,于俊生.生物相容的高荧光CdTe量子点的合成和表征[J].无机化学学报, 2009, 25, 787~793.
    【19】. Lal. M., Levy. L., Kim. K. S., et al. Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence [J]. Chem Mater, 2000, 12, 2632~2639.
    【20】. Gu. H., Zheng. R., Zhang. X., et al. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: aconjugate of quantum dot and magnetic nanoparticles [J]. J Am Chem Soc, 2004, 126, 5664~5665.
    【21】.李朝辉,王柯敏,谭蔚红,等.硅壳包被的核壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用[J].科学通报, 2005, 50, 1318~1322.
    【22】. Rong. H., You. X. G.., Shao. J., et al. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation [J]. Nanotechnology, 2007, 18, 315601.
    【23】. Cui. D. X., Han. Y. D., Li. Z. M., Song. H., Wang. K., He. R., et al. Fluorescent Magnetic Nanoprobes for in vivo Targeted Imaging and Hyperthermia Therapy of Prostate Cancer [J]. Nano Biomed Eng, 2009, 1, 94~112.
    【24】. Schroedter. A., Weller. H., Eritja. R., et al. Biofunctionalization of Silica-Coated CdTe and Gold Nanocrystals [J]. Nano Letter, 2002, 2 , 1363~1367.
    【25】. Selvan. S. T., Timonthy. T. T., Jackie. Y. Y., Robust, Non-Cytotoxic, Silica-Coated CdSe Quantum Dots with Efficient Photoluminescence [J]. Adv Mater, 2005, 17, 1620~1625.
    【26】. Xin. L. H., Zhou. R. M., Gracien. E. B. J., Synthesis of silver nano-particles by EB irradiation [J]. Radiat Res Radiat. Process, 2004, 22, 69~72.
    【27】. Zhang. X. P., Zhou. R. M., He. L. F., et al. Influence of PVA and PEG on Fe3O4 nano-particles prepared by EB irradiation [J]. J Radiat Res Radiat Process, 2005, 23, 325~328.
    【28】. Chen. Y. K., Zhou. R. M., Zhang. X. P., et al. Size and size distribution of CdS nano-particles synthesized by EB irradiation [J]. J Radiat Res Radiat. Process, 2006, 24, 151~154.
    【29】. Yang. Q., Tang. K. B., Wang. F., et al. Robust, Non-Cytotoxic, Silica-Coated CdSe Quantum Dots with Efficient Photoluminescence [J]. Mater Lett, 2003, 57, 3508~3512.
    【30】. Qian. H. F., Dong. C. Q., Weng. J. F., et al. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals [J]. Small, 2006,2, 747~751.
    【31】. Han M.Y, Gao X.H, Nie S.M, et al. uantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J] Nat. Biotechnol., 2001, 19, 631~635.
    【32】. Henry A C, Tutt T J, Galloway M, et al. Henry A C, Tutt T J, Galloway M, et al. Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. [J] Anal. Chem., 2000, 72, 5331~5337 .
    【1】.董庆华,董玉琳,半导体悬浮体系光催化分解有机磷化合物[J].感光科学与光化学,1992,10, 71~76.
    【2】.王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解研究[J].环境科学,1998,19, 1~4.
    【3】.田春荣,王怡中,胡春,染料化合物光催化氧化降解中氮元素行为分析[J].环境化学, 2001, 20, 18~22.
    【4】.胡春,王怡中,凹凸棒负载TiO2对偶氮燃料和纺织废水光催化脱污[J].环境科学学报, 2001, 21, 123~126.
    【5】.蒋伟川,俞传明,王琪全.半导体光催化降解实际印染废水的研究[J].工业水处理, 1994, 14, 25~27.
    【6】.张汝冰,刘宏英,李凤生.纳米材料在催化领域的应用及研究进展[J].化工新材料, 1999, 3~5.
    【7】.高春华.纳米材料的基本效应及其应用[J].江苏理工大学学报(自然科学版),2001, 22, 45~49.
    【8】. Tomkiewicz Micha.Scaling properties in photocatalysis[J].Cata Today, 2000, 58, 115~ 123.
    【9】. Cunningham, J., Srijarana. S., Isotope-effect evidence for hydroxyl radical involvement in alcoho photo-oxidation sensitized by TiO2 in aqueous suspension [J]. J Photochem Photobiol A. 1988, 43, 329.
    【10】.武正簧,王宝风.基片上镀TiO 2薄膜光催化降解有机磷农药[J] .过程工程学报, 2001, 1, 432~435.
    【11】. Chakrabarti. S., Duttab. B. K.m Photocatalytic degradation of model texile dyes in waste water using ZnO as semiconductor catalyst[J]. J Hazardous Mater B, 2004, 112, 269 ~ 278.
    【12】. Akyol. A., Bayramoglum. M., Photocatalytic degradation of Remazol Red F3B using ZnO catalyst [J]. J Hazardous Mater B, 2005, 114, 241 ~ 246.
    【13】. Comparelli. R., Fanizza. E., Curri. M. L., Cozzoli. P D., Mascolo. G., Agostiano. A., UV-induced photocatalytic degradation of azo dyes by organic capped ZnO nanocrystals immobilized onto substrates[J]. Appl Cataly B: Environ, 2005, 60, 1~11.
    【14】.崔玉民,朱亦仁.用复相光催剂WO3/CdS/W深度处理印染废水的研究[J].工业水处理, 2001, 21, 9~12.
    【15】.崔玉民.亚硝酸盐的光催化氧化[J].感光科学与光化学, 2002, 20, 253~261.
    【16】. Emeline. A. V., Ryabchuk. V., Serpone. N., Factors affecting the efficiency of a photocatalysed process in aqueous metal-oxide dispersions, Prospect of distinguishing between two kinetic models [J]. Journal of Photobiology A: Chemistry, 2000, 133, 89~97.
    【17】.方世杰,徐明霞,黄卫友,等.纳米TiO 2光催化降解甲基橙[J].硅酸盐学报,2001, 29, 439 ~ 442.
    【18】.魏宏斌.光催化氧化法的影响因素和发展趋势[J].上海环境科学,1995, 14, 7210.
    【19】.荆晶,王连军.二氧化钛光催化氧化研究进展[J].污染防治技术,1999, 12, 114~117.
    【20】.陈士夫,赵梦月,陶跃武.光催化处理有机磷农药废水的可行性[J].环境工程, 1996, 14, 10~13.
    【21】.李田,严喣世.光催化氧化法去除水中有机氯化物的研究[J].上海环境科学, 1992,11, 11~14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700