化探方法模块组合在矿产勘查中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代分析化学学科的发展和新型仪器的研发,化学元素的测量范围和精度都有了明显的扩大和提高,利用先进的测试仪器,有选择性地选择现有的化探方法进行有机地结合,一种以求达到快速、准确、经济、高效等目的的综合性方法模块组合应运而生。
     内蒙古赤峰市杨树林银多金属矿普查区位于内蒙古地轴东段与内蒙海西褶皱带接触带向北突出弧形的地轴东侧,属地轴Ⅲ级构造单元。地层走向受区域构造运动的控制,区内赤峰——铭山大断裂、初头朗——铭山断裂两侧所派生的断裂构造极为发育。
     本文选择内蒙古赤峰市杨树林银多金属矿普查区为研究对象,通过氡气测量对研究区的断裂构造进行定位;使用X-荧光仪分析出露基岩、地表蚀变带、破碎带等相关地质体的元素含量以确定可能的成矿元素及有利成矿位置,初步圈定元素浓集中心;同时,利用有机烷烃气体测量的结果圈定有机气体浓集中心,最后综合确定可能的矿化部位,最终形成方法模块。
     该方法模块的应用取得了较好的效果。测氡结果指示研究区内有数条隐伏断裂构造;X-荧光分析结果表明,研究区内Ag、Cu、Pb、Zn和Au为可能成矿元素,花岗斑岩,中粒、中细粒二长花岗岩,接触带,破碎带为有利成矿位置:有机烷烃气体测量的结果显示,在接触带出现浓集中心,对应有Ag、Au浓集中心出现,这表明,研究区有机烃气体异常能很好地指示接触带位置,并且能很好地指示Ag、Au元素的成矿位置。
     为了验证方法的有效性,采用传统化探方法中的土壤地球化学测量加以对照验证,土壤地球化学测量Ag、Cu、Pb、Zn、Sn、Sb等10种元素,通过对比,结果基本一致,且方法模块的结果具有双重保证性,在综合考虑各因素后,共计圈定出7处成矿远景区。
     研究结果表明,根据不同的景观条件将不同的化探方法揉合在一起,形成方法模块组合进行找矿,不仅其结果可相互验证,而且能更准确地获取更多的有用信息,大大地提高了化探方法在找矿中的精度和速度,是一种综合、快速、经济、高效的找矿新方法。
With the development of modern analytical chemistry discipline and the research and development of new apparatuses, measuring range and accuracy of chemical elements has been distinctly expanded and improved. Advanced testing apparatus was used and existing geochemical exploration menthods was combinied selectively, a new method with the purpose of fast, accuracy, economical, highly-efficient is to come into existence as the situation requires.
     The prospecting area of the silver polymetallic ore of Yang Shulin in Chifeng Inner Mongolia located the extrude arc northward eastern side of the axis extrude arc where the zone of contact of the eastern of Inner Mongolia earth axis and Inner Mongolia Hercynian fold belt was selected as study area, and was gradeⅢstructure unit. Stratum strike is controlled by the regional structure movement, inside the area, fracture structure derived by the both sides of ChiFeng-Ming mountain geofracture and ChuToulang-Ming mountain fracture are greatly developmented.
     In this paper, the prospecting area of the silver polymetallic ore of Yang Shulin in Chifeng Inner Mongolia was selected as study area, the fracture structure of study area was located through the measurement of radon gas, exposed bedrock, surface alteration zone, fracture zone and other related geology bodies were tested by using XRF analyzer, which could determine the possible metallogenic elements and favorable mineralization location, contoured the concentration center of elements and interpreted them, at the same time, the concentration center of organic gas was contoured with the results tested by organic alkane gas measurement, and then verify the structure and the abnormity of general elements preliminarily.
     The using of this method made preferable purpose. Radon measurement results indicated that there were several lie concealed fracture structure in study area; the test results of XRF analyzer showed that Ag, Cu, Pb, Zn, Sn, Sb and Au element may be the metallogenic element, granite porphyry, medium-grain and fine grain adamellite. the contactive zone of layer and lithology taken change and the rupture zone of structure were favorable position for mineralization; organic gas phase geochemical exploration results indicated that the contactive zone of layer and lithology taken change appeared concentration center, corresponding to the emergence of Ag. Au concentration center, which showed that in study area using the organic gas phase geochemical exploration can well indicate changes of layer and lithology and the mineralization position of Ag, Au.
     In order to verify the effectiveness of this method, the secondary halo of conventional methods was used to be contrasted, Ag, Cu, Pb, Zn, Sn, Sb, such as 10 kinds of elements were tested with geochemical soil survey, after contrast, the results are essentially consistent and the result of method modules has dual guarantee, after considering various factors, confirmed seven perspective mineralization area.
     Comprehensively analyse the above-mentioned geochemical methods, and blend them together to form method modules combination, their results can be validated one another, and can infer more better useful information accurately, greatly improved the accuracy and operation of geochemical methods in the process of finding mine. Module combination method is a new method to comprehensively, rapidly and effectively find mine.
引文
1.谢学锦.勘查地球化学的过去与未来的发展[J],江苏地质,2003,27(3):129-139.
    2.谢学锦.用新观念与新技术寻找巨型矿[J],科学中国人,1995,(5):14-16.
    3.杨雪梅,庹先国,穆克亮.氧气测量在地质构造勘查中的应用[J],中国地球物理学会第二十二届年会,2006.
    4.陈远荣,贾国相,徐庆鸿.气体集成快速定位预测隐伏矿的新技术研究[M],北京:地质出版社,2003.
    5. Hawkes H E. Webb J S.Geochemistry in Mineral Exploration.New York and Evanton:Harper & Row. Publish-ers,1962.
    6.谢学锦.战术性与战略性的深穿透地球化学方法[J],地学前缘,1998,(4):171-183.
    7. Bloom H. A field method for the determination of ammonium-citrate-soluble heavy metals in soils and alluvium.Econ Geol,1955. (50):535-541.
    8. Alekseev S G, Dukhanin A S, Veshev S A, et al. Some aspects of practical use of geoelectrochemical methods of ex-ploration for deep-seated mineralization.J Geochem Explor.1996,56:79-86.
    9. Antropova L V. New methods of regional exploration for blind mineralization:Application in the USSR.J Geochem Explor,1992,43:157-166.
    10. Lukashev K I. Study of pore solution received by water extraction and by pressing out.Dokl Akad Nauk USSR,1974.18(6).
    I I. Chao T T.Use of partial dissolution techniques in geochemical exploration.J Geochem Explor,1984.20: 101-135.
    12. Hawkes H E, Williston S H. Mercury vapor as a guide to lead-zinc-silver deposits.Mining Congress J. 1962,48(12):30-32.
    13. James C H, Webb J S. Sensitive mercury vapor meter for use in geochemical prospecting.IMM Trans, 1964,73:633-641.
    14. Fursov V Z. Mercury vapor survey:Technique and results.J Geochem Explor,1990,38,145-156.
    15. McCarthy J H Jr, Vaughn W W, Learned R E, et al. Mercury in soil gas and air potential tool in mineral exploration. U S Geol Surv,1969.609:16.
    16. Hinkle M E, Dilbeit C A. Gases and trace elements in soil at the North Silver Bell deposit, Pima Country Arizona. J Geochem Explor,1984,20:323-326.
    17. McCarthy J HJr, Lambe R N, Dietrich J A. A case history of soil gases as an exploration guide in glaciated terrain-Crandon massive sulfide deposit, Wisconsin.Econ Geol,1986.81.408-4200
    18. Alpers C N, Dettman D L, Lohmann K C, et al. Stable isotopes of carbon diopside in soil gas over massive sulfide mineralization at Crandon, Wisconsin.J Geochem Explor,1990,38,69-86.
    19. Brookds R R.Biological Methods ofProspectingfor Minerals.New York:John Wiley & Sons.1983.
    20. Cameron E M, Marmont C, Hall G E M. Water:a medium for exploration in Northern terrains.Explore, 1997,(96):1-7.
    21.谢学锦,刘大文.地球化学填图与地球化学勘查[J],地质论评,2006,11.
    22.谢学锦.战术性与战略性的深穿透地球化学方法[J],地学前缘,1998,5:(1-2):171-183.
    23.吴慧山译.放射性(元素)同位素方法在轴矿普查中的应用[J],国外铀金地质,2000(4).
    24.张富铁,汪礼明,李蘅,徐文炘.区域化探异常评价方法研究进展(Ⅱ)[J],矿产与地质,2004,4:339-242.
    25. C.K Chork. Interpreting exploration greochemical data from Outukumpu[J].Finland aMVE-robust fcoctor analysis GeochemExnlor 1993,48(1).
    26. Kristiansson K and Malmqvist.L.Evidence for nondiffusive transport of Rn in the ground and new physical moclel for the transport[J]. Geophgsics,1982(47),10:1444-1452.
    27. Kvistiomsson K and malmqvist L.Trace elementsin geogas and their relation to badrock composition[J].Geoexploration,1987, (24):517-534.
    28.谢学锦,邵跃,王学术.走向21世纪矿产勘查地球化学[M],地质出版社,北京:105-124.
    29.童纯函,梁兴中,素正向.地气测量研究及古东季金矿的试验[J],物探与化探,1992,16(6):445-451.
    30.童纯菡,李巨初,葛良全,等.地气法机理研究之一:地气上升气流携带的纳米级微粒的观测及其意义[M],四川省地学核技术应用开发重点实验室年报,成都:四川大学出版社,1996:33.
    31.谢学锦.全球地球化学填图[J],中国地质,2003,30(1):1-9.
    32.马志飞,刘鸿福,张新军.地气测量和射气测量的探测机理对比研究[J],中国科技论文在线.
    33刘应汉,汪明启,赵恒川等.寻找隐伏矿的“地气”测量方法原理及应用前景[J],青海国土经略,2006,3:41-42.
    34.殷晓梅,宋建华,韩静,杨元华等.浅谈RAD-7测氡仪的原理于应用[J],计量与测试技术,2007,7:5-8.
    35.中国科学院地球化学研究所.有机地球化学[M],北京:科学出版社,1982.
    36.陈远荣,贾国相,徐庆鸿.气体集成快速定位预测隐伏矿床的新技术研究[M],北京:地质出版社,2003.
    37.阮天健,朱有光.地球化学找矿[M],北京:地质出版社,1985.
    38.武杰,庞增义.气相色谱仪器系统[M],北京:化学工业出版社,2007.
    39.王志春.GIS支持下的赤峰地区气候资源空间分布特征研究金银矿产选集[D],兰州:兰州大学2002.
    40.张忠生,周乃武,王建国[M],沈阳:东北大学出版社,1993.
    41.郑超等.辽西建平北部脉状金矿[M],沈阳:东北大学出版社,1996.
    42.下安建等.脉状金矿地质与成因[M],长春:吉林省科学技术出版社,1996.
    43.邵济安,贾文,储著银,张履桥,牟堡垒.内蒙古喀喇沁早白垩世橄榄云煌岩岩筒[J],岩石学报,2003,19(3).
    44.陈勇,陈建平,赵洁,董庆吉.赤峰金矿资源定量预测与评价[J],中国地质,2008,6:551-556.
    45.李跃尔.赤峰市金属矿产资源的分布规律及开发优势[J],西部资源,2007,6:14-15.
    46.徐贵忠,佘宏全,杨忆,周瑞,颜丹平,杨振德.赤峰西部地区金矿床成矿时代及其成矿机制的新认识[J],矿床地质,2001,20(2):99-106.
    47.杨永强,张渊.浅成脉状金矿床及其分类概述[J],长春地质学院学报,1994,24(3)
    48.冶金工业部长秦黄金研究所.金银矿产选集[M],黄金科技丛书,1985.
    49.王建平,刘永山,董法先等.内蒙古金厂沟梁金矿构造控矿分析[M],北京:地质出版社,1992,1-124.
    50.王建平,孟宪刚,杨玉东等.次火山岩型金矿床构造物理过程研究——以内蒙古金厂沟梁金矿为例[J],地质力学学报,1998,4(2):5-13.
    51.沈柳生,高州,王玲.赤峰——朝阳地区金矿控矿因素及找矿方向探讨[J],地质找矿论丛,2008,23(2):135-139.
    52.施炜,刘建民,王润生.内蒙古东部喀喇沁旗地区金矿围岩蚀变遥感信息提取及成矿预测[J]地球学报,2007,28(3):291-298.
    53.陈军强.内蒙赤峰金厂沟梁金矿床地质、地球化学特征及成因研究[D],长春,吉林大学,2006.
    54.罗先熔,文美兰,欧阳菲,唐甲光.勘查地球化学[M],北京:冶金工业出版社,2007.
    55.任天祥,伍宗华,羌荣生.区域化探异常筛选与查证的方法技术[M],北京:地质出版社,2003
    56.王瑞廷,毛景文,任小华,旺军谊,欧阳建平,袁炳强.区域地球化学异常评价的现状及其存在 的问题[J],中国地质,2007,32(1):168-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700