适于农村的一体化膜组合净水工艺的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水资源短缺和水源水污染问题的日益严重,常规水处理工艺已难以满足日益严格的饮用水水质标准要求。膜技术被认为是“21世纪的水处理技术”,其中微滤和超滤及其组合工艺更是目前给水处理领域的研究热点之一。
     本课题以浙江省重大专项“适用于农村饮用水的管式微滤膜技术开发与应用(项目编号2006C13107)”和南湖区大院名校成果产业化专项“饮用水安全处理一体化技术的研发”为支撑,以嘉兴典型农村地区微污染水源水为试点,考察预氧化/MF处理高铁地下水和膜生物反应器(MBR)处理高有机物、高氨氮地表水的运行特性,探讨处理实际源水的膜污染特征及其清洗。主要内容如下:
     (1)预曝气/微滤组合工艺对铁的去除率较单独微滤提高40~60%,出水铁浓度小于0.1 mg/L;对TOC的去除率与单独微滤时相当,但对以UV_(254)表示的芳香类和以UV_(410)表示的成色类有毒有害污染物的去除率分别为82.1%和88.7%。预曝气有无都可使出水浊度低于0.2 NTU,去除率达95%以上。
     (2)通过考察预曝气/微滤膜组合工艺连续运行中膜污染特征及其清洗表明:死端过滤时污染物全部累积在管式膜罐体内导致膜阻力快速上升。铁等无机物是造成膜污染的主要物质;污染严重时引起出水铁和浊度升高。后期还存在铁质活性滤膜等微生物污染。大流量水力清洗和HCl浸泡清洗可有效去除该类膜污染。
     (3)通过膜生物反应器(MBR)处理微污染地表水运行特性的研究表明:投加PAC的PAC-MBR工艺对CODMn、TOC、UV_(254)、UV_(410)和SUVA的去除率分别为52%、52%、62%、93%和32%,出水平均CODMn 4.2 mg/L,满足源水CODMn>6 mg/L时为5 mg/L的饮用水标准限值;MBR混合液中微生物作用确保出水NH3-N浓度维持在0.14 mg/L左右,平均去除率达93%;MBR超滤膜的截留在原水浊度的去除中起了核心作用,对浊度去除率都保持在90%以上,出水浊度小于0.5 NTU,且与PAC投加与否和进水浊度变化无关。
     (4)微污染地表水中有机物分子量主要分布在0.22~0.45μm和<1 k之间,MBR工艺超滤及膜表面滤饼层的过滤截留作用对0.22~0.45μm区间的TOC和UV_(254)去除率分别为94.0%和85.7%,微生物新陈代谢产物导致5-30 k分子量区间内UV_(254)呈负增长。MBR中膜的过滤截留作用、PAC吸附作用以及微生物对遗传毒性物质的降解作用能有效控制出水遗传毒性。
     (5)通过考察MBR处理微污染地表水的膜污染特征及清洗表明:PAC投加在缓解膜污染方面无明显效果。膜过滤总阻力R=13.0×10~(12) 1/m,膜固有阻力占膜总阻力的15%,泥饼层阻力和吸附及堵塞阻力分别占膜总阻力的43%和42%。污染膜比通量为新膜比通量的13%,清水冲洗后膜比通量恢复至58%,碱洗后膜比通量恢复到76%,酸洗后膜比通量恢复到85%。膜污染主要以滤饼层堵塞为主,清水冲洗是简单有效的清洗方式。间断NaClO和HCl浸泡清洗可进一步控制生物污染、有机污染和铁等无机污染。
     (6)PAC-MBR中PAC的吸附作用和生物降解作用可有效去除可吸附和可生物降解性有机物。MBR内的活性微生物量呈慢速增长趋势且微生物活性较高。
     膜技术对微污染水处理效果显著,通过本课题的研究希望为农村地区研发出一套出水水质优良稳定、管理简便和投资较低的饮用水净化整体工艺,为今后农村地区净水站的改建和建设提供技术支持。
With the serious shortage of water resources and the pollution of source water, conventional processes have already hardly meet the severe standards for drinking water quality. Membrane filtration technology is recognized as“water treatment technology in the 21st century”. Micro-filtration and ultra-filtration and their combined processes are hotspots in feed water treatment recently.
     This subject is on the support of important scientific research project in Zhejiang province—“the development and application of tubular micro-filtration technology for drinking water treatment in rural area (NO. 2006C13107)”and the achievement industrialization special project of research institutes and universities in Nanhu district, Jiaxing city—“the development of integrative drinking water security treatment technology”. Mirco-polluted source water of typical rural area in Jiaxing city was chosen, hybrid process of pre-aeration followed with tubular microfiltration to treat iron contaminated underground water and membrane bioreactor (MBR) to treat high organic and high ammonia-nitrogen contaminated surface water for drinking water production. Pollutants removal efficiencies were investigated; membrane fouling and control measures were studied.
     (1) Perfect treatment performance was achieved when hybrid process of pre-aeration followed with tubular microfiltration was used to treat underground water for drinking water supply. The Fe removal efficiency was as high as over 90%, 40~60% higher than using MF alone. Poisonous and harmful trace pollutants characterized by UV_(254) and UV_(410) were removed 82.1% and 88.7%. The turbidity removal rate was above 95% no matter pre-aeration was used or not, keeping turbidity in the filtrated effluent always below 0.2 NTU.
     (2) According continuous operation, membrane fouling characteristics and membrane cleaning of hybrid process of pre-aeration followed with tubular microfiltration was investigated. Membrane resistance increased rapidly owing to all pollutants were accumulated in the tubular tank body. Inorganic matters such as Fe were found to be the primary membrane contaminants. Fe concentration and turbidity in the effluent were higher than that in the influent during worse fouling period and ferruginous active microbial contamination may exit at anaphase. So chemical cleaning with 2~3% HCl combined with fresh water backwash was proved to be a simple but effective way to remove membrane contamination.
     (3) Effective operation performance was achieved using MBR to treat high organic and high ammonia-nitrogen contaminated surface water for drinking water production. The CODMn、TOC、UV_(254)、UV_(410) and SUVA removal rates on PAC-MBR process were 52%、52%、62%、93%and 32%, respectively. The average CODMn in the filtrated effluent was 4.2 mg/L, meeting the Drinking Water Sanitary Standard of 5 mg/L if the amount in the source water exceeds 6 mg/L. 93% NH3-N removal rate was obtained with the filtrated effluent concentration of 0.14 mg/L on account of biological effect in the mixture. Ultrafiltration membrane and cake layer ensured the removal efficiency of turbidity stabilized at above 90%, the filtrate turbidity kept below 0.5 NTU and showed no relationship with PAC addition and change of influent turbidity.
     (4) Organic molecular distribution in micro-polluted source water mainly distributed at 0.22~0.45μm and <1 k. The removal rates of TOC and UV_(254) at 0.22~0.45μm were 94.0% and 85.7% due to synergistic effect of ultrafiltration and cake layer filtration. UV_(254) at 5-30 k was negative increased for the reason of biologic metabolic products dissolved in the mixture. The effects of ultrafiltration、PAC adsorption and biodegradation for genotoxics could control effluent genotoxicity effectively.
     (5) According investigating membrane fouling characteristics and membrane cleaning of MBR for micro-polluted surface water, it suggested that there were no effect on mitigating membrane fouling by adding PAC. The total membrane resistance was 13.0×10~(12) 1/m, membrane inherent resistance, cake layer resistance and adsorption and clogging resistance were accounted for 15%, 43% and 42%, respectively. Fouling membrane specific flux recovered to 58% after fresh water cleaning, then recovered to 76% after alkaline cleaning and last recovered to 85% after acid pickling. Cake layer clogging was suggested to be the primary membrane fouling and could be easily flushed by fresh water. Using NaClO and HCl solution intermittently could further control biological pollution, organic and inorganic pollution.
     (6) PAC-MBR could effectively remove BDOC, ADOC and A&BDOC. Active biomass in MBR presented the tendency of slow growth and high microbial activity.
     Membrane technology for micro-polluted surface water treatment was remarkable. According this subject, we hope to develop integral processes which suitable for rural areas to treat micro-polluted source water with several advantages on perfect filtrate, smaller footprint, convenient operation and management as well as low investment, and provide technical support for rebuilding or building water-purified station in the future.
引文
[1] 2007年中国水资源公报.中国环境年鉴[M].北京:中国环境出版社,2008
    [2] 2007年中国环境状况公报.中国环境年鉴[M].北京:中国环境出版社,2008
    [3]何文杰.安全饮用水保障技术[M].北京:建筑工业出版社,2006
    [4]曾瑞胜,杨新新,姜伟.浙江省农村饮用水水质状况分析[J].中国农村水利水电.2004 (4): 19~21
    [5] http://www.jxwsjd.com/display.asp?id=2381
    [6]郝爱玲.膜生物反应器处理微污染地表水的试验研究[D].天津.天津大学. 2006
    [7]廖相喜,邱燕梅.水中的微污染物及其控制技术[J].广东化工.2007,34 (8): 76~80
    [8]杨建强,张玉先,吴建树等.吴淞江微污染水源水处理工艺的比较研究[J].给水排水.2008, 34 (1):16~19
    [9]周欣平,杨常凤,孔峰.长江常州段微污染原水处理试验研究[J].化学工程师.2008 (4): 51~52
    [10]王龙,李思敏,李艳平.臭氧组合工艺处理微污染水源水的试验研究[J].河北工程大学学报(自然科学版). 2007, 24(2): 50~54
    [11]裴亮,董波,姚秉华等.超滤与粉末活性炭组合工艺处理饮用水[J].工业用水与废水.2007, 38(4): 24~26
    [12]吴志超,华娟,王志伟等.平板膜-生物反应器净化微污染水源水的研究[J].环境工程学报.2007, 1(4): 61~64
    [13]岳禹峰.强化混凝与生物接触氧化联用处理微污染水源水的实验研究[D].湖南.南华大学.2007
    [14]曹长春.广西饮用水水源微污染与生物预处理工程设计[J].大众科技.2007 (95) 101~104
    [15]王占生,刘文君编著.微污染水源饮用水处理[M].北京:中国建筑工业出版社.1999
    [16]李薇.粉末活性炭-微滤膜工艺微污染水处理效能及微生物特性[D].黑龙江.哈尔滨工业大学.2006
    [17]方志仿.接触过滤+活性炭吸附+超滤的一体化净水装置的试验研究[D].重庆.重庆大学,2006
    [18] Lan Lisk. Membrane specialists gather for international conference [J]. Water Engineering & Management. 1995, (5): 26~32
    [19]徐容安.膜技术的进展及在饮用水深度处理中的应用[J].饮料工业.1998, 1(1): 11~15
    [20] Kirk O. Nowack, Fred S. Cannon, Harish Arora. Ferric chloride plus GAC for removing TOC [J]. Journal AWWA, 1999, 91(2): 65~78
    [21] Madaeni S.S. Review paper: the application of membrane technology for water disinfection [J]. Wat. Res.. 1999, 33 (2): 301~308
    [22] Michal Bodzek, Krystyna Konieczny. Comparison of various membrane types and module configurations in the treatment of natural water by means of low-pressuremembrane methods [J]. Separation and purification technology, 1998, 14: 69~78
    [23] Laine J.M. Membrane technology and its application to drinking water production [J]. Water supply. 1998, 16(1/2): 318~322
    [24] Kunikane S., M. Itoh, Y. Magara, et al. Advanced membrane technology for application to water treatment [J]. Water supply. 1998, 16 (1/2): 313~318
    [25]罗敏.ZeeWeed浸没式超滤膜-大型自来水厂的最佳选择[A].全国给水深度处理研究会2008年年会[C].深圳.2008: 248~254
    [26] Chang Yu-jung, Kwang-Ho Choo, Mark M. Benjamin, et al. Combined adsorption-UF process increases TOC removal[J]. Journal AWWA. 1998, 90 (5): 90~102
    [27] Jaeshin Kim, Zhenxiao Cai, Mark M. Benjamin. Effects of adsorbents on membrane fouling by natural organic matter [J]. Journal of Membrane Science. 2008 (310) : 356~364
    [28]傅金祥,李敬宝,王防现等.粉煤灰与微滤膜协同处理微污染水的研究[J].陕西科技大学学报.2007, 25(4): 52~55
    [29] Han-Seung Kim, Satoshi Takizawa, Shinichiro Ohgaki. Application of microfiltration systems coupled with powdered activated carbon to river water treatment[J]. Desalination. 2007 (202): 271~277
    [30]王磊,石中明. UF膜活性炭组合工艺自来水处理研究[J].过滤与分离.2007, 17 (4):8~10
    [31]夏圣骥,徐斌,姚娟娟等.粉末活性炭-超滤膜工艺净化松花江水[J].华南理工大学学报(自然科学版).2007, 35(6):133~136
    [32] P.C.Singer. Humic substances as precursors for potentially harmful disinfection by–products[J]. Wat. Sci. Tech. 1999, 40 (9): 25~30
    [33] Maria Tomaszewska, Sylwia Mozia. Removal of Organic matter from water by PAC/UF system [J]. Wat Res. 2002, 36 (9): 4137~4143
    [34]张捍民,张威,王宝贞.粉末活性炭-淹没式中空纤维膜过滤装置系统除酚研究[J].水处理技术.2004, 30 (5): 259~261
    [35] MatsuiY, Aizawa T, SuzukiM, et al. Removal of geosm in and algae by ceramic membrane filtration with super-powdered activated carbon adsorption pretreatment[A]. 4th IWA Conference on Membranes for Water and Wastewater Treatment [C]. Harrogate, UK: IWA, 2007.
    [36] T. Carroll et al. The fouling of microfiltration membranes by NOM after coagulation treatment [J]. Wat. Res., 2000, 34 (11): 2861~2868
    [37] Guigui, VBonnelye, L. Durand-Bourlier. et al. Combination of Coagulation and Ultrafiltration for Drinking Water Production:Impact of Process Configuration and Model Design. Water Science and Technology: Water supply [J]. 2001, 1 (6): 107~118
    [38]尹华升,陈治安,陈益清等.超滤处理微污染水库水的中试研究[J].中国给水排水. 2006, 22 (11): 9~12
    [39]卜建伟.浸没式中空纤维微滤膜处理滦河原水的中试研究[D].陕西.西安建筑科技大学.2007
    [40]王锦,王晓昌.直接超滤和混凝一超滤组合工艺的膜污染比较[J].上海环境科学. 2002, 21 (2): 83~85
    [41]莫罹,黄霞,李琳.混凝-微滤膜净化微污染水源水的研究[J].给水排水.2001, 27 (8): 12~15
    [42]夏圣骥,李圭白,彭剑锋.超滤膜净化水库水试验研究[J].膜科学与技术.2006, 26(2): 56~59
    [43]蒋绍阶,郭庆彬,刘长兴.混凝沉淀/微滤一体化装置处理长江原水的试验研究[J].中国给水排水.2007, 23 (15): 66~69
    [44]刘萍.混凝—超滤组合工艺处理湘江微污染源水特性研究[D].湖南:湖南大学. 2005
    [45]董秉直,孙飞,闫昭晖等.在线混凝-超滤联用工艺用于小城镇给水的应用研究[J].2007, 33 (12): 27~31
    [46]何文杰,李玥,康华等.浸入式连续微滤工艺处理微污染水源水的中试研究[J].供水技术.2007, 1(3): 1~4
    [47]胡红梅,董秉直,宋亚丽等.高锰酸钾预氧化/混凝/微滤工艺处理黄浦江源水[J].中国给水排水.2007, 23 (5): 97~100
    [48]徐兵,王建良,施力.湖州基山村超滤膜水厂工程介绍[J].中国给水排水. 2006, 22(14): 49~51
    [49]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理. 2006, 26 (6): 6~10
    [50]陈卫文,顾平,刘锦霞.MBR对不同质量有机物的去除规律[J].中国给水排水.2003, 19 (2): 43~45
    [51] Fane A G, Chang S. Membrane Bioreactor:design and operational option [J]. Separation and Filtration. 2002, 39 (5): 26~29
    [52] Jefferson B, Laine A L, Judd S J, et al. Membrane bioreactor and their role in wastewater reuse [J]. War Sci Technol. 2000, 41: 197~204
    [53]纪磊.MBR中微生物聚合物与膜污染关系研究[D].辽宁.大连理工大学.2006
    [54] E.J. McAdam, S.J. Judd. A review of membrane bioreactor potential for nitrate removal from drinking water [J]. Desalination. 2006 (196) : 135~148
    [55] Sagbo Omer, Sun Yaxi, Hao Ailing, et al. Effect of PAC addition on MBR process for drinking water treatment[J]. Separation and Purification Technology. 2008 (58): 320~327
    [56] Jia-yu Tian, Heng Liang, Jun Nan. et al. Submerged membrane bioreactor (sMBR) for the treatment of contaminated raw water [J]. Chemical Engineering Journal. 2008. 1~10
    [57]陈永玲.MBR及其组合工艺处理微污染地表水的试验研究[D].天津.天津大学.2006
    [58]莫罹.微滤膜组合工艺处理微污染水源水的特性研究[D].北京.清华大学.2002
    [59] Chang J, Manem J, Beuabien A, Membrane bioprocesses for the denitrification of drinking water supplies[J]. J. Membr.Sci.. 1993, 80: 233~239
    [60] Wisniewski C, persi F, Cherif T, et al. Denitrification of drinking water by the association of an electrodialysis Process and a membrane bioreactor: feasibility and Application [J]. Desalination. 2001, 139 (l-3): 199~205
    [61] Noronha M, Britzb T, Mvarov V, et al. Treatment of spent Process water from a fruit juice company for Purposes of reuse: hybrid Process concept and on-site test operation of a pilot plant [J]. Desalination. 2002, 143 (2): 183~196.
    [62] Ubrain V, Benoit R, Manem J. Membrane bioreactor: a new treatment tool [A]. J.AWWA. 1996, 88 (5): 75~86
    [63] Li X Y, Chu H P. Membrane bioreactor for the drinking water treatment of polluted surface water supplies [J]. Wat Res. 2003, 37 (19): 4781~4791
    [64] Chang I S, Lee C H. Membrane filtration characteristics in membrane coupled active sludge system-the effect of physiological states of activated sludge on membrane fouling [J]. Desalination. 1998, 120 (3): 221~223
    [65] Sudeshna Ghosh, Timothy M. LaPara. Removal of carbonaceous and nitrogenous pollutants from a synthetic wastewater using a membrane-coupled bioreactor [J]. J Ind Microbiol Biotechnol. 2004 (31): 353~361
    [66]杨建强,张玉先,吴建树等.吴淞江微污染水源水处理工艺的比较研究[J].给水排水. 2008, 34 (1): 16~19
    [67]张力维,汪洁,杨健.生物接触氧化预处理技术处理微污染源水研究[J].环境科学与管理.2005, 30 (3): 34~37
    [68] GT.Seo, S.W.Jang, S.H.Lee. The fouling characterization and control in the high concentration PAC membrane bioreactor HCAPC-MBR [A]. IWA Specialty Conefrence, June 7-10, 2004 Seoul, Korea, 761~768
    [69]糜洵.膜生物反应器处理微污染水源水的试验研究[D].江苏.南京理工大学. 2004
    [70]张光辉,郝爱玲,张颖等.MBR与MCR处理微污染原水的效果[J].中国给水排水.2004. 20 (2): 47~50
    [71]何韵华.膜-生物活性炭反应器净水工艺及其中超声波作用的研究[D].北京.中国农业大学.2004
    [72]郝爱玲.用于微污染地表水处理的膜生物反应器的中试研究[D].天津.天津大学.2004
    [73]莫罹、黄霞等.膜-生物反应器处理微污染水源水的运行特性[J].中国环境科学.2003, 23 (2) : 196~200
    [74]张国俊,刘忠洲.膜过程中超滤膜污染机制的研究及其防治技术进展[J].膜科学与技术.2001, 21 (4): 39~44
    [75]吴俊奇,于莉,曹健.膜生物反应器的研究现状[J].北京建筑工程学院学报.2004, 20 (3) : 11~15
    [76] KERRY J. HOWE, MARKM. CLARK. Fouling of Microfiltration and Ultrafiltration Membranes by Natural Waters [J]. Environ. Sci. Technol. 2002 (36): 3571~3576
    [77] J. Cho, G. Amy, J. Pellegrino, Membrane filtration of organic matter: comparison of flux decline, NOM rejection, and foulants during filtration with three UF membranes [J]. Desalination. 2000 (127) : 288~298
    [78] R. Gray, C.B. Ritchie, T. Tran, B.A. Bolto. Effect of NOM Characteristics and Membrane Type on Microfiltration Performance [J]. Water research. 2007 (41): 3833~3841;
    [79] Kimura, K., Hane, Y., Watanabe, Y.et al. Irreversible membrane fouling during ultrafiltration of surface water [J]. Water Res. 2004. 38 (14–15), 3431~3441
    [80] Lee NoHwa, Pellegrino John, AmyGary. Modeling NOM fouling of low pressure membranes: impact of membrane properties and NOM characteristics [A]. 4th IWA Conference on Membranes for Water and Wastewater Treatment [C]. Harrogate, UK: IWA, 2007
    [81] Lee, N., Amy, G., Croue, J.P. et al. Morphological analyses of natural organic matter (NOM) fouling of low pressure membranes (MF/UF)[J]. J. Membr. Sci.2005. 261 (1–2): 7~16
    [82] Khatin K, Rose J, Barres O, et al. Physico-chemical study of fouling mechanisms of ultrafiltration membrane in Biwa lake (Japan) [J]. J Membr Sci. 1997, 130: 53~55
    [83]董秉直,陈艳,高乃云等.粉末活性炭-超滤膜处理微污染原水试验研究[J].同济大学学报(自然科学版).2005. 33 (6): 775~777
    [84] Her, N., Amy, G., Park, H.R. et al.. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling [J]. Water Res. 2004.38 (6), 1427~1438
    [85]臧倩,孙宝盛,张海丰等.胞外聚合物对一体式膜生物反应器过滤特性的影响[J].天津工业大学学报. 2005, 4 (5): 41~44
    [86]许丽丽.膜技术在饮用水处理中的应用与发展[J].西南给水排水.2007, 29 (4): 14~17
    [87] Taniguchi, M., Kilduff, J.E., Belfort, G. Modes of natural organic matter fouling during ultrafiltration [J]. Environ. Sci. Technol. 2003. 37 (8): 1676~1683
    [88] Yamamuraa H, Chaeb S, Kimura K. et al.Transition in fouling mechanism in microfiltration of a surface water [J]. Water Research. 2007 (41): 3812~3822
    [89] Bae T H, Tak T M. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor [J]. J Membr Sci. 2005 (264): 151~160
    [90]布多.膜生物反应器处理生活污水及铁盐预膜法减缓膜污染的研究[D].天津.天津大学.2003
    [91]黄霞,曹斌,文湘华等.膜-生物反应器在我国的研究与应用新进展[J].环境科学学报. 2008, 28 (3): 416~432
    [92] S. H. Lee, B. C. Lee, S. Y. Moon. Evaluation of a MF membrane system composed of precoagulation–sedimentation and chlorination for water reuse [J]. Water Sci. Technol. 2006, 54 (10) : 115~121
    [93]孙逊,孙瑾,张栋华等.粉末活性炭对膜过滤性能的影响[J].环境污染治理技术与设备.2006, 7 (12) : 89~91
    [94] Suhua Kim, No-Suk Park, Teayoung Kim, et al. Reaggregaton of Flocs in Coagulation- Cross- Flow Microfiltration[J]. Jounal of Environmental engineering. 2007, 133 (5) :507~514
    [95]俞开昌,文湘华,卜庆杰等.次临界操作下的膜污染机理研究[J].环境污染治理技术与设备.2004, 5 (1): 23~27
    [96] Kimura, K., Yamamura, H., Watanabe, Y. Irreversible fouling in MF/UF membranes caused by natural organic matters (NOMs) isolateed from different origins [J]. Sep. Sci. Technol. 2006. 41 (7): 1331~1344
    [97]张光辉,顾平.基于微滤工艺处理微污染地表水的一体化设备开发研究[J].水处理技术. 2004, 30 (5): 292~296
    [98]乔玉玲.膜技术在饮用水深度净化中的试验[D].上海.东华大学.2006
    [99]刘长兴.接触过滤-颗粒活性炭吸附-超滤工艺处理微污染水源水研究[D].重庆.重庆大学. 2007
    [100]宋亚丽,董秉直,高乃云等. PVDF微滤膜处理黄浦江微污染水的研究[J].给水排水.2007, 33 (6): 24~27
    [101]张捍明,张兴文,杨枫林等.生物陶粒柱-PAC-MBR系统处理饮用水研究[J].大连理工大学学报.2002, 42 (6): 669-673
    [102]黄霞,莫罹. MBR在净水工艺中的膜污染特征及清洗[J].中国给水排水.2003,19 (5):8~12
    [103]朱荣凯.生物膜法除铁除锰研究[J].应用科技.2003, 30 (9): 44~46
    [104]张杰,戴镇生.地下水除铁除锰现代观[J].给水排水.1996, 22 (10): 13~16
    [105]薛罡,何圣兵,王欣泽.生物法去除地下水中铁锰的影响因素[J].环境科学. 2006, 27(1): 95~100
    [106]谢晶.生物除铁及其影响因素的实验研究[D].湖南.湖南大学: 2004
    [107]余健.生物过滤去除饮用水中有机物、铁和锰的特性与机理研究[D].湖南.湖南大学: 2004
    [108]任乘雄,严宝珍,靳志军等.“预氧化+微滤”组合处理三家店微污染水库水的实验研究[J].中国水污染防治技术装备论文集. 2004 (11): 114~118
    [109] GB5749-2006.生活饮用水卫生标准[S]
    [110]陈宇辉,陶涛,余健.pH值对地下水除铁除锰影响机理的研究[J].工业用水与废水.2005, 36 (5): 17~20
    [111]禹丽娥.天然有机物对饮用水生物氧化除铁的影响试验研究[D].湖南.湖南大学.2006
    [112] Pierre Mouchet. From cventional to biological removal of Ion and Mnganese in France. ournal AWWA. 1992, 84 (4):158~167
    [113]孙丽华,李星,吕谋等.五种预处理方式对超滤膜处理松花江水的效能比较[J].给水排水. 2007, 33(5): 133~136
    [114] Dag O. Andersen,James J. Alberts,Monika Takács. Nature of natural organic matter(NOM)in acidified and limed surface waters[J]. Wat. Res.,2000, 34 (1):266~278
    [115] Chang I S, Bag O, Lee C H. Effects of membrane fouling on solute rejecting during membrane filtration of activated sludge[J]. Process Biochemistry. 2001, 36 (8-9): 855~860
    [116]王琳,王宝贞.饮用水深度处理技术[M].北京:化学工业出版社,2002
    [117]蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报.2002, 24(2): 61-65
    [118]张颖,任南琪,吴忆宁等.一体式MBR膜自身对有机污染物去除的强化作用[J].哈尔滨工业大学学报.2004, 36(2): 147~150
    [119]陆坤明.《城市供水水质标准》CJ/T206-2005讲读[EB/OL]. http://www. water608. com/untitled-061 untitled-06-02.htm
    [120]梁聪.强化混凝技术研究[D].上海.同济大学. 2006
    [121]董秉直,曹达文,范谨初等.黄浦江水源的溶解性有机物分子量分布变化的特点[J].环境科学学报.2001,21(5): 553~556
    [122] Edward J Bouwer, et al. Biological processes in drinking water treatment[J]. Jour AWWA, 1988, 80(9): 82~92
    [123]董秉直,金伟,陈艳等.生物预处理去除有机物的特点[J].工业水处理.2005, 25(6) : 40~42
    [124] REIFFERSCHEID G, GRUMMT T. Genotoxicity in German surfacewater result of a collaborative study [J]. Water Air and Soil Pollution. 2000 (123): 67~79
    [125] Philippe Q, Hofnung M. The SOS chromotest, a colorimetric bacterial assay forgenotoxins, procedures[J]. Muration Res. 1985, 147: 65~78
    [126] Oda Y, S Nakamura, I Oki, et al. Evaluation of the detection of environmental mutagens and carcinogens[J]. Muration Res. 1985, 147: 219~229
    [127]崔仑标,戴贵东,王心如等. SOS/umu试验及其应用[J].国外医学卫生学分册. 2003, 30(3): 177~179
    [128]李娜,骆坚平,饶凯锋.用SOS/Umu生物测试评价北方某自来水厂对遗传毒性物质的去除效果[J].环境工程学报.2007, 1 (11): 10~16
    [129]黄霞,桂萍,范晓军等.膜生物反应器废水处理工艺的研究进展[J].环境科学研究.1998, 11(1): 40~44
    [130] Braghetta A., Jacangelo J. G., Shankararanman C., et al. DAF pretreatment: its effect on MF performance. Journal AWWA, 1997, 89 (10): 90~101
    [131] Woo Hang Kim, Wataru Nishijima, Aloysius U. Baes, et al. Micropollutant removal with saturated biological activated varbon (BAC) in ozonation-BAC process[J]. Wat. Sci. Tech.. 1997,36 (12):283~298
    [132] Wataru Nishijima, Missumasa Okada.Particle separation as a pretreatment of an advanced drinking water treatment process by ozonationand biological activated carbon[J].wat. Sci. tech.. 1998,37(10):117~124
    [133]朱晓辉.臭氧-活性炭深度处理东江水的应用[D].甘肃.兰州交通大学.2007
    [134] Vestal J. Robie, David C. White.Lipid analysis in microbial ecology [J]. BioScience. 1989, 39 (8): 535~541
    [135] Robert H. Findlay, Gary M. King, Les Watling.Efficacy ofphospholipid analysis in determining microbial biomass in sediments [J].Appl.Environ. Microbiol.. 1989, 55 (11):2888~2893
    [136]于鑫,张晓键,王占生.饮用水生物处理中生物量的脂磷法测定[J].城市给排水.2002,28 (5):1~5
    [137]于鑫,许建军.臭氧-生物活性炭有机物降解机理研究[D].陕西.西安建筑科技大学.2007
    [138]魏复盛.水和废水监测分析方法[M](第四版).北京.中国环境科学出版社.2002
    [139]桑军强,王志农,李福志.饮用水生物处理中微生物量和活性的测定方法[J].环境污染治理技术与设备.2005,6(8):88~90
    [140] Daniel Urfer, Peter M. Huck.Measurement of biomass activity in drinking water biofilters using a respirometric method[J].Wat.Res.,2001.35(6):1469~1477
    [141] Xibao Liu.Drinking water biofiltration: Assessing key fators and improving Proeess evaluation [D]. Canada: University of waterloo.2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700