基于PCR-DGGE技术的脱氮除磷系统微生物群落结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以废水脱氮除磷厌氧-缺氧-好氧系统(改进A-A-O工艺)为研究对象,采用PCR-DGGE(变性梯度凝胶电泳)分子生物学技术对生物脱氮除磷系统活性污泥中微生物群落结构进行分析,研究并比较了三种活性污泥总DNA提取方法的提取效果。在此基础上,探讨了模式多聚反应物对微生物群落结构的影响。
     系统对于COD_(Cr)和总磷的去除效果都很高,COD_(Cr)的去除率大都在90%以上,总磷的去除率则达到了95%左右。而总氮的去除率平均在65%左右,处理效果不是很理想。
     对废水脱氮除磷系统中的活性污泥样品经过或未经预处理,比较了超声波法、玻璃珠震荡法和冻融法三种细胞裂解方法对DNA提取效果的影响。吸光度和琼脂糖凝胶电泳检测结果表明:活性污泥经TENP和PBS预处理后采用冻融法加2%SDS裂解细胞的DNA提取操作,可以得到数量多、纯度高的活性污泥DNA样品,可直接进行PCR扩增反应。
     采用PCR-DGGE技术对系统不同反应区段活性污泥微生物群落结构进行研究。DGGE图谱显示:系统活性污泥中存在着丰富的微生物种类,且群落结构也比较复杂。污泥的内外回流不可避免地造成了微生物在不同反应池中的“流动”,因此不同反应区段微生物群落结构基本相同。通过割胶、测序、NCBI比对初步确定:(1)活性污泥样品中获得的16S rDNA序列分别归属于三大细菌类群:变形菌(Proteobacteria)、放线菌(Actinobacterium)和硝化螺旋菌属(Nitrospirasp.);其中变形细菌和放线细菌为优势菌种。(2)系统的厌氧区、缺氧区和好氧区的菌群结构主要差异在放线菌(Actinobacterium)和变形细菌(γ-Proteobacteria)。放线菌在厌氧和缺氧区含量较高,而变形细菌在好氧区成为优势菌种。结合进出水水质,在分子生物学角度证实了微生物在污水处理过程中明显的脱氮除磷作用。
     采用超滤膜法对废水处理系统中有机物的分子量分布及其变化进行研究,分析有机物分子量分布特性及不同分子量分布区间有机物的相对含量。结果表明:厌氧、缺氧、好氧反应池出水中,小于1K分子量区间上的有机物所占比例最高。
     结合DGGE分析模式多聚反应物对系统微生物群落结构的影响。DGGE图谱表明:系统各反应池微生物种群结构没有发生明显改变,仅有少数菌种的数量表现出较为简单的规律性变化,表明生物脱氮除磷过程中的微生态系统在模式多聚物条件下的稳定性。
The microbial community structure of activated sludge from an anaerobic-anoxic-aerobic denitrification-dephosphorization system were investigated by the molecular biological technology—PCR-DGGE(polymerase chain reaction-denaturting gradient gel electrophoresis). On the other hand, the effect of total DNA extraction methods from activated sludge, and the change in microbial community structure depending on pattern polymer/multimer were demonstrated by the analysis of results of PCR-DGGE.
     The removal efficiencies of A-A-O procedure on COD_(Cr) and TP were both high, 90% and 95%, respectively; and of TN was only 65%.
     Effects of total DNA extraction from activated sludge with/without pretreatment were compared by three kinds of cell lysis methods, i.e. sonication irradiation, glass bead shaking and freeze-thawing process in a denitrification-dephosphorization system. By detection of ultraviolet adsorption spectrum analysis and agarose gel electrophoresis, results showed the DNA samples with high yield and purity were obtained by TENP and PBS pretreated, and 2%SDS and freeze-thawing lyzed, and did PCR analysis directly without purification.
     Using PCR-DGGE technique, the microbial community structure of activated sludge in different reaction region of wastewater treatment system was investigated. The DGGE fingerprinting showed that there were abundant species of organism existing in the system, and the microbial community structure was stable. The microorganism was inevitably flowed by the flow of the sludge, so the bacteria distribution in the reactor was equable. So there were few changes in the community structure of different reaction region. The sequence was determined through comparison with GenBank(NCBl): (1) 16S rDNA sequences corresponding to 6 excised bands from activated sludge samples were analyzed and classified into three lineages of the bacteria, including Proteobacteria; Actinobacterium; Nitrospira sp.; and the Proteobacteria and Actinobacterium were the domain bacteria. (2)The most differences of microbial communities in the anaerobic-anoxic-aerobic region of the wastewater biotreatment system were Actinobacterium andγ-Proteobacteria. The number of Actinobacterium was more in the anaerobic and anoxic region, ofγ-Proteobacteria in the aerobic region. And combined with the water quality, the ecology of the proeess, the microbes involved, their functions of the denitrification and dephosphorization were interpreted more which little is still known before.
     Distribution and transformation of molecular weight of organic matters in a wastewater treatment system was monitored by ultra-filtration membrane method. The characteristics of the molecular weight distribution of organic matters and the amounts of the organic fractions in different molecular weight ranges were measured. The results showed that the organics on the fraction of molecular weight less than 1k had the largest ratio in the total organics of the outlets in the anaerobic、anoxic and aerobic tank.
     The influence of pattern polymer/multimer for microbial community structure was investigated by the analysis of results of denaturing gradient gel electrophoresis (DGGE). The results of DGGE were that the microbial community structure of activated sludge in different reaction region of wastewater treatment system was similar, and the quantity of only little microbial showed simple change of regularity, which exemplify the stability of the microbial ecology in the process of biological denitrification and dephosphorization.
引文
[1]焦隽.汀苏省农村主要污染源氮磷污染负荷区域评价及控制对策.南京:南京农业大学,2008:1.
    [2]郭晓彬.广东省城市湖泊氮、磷污染特征研究.广州:暨南大学,2006:3-4.
    [3]虞孝感,Josep N,燕乃玲.从国际治湖经验探讨太湖营养化的治理.地理学报,2007,62(9):899-906.
    [4]王丽香.庄舜尧,吕家珑,等.常熟农村不同水体氮磷污染状况.生态与农村环境学报,2009,25(4):55-59.
    [5]李鹏.城市污水生物脱氮除磷活性污泥系统微生物多样性研究.青岛:中国海洋大学,2007:1.
    [6]黄小华.浅淡城市污水处理中的脱氮除磷方法.中国科技信息,2009,32(13):24-25.
    [7]闫晓,夏清,占李生.常用污水生物脱氮除磷工艺.河南科技,2008,21(10):67.
    [8]Lee L Y,Ong S L,Ng W J.Biofilm morphology and nitrification activities:recovery of nitrifying biofllm particle covered with heterotrophic outgrowth.Bioresource Technology,2004,95(2):209-214.
    [9]Alves C F,MeloL F,Viera M J.Influence ofmedium composition on the characteristics of a denitrifying biofilm formed by alcaligenes denitrificans in a fluidized bed reactor.Process Biological,2002,37(8):837-845.
    [10]Hisashi S,Hideki O,Bian R,et al.Macroscale andmicroscale analyses of nitrification and denitriflcation in biofilms attached onmembrance aerated biofilm reactors.Water Research,2004,38(6):1633-1641.
    [11]李飞,张雁秋.城市污水生物除磷脱氮技术分析.环保科技,2009,15(1):16-19.
    [12]Delia T S,Hulya A.Influence of nitrate and COD on phosphorus nitrogen and dinitrotoluene (DNT) removal under batch anaerobic and anoxic conditions.Anaerobe,2004,10(5):287-293.
    [13]Panswad T,Doungchai A,Anotai J.Temperature effect on microbial community of enhanced biological phosphorus removal system.WaterResearch,2003,37(2):409-415.
    [14]Wagner M.Probing activated sludge with oligonucleotides specific for proteobacteria:inadequacy of culture-dependent methods for describing microbial community structure.Applied and Environmental Microbiology,1993,59(5):1520-1525.
    [15]Soddell J A,Seviour R J.Microbiology of foaming in activated sludge plants.Journal of Applied Bacteriology,1990,69(7):145-176.
    [16]刘彬彬.高效废水处理生物反应器中优势功能菌的分子识别与鉴定.上海:上海交通大学,2006.
    [17]Amann R,Fuchs B M,Behrens S.The identification of microorganisms by fluorescence in situ hybridisation.Current Opinion in Biotechnology,2001,12(3):231-236.
    [18]Amann R.In situ visualization of high genetic diversity in a natural microbial community.Journal of Bacteriology,1996,178(I 2):3496-3500.
    [19]Amann,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiology Reviews,1995,59(1):143-169.
    [20]Zhang Y.Microarrays and their application to environmental microorganisms.Acta Microbiologica Sinica,2003,44(3):406-410.
    [21]Loy A.16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order"Rhodocyclales".Applied and Environmental Microbiology,2005, 71(3):1373-1386.
    [22]Muyzer G,Waal E C,Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.Applied and Environmental Microbiology,1993,59(3):695-700.
    [23]杨朝晖.基于分子生态学技术的环境微生物群落结构与功能的研究.长沙:湖南大学,2007.
    [24]王峰.城市污水处理过程硝化菌群功能与群落特征研究.上海:同济大学,2006.
    [25]李冰冰,肖波,李蓓.FISH技术及其在环境微生物临测中的应用.生物技术,2007,17(5):94-97.
    [26]苏俊峰.异养型同步硝化反硝化脱氮技术及微生物特性研究.哈尔滨:哈尔滨工业大学,2007.
    [27]Llobet E,Rossello R,Amann R I.Microbial community composition of wadden sea sediments as revealed by fluorescence in situ hybridization.Applied and Environmental Microbiology,1998,64(3):2692-2696.
    [28]Alfrider A,Pernthaler J,Amann R,et al.Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization.Applied and Environmental Microbiology,1996,62(7):2138-2144.
    [29]Kenzaka T,Yamaguchi N,Tani K.16S rRNA-targeted fluorescent in situ hybridization analysis of bacterial community structure in river water.Microbiology,1998,144(14):2085-2093.
    [30]Weiss P B,Schweitzer R,Amann M.Identification in situ and dynamics of bacteria on limnetic organic aggregates(Lake Snow).Applied and Environmental Microbiology,1996,62(5):1998-2005.
    [31]Felske A,Akkermans A D.In situ detection of an uncultured predominant bacillus in dutch grassland soil.Applied and Environmental Microbiology,1998,64(12):4588-4590.
    [32]Macnaughton S J,Booth T,Embley T M.Physical stabilization and confocal microscopy of bacteria on roots using 16S rRNA targeted fluorescent-labeled oligonucleotide probes.Journal of Microbiology Methods,1996,26(3):279-285.
    [33]Wagner M.In situ analysis of nitrifying bacteria in sewage treatment plants.Water Science and Technology,1996,34(9):237-244.
    [34]Wagner M,Amann R.Identification and in situ detection of gramnegative filamentousbacteria in activated sludge.Applied Microbiology,1994,17(5):405-417.
    [35]Wagner M,Rath G,Amann R,et al.In situ identifi cation of ammonia oxidizing bacteria.Applied Microbiology,1995,18(3):251-264.
    [36]Wagner M,Noguera D.Combiningfluorescent in situ hybridization with cultivation and mathematical modeling to study population structure and function of ammonia-oxidizing bacteria in activated sludge.Water Science and Technology,1998,37(7):441-449.
    [37]Manz W,Amann R,Ludwig W,et al.Phylogenetic oligonucleotide probes for the major subclasses of proteobacteria:Problems and solutions.Applied Microbiology,1992,15(2):593-600.
    [38]Luxmy B S.Analysis of bacterial community in membrane-separation bioreactors by fluorescent in situ hybridizaton and denaturing gradient gel electrophoresis.Water Science and Technology,2000,41(4):259-268.
    [39]Simon N,Biegala I C.Kinetics of attachment of potentially toxic bacteria to Alexandrium tamarense.Aquatic Microbial Ecology,2002,28(9):249-256.
    [40]Araya R,Tani K,Takagi T.Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis.FEMS Microbiology Ecology,2003,43(5):111-119.
    [41]Mc Namara C J,Lemke M J,Left L G.Culturable and non-culturable fractions of bacterial populations in sediments of a South Carolina stream.Hydrobiologia,2002,482(6):151-159.
    [42]Liu J,Left L G.Temporal changes in the bacterioplankton of a North east Ohio(USA)River.Hydrobiologia,2002,489(3):151- 159.
    [43]李珊珊,王加启,李旦,等.Real-time PCR技术的应用研究进展.生物技术通报,2009,8(2):60-63.
    [44]张振冬,邹亚男,王淑芬,等.Real Time PCR研究进展及其在海洋病原生物检测中的应用.海洋环境科学,2008,27(增刊2):144-150.
    [45]Higuchi R,Dollinger G,Walsh P S,et al.Simultaneous amplification and detection of specific DNA sequences.Biotechnology,1992,10(4):413.
    [46]Tay S T,Hemond F H,Krumholz L R,et al.Population dynamics of two toluene degrading bacterial species in a contaminated stream.Microbial Ecology,2001,41(2):124-131.
    [47]Hermansson A,Lindgren P E.Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR.Applied and Environmental Microbiology,2001,67(2):972-976.
    [48]Hermansson A,Baekman J S K,Svensson B H,et al.Quantification of ammonia-oxidising bacteria in limed and non-limed acidic coniferous forest soil using real-time PCR.Soil Biology&Biochemistry,2004,36(11 ):1935-194 I.
    [49]Okano Y,Krassimira R H,Christian M L,et al.Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil.Applied and Environmental Microbiology,2004,70(2):1008-1016.
    [50]Schwartz T,Volkmann H,Kirehen S.Real-time PCR detection of Pseudomonas aeruginosa in clinical and municipal wastewater and genotyping of the ciprofloxacin-resistant isolates.FEMS Microbiology Ecology,2006,57(1):158-167.
    [51]Lee D Y,Shannon K,Beaudette L A.Detection of bacterial pathogens in municipal wastewater using an oligonucleotide microarray and real-time quantitative PCR.Journal of Microbiological Methods,2006,65(3):453-467.
    [52]Bertrand I,Gantzer C,Chesnot T,et al.Improved specificity for Giardia lamblia cyst quantification in wastewater by development of a real-time PCR method.Journal of Microbiological Methods,2004,570):41-53.
    [53]Ogorzaly L,Gantzer C.Development of real-time RT-PCR methods for specific detection of F-specific RNA bacteriophage genogroups:application to urban raw wastewater.Journal of Virological Methods,2006,138(1-2):131-139.
    [54]Spano G,Beneduee L,Terzi V,et al.Real-time PCR for the detection of Escherichia coli O157:H7 in dairy and cattle wastewater.Letters in Applied Microbiology,2005,40(3):164-171.
    [55]Heijnen L,Medema G.Quantitative detection of E.coli,E.coli O157 and other shiga toxin producing E.coli in water samples using a culture method combined with real-time PCR.Journal of Water Health,2006,4(4):487-498.
    [56]Ko G,Jothikumar N,Hill V R,et al.Rapid detection of infectious adenoviruses by mRNA real-time RT-PCR.Journal of Virological Methods,2005,127(2):148-153.
    [57]Kaetzke A,Jentzseh D,Esehrieh K.Quantification of microthrix parvicella in activated sludge bacterial communities by real-time PCR.Letters in Applied Microbiology,2005,40(3):207-211.
    [58]Bathe S,Hausner M.Design and evaluation of 16SrRNA sequence based oligonucleotide probes for the detection and quantification of comamonas testosterone in mixed microbial communities.BMC Microbiology,2006,13(6):54.
    [59]Fischer S G,Lerman L S.Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis.Cell,1979,16(6):191-200.
    [60]Muyzer G,De Waal E C,Ulterlinden A G.Profiling of complex microbial population by denaturing gradient gel electrophoreses analysis of polymerse chain reaction-amplified genes coding for 16Sr RNA.Applied and Environmental Microbiology,1993,59(3):695-700.
    [61]Pereira M A,Roest K,Stams A J M.Molecular monitoring of microbial diversity in expanded granular sludge bed(EGSB) ractors treating oleic acid.FEMS Microbiology Ecology,2002,41(2):95-103.
    [62]Fang H,Liu H,Zhang T.Characterization of a hydrogen-producing granular sludge.Biotechnology and Bioengineering,2002,78(1):44-52.
    [63]Cole A C,Shanahan J W,Semmens M,et al.Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater.Desalination,2002,146(7):421-426.
    [64]Watanabe K,Terarnoto M,Futamata H,et al.Molecular detection,isolation,and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge.Applied and Environmental Microbiology,1998,64(4):4396-4402,
    [65]Jackson C R,Roden E E,Churchill P F.Changes in bacterial species composition in enrichment cultures with various dilutions of inoculum as monitored by denaturing gradient gel electrophoresis.Applied and Environmental Microbiology,1998,64(8):5046-5048.
    [66]Duhamel M,Wehr S D,Yu L,et al.Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachioroethene,trichloroethene,cis-dichloroethene and vinylchloridet.Water Research,2002,36(6):4193-4202.
    [67]Hoostal M J,Bullerjahn G S.Molecular Assessment of the potential for in situ bioremediation of PCBs from aquatics ediments.Hydrobiologia,2002,469(5):59-65.
    [68]Hoshino M,Aoike N,Takahashi M,et al.Increased immunoeractivity of stromal cell-derived factor-1 and angiogenesis in asthma.European Respire Journal,2003,21(4):804-809.
    [69]Ward D M,Ferris M J,Nold S C,et al.Anatural view of microbial biodiversity within hot spring cyanobacterial mat communities.Microbiological Molecular Biology Reviews,1998,62(4):1353-1370.
    [70]刘新春,吴成强,张昱,等.PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析.生态学报,2005,25(4):842-847.
    [71]N(u|¨)bel U,Garcia-Pichel F,Muyzer G.PCR primers to amplify 16S rRNA genes from Cyanobacteria.Applied and Environmental Microbiology,1997,53(2):3327-3332.
    [72]Renouf V,Claisse D,Miot-Sertier C,et al.Lactic bacterial evolution during winemaking:Use of rpoB gene as a target for PCR-DGGE analysis.Food Microbiology,2005,23(6):136-145.
    [73]Van Elsas J D,Duarte G F,Keijizer-Wolters A,et al.Analysis of the dynamics of the fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis.Microbiol Methods,2000,43(6):133-151.
    [74]Curtis T P,Craine N G.The comparison of the diversity of activated sludge plants.Water Science and Technology,1998,37(9):71-78.
    [75]Gich F,Schubert K,Bruns A,et al.Specific detection,isolation,and characterization of selected,previously uncultured members of the freshwater bacterioplankton community.Applied Environmental Microbiology,2005,71(5):5908-5919.
    [76]陈红歌,胡元森,贾新成,等.垃圾填埋场细菌种群空间分布及组成多样性研究.环境 科学学报,2005,25(6):809-815.
    [77]殷峻,陈英旭,刘和,等.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性.环境科学,2004,25(6):12-16.
    [78]Murray A E,Hollibaugh J T,Orrego C.Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient electrophoresis of 16S rDNA fragments.Applied and Environmental Microbiology,1996,62(7):2676-2680.
    [79]Zwart G,Huismans R,van Agterveld M,et al.Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake.FEMS Microbiology Ecology,1998,25(3):159-169.
    [80]Donner G,Schwarz K,Hoppe HG,et ai.Profiling the succession of bacterial populations in pelagic chemoclines.Archives Hydrobiology,1996,48(6):7-14.
    [81]Santegoeds C M,Muyzer G,de Beer D.Successional processes in a bacterial biofilm determined with microsensors and molecular techniques.In:Verachtert H,Verstraete W,eds.Proceedings of the International Symposium on Environmental Microbiology,Ostende.Belgium:Ghent University Publishers,1997,77-82.
    [82]Ferris M J,Ward D M.Seasonal distributions of dominant 16S rRNA defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis.Applied and Environmental Microbiology,1997,63(3):1375-1381.
    [83]高廷耀,顾国维.水污染控制工程(第二版,下册).北京:高等教育出版社,1999,135-140.
    [84]戴睿.16s rDNA分子生物学技术在除磷菌种群结构分析中的应用.上海:同济大学,2007.
    [85]Kazuya W,Natsuko H.Molecular and physiological approaches to understanding the ecology of pollutant degradaiton.Current Opinion in Biotechnology,2003,14(3):289-295.
    [86]Xing D E,Godfrey M H.Nuclear DNA analysis in genetic studies of populations:practice,problems and prospects.Molecular Ecology,2003,12(3):563-584.
    [87]Wen-Tsol,On-Chime C,Fang H.Microbial community dynamics during start-up of acidogenic anaerobic reactors.Water Research,2002,36(13):3203-3210.
    [88]Zhang T,Fang H.Phylogenetic diversity of a SRB-rich marine biofilm.Applied Microbiological Biotechnology,2001,57(3):437-440.
    [89]Lamontagne M G,Michel F C,Holden P A,et al.Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from co mpost for microbial community analysis.Journal of Microbiological Methods,2002,49(7):255-264.
    [90]苏俊峰,马放,侯宁,等.活性污泥总DNA不同提取方法的比较.生态环境,2007,16(1):47-49
    [91]陈德富,陈喜文.现代分子生物学实验原理与技术.北京:科学出版社,2006,64-65.
    [92]曹亚.实用分子生物学操作指南.北京:人民卫生出版社,2003,34-36.
    [93]戴睿,夏四清.PCR技术在水体微生物检测中的应用.环境科学与技术,2006,29(9):103-105.
    [94]雷娟利.蔬菜土壤生态系统微生物分子生态学研究.杭州:浙江大学,2006.
    [95]李斌.应用PCR-DGGE分析磁性流化床生物脱硫反应器的菌群多样性.呼和浩特:内蒙古师范大学,2007.
    [96]苏俊峰.异养型同步硝化反硝化脱氮技术及微生物特性研究.哈尔滨工业大学,2007
    [97]奥斯伯F,金斯顿R E,塞得曼J G,等.精编分子生物学实验指南.颜子颖,王海林 译.北京:科学出版社,1998,831-833.
    [98]Frostegarda,Courtotoiss,Simonentp,et al.Quantification of bias related to the extraction of DNA directly from soils.Applied and Environmental Microbiology,1999,65(12):5409-5420.
    [99]Guthrie J N,Moriarty D J W,Blackall L L.DNA extraction from coral reef sediment bacteria for the polymerase chain reaction.Journal of Microbiological Methods,2000,43(2):73-80.
    [100]高平平,赵立平.可用于微生物群落分子生态学研究的活性污泥总DNA提取方法研究.生态学报,2002,22(11):2015-2019.
    [101]廖永红,周晓宏,汪苹,等.脱氮活性污泥总DNA提取研究.环境科学与技术,2007,30(12):75-79.
    [102]熊开容,张智明,张敏.活性污泥总DNA提取方法的研究.生物技术,2005,15(4):43-45.
    [103]伍阳,谢晴,龙用波,等.从活性污泥中提取微生物总DNAf内方法比较.安徽农业科学,2008,36(11):4452-4454.
    [104]孙宝盛,张斌,吴卿,等.应用PCR-DGGE技术解析MBR中微生物群落多样性.天津大学学报,2008,41(3):356-361.
    [105]徐克前.分子生物学榆验技术实验指导.北京:人民卫生出版社,2003.
    [106]Zhou J,Brunsma,Tiedje J M.DNA recovery from soils of diverse composition.Applied Microbiologogy and Biotechnology,1996,62(2):316-322.
    [107]邢德峰,任南琪,宫曼丽.PCR-DGGE技术解析生物制氢反应器微生物多样性.环境科学,2005,26(2):172-176.
    [108]Li Z Y,He L M,Wu J,et al.Bacterial community diversity associated with four marines ponges from the South China Sea based on 16St DNA-DGGE fingerprinting.Jounral of Experimental Marine Biology and Ecology,2006,329(1):75-85.
    [109]Yu Z,Morrison M.Comparisons of different hypervari-able regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis.Applied and Environmental Microbiology,2004,70(3):4800-4806.
    [110]罗海峰,齐鸿雁,薛凯,等.在PCR-DGGE研究土壤微生物多样性中应用GC发卡结构的效应.生态学报,2003,23(10):2170-2175.
    [111]魏利,马放,刘亚丽.厌氧活性污泥PCR-DGGE图谱的优化.哈尔滨工业大学学报,2009,41(2):81-84.
    [112]邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析.微生物学报,2006,46(2):331-335.
    [113]宋业颖,赵丽华,邢德峰,等.利用时间进程法优化活性污泥DG-DGGE图谱.生物技术,2006,16(2):43-45.
    [114]Cremonesi L,Firpo S,Ferrari M,et al.Double-gradient DGGE for optimized detection of DNA point mutations.Biotechniques,1997,22(8):326-330.
    [115]Kisand V,Wikner J.Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences.Journal of Microbiological Methods,2003,54(7):183-191.
    [116]江芸,高峰,徐幸莲,等.PCR-DGGE技术及其在发酵食品微生物研究中的应用.安徽农业科学,2007,35(21):6591-6593.
    [117]Schabereiter-Gurtner C,Saiz-Jimenez,Pinear G,et al.Phylogenetic 16S rRNA analysisrevealsthe presence of complex and partly unknown bacterial communities in Tito Bustillocave,Spain,and on its Palaeolithic paintings.Environmental Microbiology,2002,4(7): 392-400.
    [118]江云飞,蔡柏岩.PCR-DGGE技术在细菌多样性研究中的条件优化.生物技术,2009,19(5):84-87.
    [119]施锦岳,张玉先,包卫彬.姚江水源水有机物分子量分布.云南环境科学,2005,24(增刊):125-126
    [120]周立红,张淑琪,王占生,等.不同组合净水工艺对水中致突变物的去除.环境科学,1999,20(1):43-46
    [121]Chang C N,Chao A,Lee F S,et al.Influence of molecular weight distribution of organic substances on the removal efficiency of DBPs in a conventional water treatment plant.Water Science and Technology,2000,41(10):43-49.
    [122]董秉直,曹达文,范瑾初,等.混凝和粉末活性炭去除黄浦江水中DOM的效果.中国给水排水,2000,16(3):1-4.
    [123]Lepane V,Persson T,Wedborg M.Effects of UV-B radiation on molecular weight distribution and fluorescence from humic substances in riverine and low salinity water Estuarine.Coastal and Shelf Science,2003,56(1):161-173.
    [124]董秉直,李伟英,陈艳,等.用有机物分子量分布变化评价不同处理方法去除有机物的效果.水处理技术,2003,29(3):155-158.
    [125]李爽,张晓健,范晓军,等.水源水中不同分子量区间有机物的分布及控制对策.环境科学学报,2003,23(3):327-331.
    [126]张立卿,王磊,王旭东,等.城市污水二级出水有机物分子量分布和亲疏水特性对纳滤膜污染的影响.环境科学学报,2009,29(1):75-80.
    [127]王磊,王旭东,刘莹,等.水中残留有机物分子量分布特征和对膜性能的影响.水处理技术,2006,32(6):21-26.
    [128]Imai A,Fukushima T,Matsushige K,et al.Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake,its inflowing rivers,and other organic matter sources.Water research,2001,35(17):4019-4028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700