超声电化学处理难降解有机物的工艺和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于难降解的有机化合物,用常规方法处理,往往经济耗费大,处理效果不佳。本实验选用超声电化学法处理难降解有机物,比较了单独超声波、电化学法和超声电化学法对氯苯、硝基苯和刚果红的降解能力,并结合紫外光谱分析刚果红的超声电化学降解历程和降解原理。实验证明,此方法是一种处理水中难降解有机物的有效方法。
     第一部分研究了钯修饰钛电极的电化学性能。实验结果表明,钯修饰钛电极对氯苯和硝基苯等难降解有机物具有良好的电催化性能,与未修饰的钛电极相比,循环伏安过程都出现新的氧化峰和还原峰,反应过程峰电流明显增大。
     第二部分考察了超声电化学参数对降解过程的影响,如超声波声强、槽电压、溶液初始pH值、处理时间和电解质的投量等。其中槽电压、处理时间和电解质投加量对超声电化学降解效果的影响较为显著,氯苯和硝基苯的表观反应速率随三个因素的增加迅速增大,而后趋于不变。酸性和碱性条件下超声电化学降解能力好于其他pH(超声电化学降解时最优槽电压为15伏,最优初始pH值为12,最佳处理时间60分钟,最优电解质投量为0.1mol/L。)。同时比较了单独超声波、电化学法和超声电化学法的降解结果。超声波几乎无降解效果;超声电化学相对于电化学,在电压15伏时氯苯和硝基苯CODCr去除效率分别提高1.2倍和2.2倍,处理60分钟后CODCr去除率达到75.02%和78.7%,而电化学使180分钟也无法达到这个效果,相同pH值条件下,CODCr去除率提高倍数约为1.7和2.0。
     第三部分以刚果红为例,研究了超声电化学法对难降解有机物的超声电化学降解机理。实验结果表明,超声电化学对刚果红的降解效果很好,脱色率达到99.03%,CODCr去除率达到97.51%。紫外光谱分析表明刚果红经超声电化学降解作用下,逐渐完全降解成CO2和水。超声电化学技术有效处理废水的过程是声化学和电化学协同作用的结果,两者彼此影响和相互促进。
     本文研究了一种基于超声和纳米电催化技术的超声电化学水处理方法。研究表明,超声电化学法对有机物特别是特种废水,如难降解有机物和持久性有机污染物(POPs)具有很好降解能力,在废水的深度处理领域具有很好的应用前景。
It is expensive and inefficient with the general method in refractory organics because of their particularity. A new method that sonoelectrochemical on the degradation of refractory organics by Pd modified Ti electrode was selected. Meanwhile, the degradation ability and effect factors of organics on the sonochemical, electrochemical or sonoelectrochemical were compared, and the degradation process and mechanism of refractory organic on the sonoelectrochemical was researched. Our experiments have proved that it is an effective method in the degradation of organics.
     The first part of dissertation, we prepared the Pd modified Ti electrodes (Pd/Ti electrode) and studied it catalytic performance by cyclic voltammetry. The results showed that the Pd/Ti electrodes had better catalytic ability for chlorobenzene and nitrobenzene than pure Ti electrodes. Their cyclic voltammetries of Pd/Ti electrode all showed new reduction peak or oxidation peak, and the reduction and oxidation currents of reaction were significantly higher than pure Ti electrode.
     The second part of dissertation, the effects of ultrasonic intensity, cell voltage, pH value, reaction time and the dosage of electrolyte etc on the sonoelectrochemical were studied. The cell voltage, reaction time and the dosage of electrolyte are the main effect parameters of sonoelectrochemical. The apparent reaction rate of chlorobezene and nitrobenzene increased with cell voltage, reaction time and the dosage of electrolyte, but it began to keep invariant after an especially numerical value. The degradation ability of sonoelectrochemical for chlorobenzene or nitrobenzene was better in acidic or alkaline than others pH value. The result of experiments showed that the best remove condition was cell voltage 15 V, pH value 12, reaction time 60 minute and electrolyte concentration 0.1 mol/L.
     The CODCr removal rates of chlorobenzene and nitrobenzene wastewater on the sonochemical, electrochemical and sonoelectrochemical were compared. Although ultrasound could not produce signigicant chemical degradation for chlorobenzene and nitrobenzene, it greatly improved the electrochemical reaction rate. Comparing to electrochemical, the CODCr removal rates of chlorobenzene and nitrobenzene waste water are 1.2 times and 2.2 times when cell voltage is 15 V, and 1.7 times and 2 times when pH value is 12 on the sonoelectrochemical. Meanwhile, the CODCr removal rate got to 75.02% or 78.7% when reaction time is 60 minutes for sonoelectrochemical degradation process, but it could’t reach to this rate until to 180 minutes on the electrochemical degradation process.
     The third part of dissertation, take congored as an example, we discussed the elementary degradation mechanism of refractory organics by sonoelectrochemical method. From experimental results, the degradation ability of sonoelectrochemical for Congo Red was very well. The decoloration rate reached 99.03% and the CODCr removal rate reached 97.51%. Through ultraviolet spectrum analysis, the Congo Red had been degraded to CO2 and water by sonoelectrochemical. Meanwhile, through analysis and research the experimental results, they showed that the elementary degradation mechanism of organics by sonoelectrochemical treatment is the synergistic effect of sonochemical and electrochemical, and they are mutual influence and improve.
     In this dissertation, we studied an novel water treatment method: sonoelectro- chemical wastewater treatment. The results showd that sonoelectrochemical can degrade and remove organic very well, especially refractory organics and persistent organic pollutants. In the field of wastewater advanced treatment, the sonoelectro- chemical has an well application prospect.
引文
[1] Compton R. G.. Sonoelectrochemical processes: a review[J]. Electroanalysis, 1997, 9:509~522
    [2]黄辉,艾飞虎等.难降解有机废水的催化氧化法处理[J].化学研究与应用,2003,15(2):157~160.
    [3] Schmitt F. O., Johnson C. H., Olson A. R. Oxidations promoted by ultrasonic radiation[J]. Journal of the american chemical society, 1929,51(2):370-375
    [4] Moriguchi N. The effect of supersonic waves on chemical phenomena ( III ). The effect on The concentration polarization[J]. Journal of the Chemical Society Japan, 1934,55:749~750
    [5]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社,1992.
    [6] Suslick K S. Sonochemistry [J]. Science, 1990,247:1439~1445.
    [7] Mason T J. Practical sonochemistry[M]. Ellis Horwood Ltd, 1991.
    [8] Trabelsi F. Ait-lyazidi H. Ratsimba B. et al. Oxidation of phenol in wastewater by sono- electrochemistry[J]. Chemical Engineering Science, 1996,51(10):1857~1865.
    [9] Christian Petrier, Jiang Y, Marie-Francoise Lamy. Ultrasound and environment: Sonochemical destruction of chloroaromatic derivatives[J]. Environmental Science & Technology. 1998, 32:1316~1318
    [10]华彬,陆永生等.含氯苯废水的超声降解研究[J].环境污染与防治,2001, 25 (3):95~97.
    [11] Christian Petrier et al.,Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the rector at 20 and 487 kHz[J]. Journal of Physical Chemistry, 1994,98: l0514~10520.
    [12] Inez Hua et al., C Optimization of ultrasonic irradiation as an advanced oxidation technology[J]. Environmental Science & Technology, 1997,31:2237~2243.
    [13]李国英,何有节等.超声技术强化处理制革废水中的有机物[J].环境科学,2001,22 (5):102~104.
    [14]华彬,陆永生等.含氯苯废水的超声降解研究[J].环境科学,2000, 21 (2):88~90.
    [15]王宏青,钟爱国等.超声波诱导降解甲胺磷的研究[J].环境化学,2000,19(1):84~87.
    [16]吴文军.用超声波气振技术处理染料废水[J].污染防治技术,1994,7(1):26~27.
    [17] Alex De Visscher et al. Kinetic model for the sonochemical degradation of monocyclic compounds in aqueous solutions[J]. The Journal of Physical Chemistry,1996,100,11636~11642.
    [18] Inez Hua et al., Sonolytic hydrolysis of p-Nitrophenol in a parallel-plate near-field processor[J]. Environmental Science & Technology, 1995,29(11):2790~2796.
    [19] Inez Hua et al.Sonolytic hydrolysis of p-Nitrophenol acetate:the role of supercritical water[J]. The Journal of Physical Chemistry, 1995,99(8):2335~2342.
    [20] Kotronarou A. et al.,Ultrasonic irradiation of p-Nitrophenol in aqueous solutions[J]. The Journal of Physical Chemistry, 1991,95(9):3630~3638.
    [21] Kotronarou A. et al., decomposition of Parathion in Aqueous Solutions by Ultrasonic irradiation[J]. Environmental Science & Technology, 1992,26(7):1460~1462.
    [22] G1aze W. H.,Drinking-water treatment with ozone[J]. Environmental Science & Technology, 1987, 21(3):224~230.
    [23] G1aze W. H. and Kang, J. W., Advanced oxidation process, Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor[J]. Industrial & Engineering Chemistry Research,1989,28:1537~1580.
    [24] Lint, J. G.,Chang, C. N. and Wu, J. R.,Decomposition of 2-chlorophenol in aqueous solution by ultrasound/H2O2 process[J]. Water Science and Technology, 1996,33(6):75~81.
    [25] Lin, J. G., Chang, C. N. and Wu, J. R.,Ma, Y, S. Enhancement of decomposition of 2-chlorophenol with ultrasound/H2O2 process[J]. Water Science and Technology,1996, 34(9):41~48.
    [26] Wu, Jian. M., Huang, H. S. and Livengood, C. D., Ultrasonic destruction of chlorinated compound in aqueous solution[J]. Environmental Progress, 1992,11(30): 195~201.
    [27] Perrier, C., Micolle, M., Merlin, G. et al., Characteristics of pentachlorophenate degradation in aqueous solution by means of ultrasound[J]. Environmental Science & Technology, 1992, 26(8):1639~1642.
    [28] Gutierrez, M. and Henglein, A., Sonolytic decomposition of poly(vinylpyrrolidone) ethanol, and tetranitromethane in aqueous solution[J], The Journal of Physical Chemistry, 1998, 92(10):2978~2981
    [29] Drijvers D., Langenhove H.V, Beckers M., decomposition of phenol and trichloroethylene by the ultrasound /H2O2/ CuO process[J]. Water Research, 1998,33(5):1187~1194.
    [30]陈志荣.流化床电极技术及在治理含金属废水中的应用[J].工业水处理,1996,16(6):3~5.
    [31]张红波,徐仲榆等.流态化电极电解法处理含氰废水[J].化工环保,1995,15(6):224~227.
    [32] Rajeshwer K. et al. , Electrochemistry and Environment[J]. Journal of AppliedElectrochemistry, 1994, 24(7):1077~1091.
    [33]孔德智,于秀娟,冯玉杰,环境工程中高级氧化技术[M].北京:化工工业出版社
    [34] Compton,R.G. et al .Dual activation: coupling ultrasound to electrochemistry-an over view[J]. Electrochimica Acta, 1997,42 (19):2919~2927
    [35] Vladimir Misik, et al. EPR spin-trapping study of the sonolysis of H2O/D2O mixtures: probing the temperatures of cavitation regions[J]. The Journal of Physical Chemistry, 1995, 99:3605~3611
    [36]谢茂松,王学林等.用电-多相催化反应处理二硝基苯酚工业废水的方法.中国专利:96115545.0,1998-02-25
    [37] Chiang Li Choung, Chang Jun En et al.[J]. Water Science and Technology, 1997, 36(2-3):271~278.
    [38] Ch Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochimica Acta, 1994,39:1857~1862.
    [39]杨卫身,周集体等.微电解法降解染料的研究[J].上海环境科学,1996,15(7):30~32.
    [40]宋卫峰,吴斌等.电解法降解有机污染物机理及动力学的研究[J],化工环保,2001,21(3):131~136.
    [41] Comninellis Ch., Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes[J]. Journal of Applied Electrochemistry, 1993,23:108~112.
    [42] Comninellis Ch., Nerini A., Anodic oxidation of phenol in the presence of NaCl for wastewater treatment[J]. Journal of Applied Electrochemistry, 1995, 25(1):23~28
    [43] Klima J., et al. Sonoelectrochemistry: effects of ultrasound on voltammetric measurements at solid electrode[J]. Journal of Applied Electrochemistry, 1994,36 7:297~300
    [44] Klima J., et al. Sonoelectrochemistry: transient cavitation in acetonitrile in the neighborhood of a polarized electrode[J]. Journal of Applied Electrochemistry, 1995,399:147~155
    [45] Hagan C.R.S.,et al .Comparison of hydrodynamic voltammetry implemented by sonication to a rotating disk electrode[J]. Analytical Chemistry,1994,66:399~406
    [46] Compton R.G., et al. Voltammetry in the presence of ultrasound: mass transport effects[J]. Journal of Applied Electrochemistry, 1996,26:775~784
    [47] Birkin P. R.,et al .The effect of ultrasound on mass transport to a microelectrode[J]. Journal of the Chemical Society Chemical Communications, 1995:1807~1808
    [48] Birkin P. R., et al. A study of the effect of ultrasound on mass transport to a micro electrode[J]. Journal of Applied Electrochemistry, 1996,416:127~138
    [49] Pollet B., et al.The effect of ultrasonic frequency and intensity up on electrode kinetic parameters for the Ag(S2O3)23-/Ag redox couple[J]. Journal of Applied Electrochemistry, 1999, 29 :1359~1366
    [50] Alkire R.C., et al. The effect of focused ultrasound on the electrochemical passivity of iron in sulfuric acid[J]. Corrosion Science, 1983,23(10):1121~1132
    [51] Jiri Klima, et al. Sonoassisted electrooxidative polymerisation of salicylie acid: role of acoustic streaming and microjetting[J]. Journal of Electroanalytical chemistry 1999, 462:181~186
    [52] Compton R.G.,et al. Voltammetry in the presence of ultrasound,Sonovoltammetry and surface effects[J], The Journal of Physical Chemistry, 1994,98:12410~12414
    [53] Frank Marken,et al. Voltammetry in the presence of ultrasound:surface and solution process in the sonovoltammetric reduction of nitrobenzene at glassy carbon and gold electrodes[J]. Journal of Applied Electrochemistry, 1996,414:95~105
    [54] Compton R.G.,et al. Sonovoltammetry: heteorgenous electron-transfer processes with coupled ultrasonically induced chemical reaction. The "Sono-EC" reaction[J]. The Journal of Physical Chemistry, 1995, 99:4211~4214
    [55] John C. Eklund, et al. Organic sonoelectrochemistry. Reduction of fluoresein in the presence of 20KHz power ultrasound: an EC reaction[J]. Journal of the Chemical Society. Perkin transactions 2, 1995: 1981~1984
    [56] Compton R.G., et al. Sonovoltammetric measurement of the rates of electrode process with fast coupled homogenous knetics: making macroelectrodes behave like microelectrodes[J]. Journal of the Chemical Society Chemical Communications, 1996:1017~1018
    [57] Mahito Atobe, et al. Ultrasonic effects on electroorganic processes part 17. Product selectivity control in cathodic reduction of acrylonitrile[J]. Ultrasonics Sonochemistry, 2000: 103~107
    [58] Walton D. J., et al. Sonoelectrochemistry-cyclohexanoate electrooxidation at 38KHz and 850KHz insonation frequencies compared[J]. Electorchemistry Communication, 2000,2:431~435
    [59] Frank Marken, et al .Voltrammetry in the presence of ultrasound: can ultrasound modify heterogenous electron transfer kinetic[J]. Journal of Applied Electrochemistry, 1995, 395:335~339
    [60] Christian Petrier, et al. Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation[J]. Ultrasonics Sonochemistry,1997,4:295~300
    [61] kouchi S. O, et al. Cavitation-induced degradation of phenol by ultrasound[J]. Water Science and Technology, 1992,26(9-11):2053~2056
    [62] Katsuyoshi Kobayashi,et al. Effects of ultrasound on both electrolytic and electroless nickel depositions[J]. Ultrasonics,2000,38:676~681
    [63] Trabels F.,et al. Oxidation of phenol in wastewater by sonoelectrochemistry[J]. Chemical Engineering Science, 1996,51(10):1857~1865
    [64] Walton D. J.,et al. Sonovoltammetry at platinum electrodes: surface phenomena and mass transport processes[J]. Journal of Applied Electrochemistry, 1995,25 :1083~1090
    [65] Javier F. Del Campo,et al .High-frequency sonoelectrochemical processes: mass transport, thermal and surface effects induced by cavitation in a 500KHz reactor[J]. Ultrasonics Sonochemistry, 1999,6:189~197
    [66] Gareth J. Price et al. The use of ultrasound for the controlled degradation of polymer solutions[J]. Adances in Sonochemistry, 1990,1:231-287
    [67] Frank Marken,et al.Voltammetry in the presence of ultrasound: the limit of acoustic streaming induced deffusion layer thinning and the effect of solvent viscosity[J]. Journal of Applied Electrochemistry, 1996,415:55~63
    [68] Javier F. Del Campo, et al .Low-temperature sonoelectrochemical processes partl. Mass transport and cavitation effects of 20KHz ultrasound in liquid ammonia[J]. Journal of Applied Electrochemistry, 1999,477:71~78
    [69] Janna L .Hard castle, et al. Sonoelectrochemical and sonochemical effects of cavitation: correlation with interfacial cavitation induced by 20KHz ultrasound[J]. Ultrasonics Sonochemistry, 2000,7:7~14
    [70] Mahito Atobe, et al. Ultrasonic effects on electrooganic processes Part 14. Indirect electro- reduction of benzyl chlorides with anthracene redox-mediatory system[J]. Ultrasonics Sono- chemistry, 2000,7:97~102
    [71] Pollet B., et al. Sonoelectrochemical recovery of silver from photographic processing solutions[J]. Ultrasonics Sonochemistry, 2000,7:6976
    [72] Compton R. G., et at. Electrode processes at the surfaces of sonotrodes[J]. Electrochimica Acta, 41(2):315~320
    [73] Reisse J., et al. Sonoelectrochemistry in aqueous electrolyte: a new type of sono- electroreactor[J]. Electrochimica Acta, 1994,39(1):37~39
    [74] Ulker Bakir Ogutveren, et al. Color removal from textile effluents by electrochemical destruction[J]. Journal of Environment Science and Health,1994,A 29(1):1~16
    [75]苏德林等.隔膜电解法净化再生镀锌钝化液的研究[J].哈尔滨工业大学学报,1997,29(6):105~108
    [76]赵少陵等.活性炭纤维电极法处理印染废水的应用研究[J].上海环境科学,1997,16(5):24~27
    [77]陈卫国安太成,彭玉凡.声电催化氧化处理有机废水的机理研究[J].中山大学学报(自然科学版),2000,30(S2):38~43
    [78]陈延禧等.电解工程[M].天津:天津科学出版社,1993:1~167
    [79] Comminellis Ch.,et al. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes[J]. Journal of Applied Electrochemistry, 1993,23:108~112
    [80] Stucki S. Anode performance and applications[J] Journal of Applied Electrochemistry, 1991, 21:99~104
    [81] Comminellis Ch., et al. Preparation of SnO2-Sb2O5 films by the spray pyrolysis technique[J]. Journal of Applied Electrochemistry, 1996,26:83~89
    [82] Comminellis Ch, et al. Electrochemical properties of Ti/SnO2-Sb2O5 electrodes preparated by the pyrolysis technique[J]. Journal of Applied Electrochemistry, 1996,26:683~688
    [83] Saterlay A. J. et al. Sono-cathodics tripping voltammetry of manganese at a polished boron- doped diamond electrode: application to the determination of manganese in instant tea[J]. Analyst, 1999,124:1791~1796
    [84] Nick Serpone, et al .Ultrasonic induced dehalogenation and oxidation of 2-,3-,and 4-chloropHenol in air-equilibrated aqueous media.Similarities with irradiated semiconductor particulates[J]. Journal of Physical Chemistry, 1994,98:2634~2640
    [85] Inez Hua, Kinetics and mechanism of the sonolytic degradation of CC14: intermediates and by products[J]. Environmental Science & Technology, 1996,30(3):864~871
    [86] Daniel Simonsson, Electrochemistry for a cleaner enviornment[J]. Chemical Society Reviews, 1997,26:181~189
    [87]许海梁等.偶氮染料废水的电解处理[J].化工环保,1999,19(1):32~36
    [88]刘静,谢英,卞华松等.超声电化学法处理印染废水的实验研究[J].上海环境科学,2001,20(3):151~157
    [89]张静,Pd、Ru/Ti催化电极超声电催化降解废水中苯酚的研究[D].四川:四川大学化学学院,2004
    [90] Young Ku,et al .Ultrasonic destruction of 2-chloorpenolin aqueous solution[J]. Water Research, 1997,31(4):929~935
    [91] Anatassia Kotronarou, et al.Oxidation of hydrogen sulfide in aqueous solution by ultrasonic irradiation[J]. Environmental Science & Technology, 1992,26(12):2420~2428
    [92] Jih-Gaw Lin, et al. Decomposition of 2-chlorophenol in aqueous solution by ultrasound/H2O2 process[J]. Water Science and Technology, 1996,33(6):75~81
    [93] Ashish Bhatnagar, H. Michael Cheung, et al. Sonochemical destruction of chlorinated C1 and C2 volatile organic compounds in dilute aqueous solution[J]. Environmental Science & Technology, 1994, 28(8):1481~1486
    [94] H. Michael Cheung, Shreekumar Kurup. Sonochemical destruction of CFC 11 and CFC 113 in dilute aqueous solution[J]. Environmental Science & Technology, 1994,28(9):1619~1622
    [95] Rajeshwar K, et al. Electrochemistry and the environment[J]. Journal of Applied Electrochemistry, 1994,24:1077~1091
    [96]李海英等.染料废水内电解脱色效率与染料结构的关系[J].青岛大学学报,1999,14(1):21-25
    [97]张宗恩等.废铁屑净化偶氮染料废水及其机理的研究[J].上海环境科学,1995, 4(10):25-27,30
    [98]赵永才等.微电解法脱除水溶性染料废水色度的研究[J].环境污染与防治,1994, 16(1):18~21
    [99]杨凤林等.利用铁碳粒料脱除染料废水中的色度[J].环境工程,1992,10(6):1~5
    [100] Sheng H. Lin, et al. Treatment of textile wastewater by electrochemical method[J]. Water Research, 1993,28 (2):272-282
    [101]陈卫国等.电催化产生H2O2和HO·机理及在有机物降解中的应用[J].水处理技术,1997,23(6):354~357
    [102] Suslick K. S.,et al. On the origin of sonoluminescence and sonochemistry[J]. Ultrasonics, 1990,28(9):280~290
    [103] Shirgaonkar I. Z.,et al, Degradation of aqueous solution of potassium iodide and sodium cyanide in the presence of carbon tetrachloride[J]. Ultrasonics Sonochemistry, 1997, 4: 245~253
    [104] Pierre Dabo,et al. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol[J]. Environmental Science & Technology, 2000,34:1265~1268
    [105] James D. Seymour,et al.Oxidation of aqueous pollutants using ultrasound: salt-inducedenhancement[J]. Industrial & Engineering Chemistry Research, 1997,36:3453~3457
    [106]马英石等.超声波/H2O2工艺分解水中危害性氰化有机物[J].给水排水,1997,23(8):12~18
    [107]李亚新.国外印染废水的电化学处理.给水排水,1999,25(7):42~44
    [108] Ulker Bakir Ogutveren, et al. Removal of dye stuff from wastewater: elector coagulation of acilan blue using soluble anode[J]. Journal of Environment Science and Health, 1992, A2 7(5):1237~1247
    [109] Li-Choung Chiang, et al. Indirect oxidation effect in electrochemical oxidation treatment of land fill leachate[J]. Water Research, 1995,29 (2):671~678
    [110] Christian Petrier, et al. Characteristics of pentachlorophenate degradation in aqueous solution by means of ultrasound[J]. Environmental Science & Technology, 1992, 26 :1639~1642
    [111] Terese M.Olson,et al .Oxidation kinetics of natural organic matter by sonolysis and ozone[J]. Water Research, 1994,28(6):1383~1391
    [112] Joana L. Hardcastle, et al. Sonoelectroanalysis: ultrasonically facilitated liberation and determination of copper in whole blood[J]. Electroanalysis, 2000,12(8):559-563
    [113] Alastair N .Blythe,et al .Sono-Electroanalysis:application to the detection of lead in petrol[J]. Electroanalysis, 2000,12 (1):16-20
    [114] Atobe M , Nonaka T. Ultrasonic effects on electroorganic processes 7. Reduction of benzal- dehydes on ultrasound vibrating electrodes[J] . Journal of Applied Electrochemistry, 1997 , 425(122) :161~166.
    [115] Birkin P R , Silva Martines S. Determination of heterogeneous electron transfer kinetics in the presence of ultrasound at microelectrode employing sampled voltammetry[J]. Analytical Chemistry, 1997 , 69(11) : 2055~2062.
    [116] Bumpus J. A., Brock B.J. Biodegradation of crystal violet by the white rot fungus phanerachaete chrysosporium[J]. Applied and Evironmental Moicrobiology, 1988,54(5):1143~1150.
    [117] Eichleroval I., Homolka L., Nerud F., Synthetic dye decolorization capacity of white rot fungus dichomitus squalens[J]. Bioreaour. Tenchnol., 2006, 97:2153~2159
    [118] Kariminiaae-Hamedaani HR., Sakurai A., Sakakibara M.. Decolorization of synthetic dyes by a new manganese peroxidase-prodicing white rot fungus[J]. Dyes and Piglnents, 2007,72:157~162.
    [119] Sun Z., Chen Y., Ke Q., et al. Photocatalytic degradation of cationic azo dye byTi02/bentonite nanocomposite[J]. J. Photochem. Photobiol.A: Chem. 2002 ,149: 169
    [120]陈德恒.有机结构分析[M].北京:科学出版社1985: 172~176
    [121] Zhan H., He T.. Photocatalytic Degradation of Acid Dyes in Aqueous Ti02 Suspension I. The Effect of Substituents[J]. Dyes and Pigments, 1998, 37: 231~239
    [122]陈益宾.水中偶氮染料刚果红的光催化降解研究[D].福建:福州大学,2004
    [123]王建龙,柳萍等.声化学在水污染控制中的应用研究现状[J].化学通报,1997(7):35~38.
    [124]陈卫国等.电催化产生H2O2和·OH机理及在有机物降解中的应用[J].水处理技术,1997,23(6):354~357.
    [125]陈繁忠,傅家谟等.电催化氧化法降解水中有机物的研究进展[J].中国给水排水,1999,15(3):24~26.
    [126]钟理,张浩.催化氧化法降解废水过程[J].现代化工,1999, 19(15):33~34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700