大蒜加工废水的ABR-好氧处理工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,大蒜制造业蓬勃发展,各种大蒜加工企业规模不断扩大,由此产生了大量的加工废水,但是大蒜废水具有强烈的抑菌作用,因此目前对于这类废水的研究还很少。本文主要研究了ABR-好氧组合工艺对于大蒜水的降解效果,并且考察了添加后续混凝处理对废水COD的去除。
     本文首先研究了ABR反应器单独处理大蒜加工废水的情况。先以水力停留时间为指标表征了自制ABR反应器,说明增加填料可延长反应器的停留时间,提高其COD的去除率。成功启动了ABR反应器,对于COD为3000mg/L的进水,去除率稳定在75%左右。同时还考察了温度以及进水有机负荷对去除率的影响,确定了本实验ABR反应器的最佳运行工艺,即在35℃下,进水流量为1L/h,进水有机负荷为5000mg/L,此时COD的去除率稳定在80%左右。
     在ABR反应器的最佳工艺条件下考察ABR-好氧组合工艺对于废水的去除率:ABR反应器对于废水的去除率始终稳定在80%左右,好氧反应器的去除率则始终保持在85%~90%之间,ABR-好氧组合工艺的总去除率始终保持在97%左右,出水水质符合国家二级排放标准。另外实验确定了组合工艺的最适进水COD浓度为5500mg/L,最适温度可达到45℃,而经过ABR处理后的废水再进入好氧反应器处理比相同COD的大蒜水直接进入好氧反应器的COD去除效果提高了8%,可见ABR提高了废水的可生化性。
     同时,本实验还考察了后续添加混凝处理对于出水COD的去除情况。对比不同混凝剂投加量对于COD去除率的影响,确定了本实验混凝剂的投加量为60mg/L,经过混凝处理,可以将出水的COD降低至60mg/L以下,且出水澄清,透光性好,满足国家一级排放标准。
In recent years,because of the expanding of garlic processing enterprises,it produces a lot of wastewater,however the garlic wastwater has characteristics of antiseptic and detoxification, and currently there is few research for this kind of wastewater.This paper studied the effect of ABR-aerobic process on the degradation of garlic wasterwater,and researched the influence of continuerous added coagulation treatment on the removal efficiency of COD in the wasterwater.
     This article firstly studied the ABR reactor separately treated garlic processing wastewater.Characterized the self-made ABR reactor with HRT,indicating adding the packings will increase the reactor residence,and improve the COD removal rate. Successfully launched the ABR reactor, for the influent of COD 3000mg/L,removal rate maintained about 75%.Meanwhile,the effects of temperature and influent organic loading on the removal rate were studied,the optimal operation process of the ABR reactor was determined which the water flow rate of 1L/h and water organic load of 5000mg/L under the temperature of 35℃,the removal rate of COD stabilized at 80%.
     Studied the wastewater removal rate of ABR-aerobic process,wastewater removal rate of ABR reactor stabilized at about 80%,the removal rate of aerobic reactor maintained at 85% to 90%,and the total ABR-aerobic process removal rate remained at about 97%,the effluent attained the state's second-class standard for the environmental quality of surface water. Determined the optimum influent COD is 5500mg/L,while the optimal temperature of ABR-aerobic combined process can reach 45℃.Compared with the same organic load garlic water directly entered the anaerobic reactor,the COD removal of wastewater entered after treatment by ABR reactor enhanced 8%,it can be seen that the wastewater's biochemical ability can be increased by ABR.
     As the same time,this experiments also investigated the coagulation process for the effect of COD removal.Comparing the COD removal rate under different dosage and finally determined coagulant dosing quantity of this experiment is 60mg/L,and after coagulation, COD can be reduced to below 60mg/L,the effluent kept clear and attained the state's first-class standard for the environmental quality of surface water.
引文
[1]梁湘朗,史合群.大蒜素及其开发利用现状.现代化工,1997,(6):15~17·
    [2]薛福连.大蒜素提取技术.江苏调味副食品,2002,(75):18~21·
    [3]苏丹,昌友权.浅谈大蒜系列产品的开发现状.中国食物与营养,2004,(10):2-4.
    [4]娄红祥.大蒜化学成分的研究进展.国外医学·植物药分册,1991,6(2):55~56·
    [5]王娟,范迪.微电解法预处理大蒜废水试验研究.环境工程学报,2008,2(7):951~954.
    [6]于新蕊,丛月珠.大蒜的化学成分及其药理作用研究进展.中草药,1994,25(3):158~158.
    [7]杨学智,王玉华.大蒜的化学成分及免疫药理研究近况(综述).北京中医药大学学报,1997,20(6):47~49.
    [8]杨凤娟,刘世琦.大蒜素研究进展.安徽农业科学,2003,31(6):1034~1051.
    [9]Gleitz J, Peters Th. pHarmacological significance of an enteric-coated formulation of garlic powder. Medizinische Welt,1995,46:8-9,458~460.
    [10]Wu D K, Yin X W. Stabivity of allicin. Food Science China,1998,18(5):34~36.
    [11]Agrawal R, Mohanty B, Singh N S, et al. Parameters affectting allicin formation secondary metabote by static cultures of Allium Sativum. Journal of the Science of Food and Africulture,1992,57(2):155~162.
    [12]张献彬,罗清,王新伟,等.大蒜脱水废水处理工程设计与运行.工业用水与废水,2008,39(4):88~90.
    [13]李道荣.水处理剂概论.北京:化学工业出版社,2005:95.
    [14]高廷耀.水污染控制工程.北京:高等教育出版社,2006:14.
    [15]肖大松. SBR法处理城市生活污水的研究.重庆环境科学,1996,(4):39-41.
    [16]任红娟.我国城市污水处理的主要工艺及发展趋势.中国建设教育,1999,(4):83~85.
    [17]李汝琪,孙长虹,钱易.曝气生物滤池处理啤酒废水的研究.环境科学,2006,12(3):17~19.
    [18]董宏宇.酸化凝聚-生物接触氧化法处理制革工业污水试验研究.环境污染与防治,1997,3:12~14.
    [19]杨义燕,马文漪,王坚伟,等.MD三相流化床降解含酚废水的研究.环境科学,1998,6:63~65.
    [20]王凯军,左剑恶,甘海南.UASB工艺的理论与工程实践.北京:中国环境科学出 版社,2000.
    [21]方芳,龙腾锐.厌氧生物滤池的研究和应用现状.中国给水排水,1999,15(4):24~27.
    [22]黄长盾,张志仁,杭世珺.厌氧生物转盘处理高浓度有机废水的研究.环境科学,1991,5:13~15.
    [23]李平.新型生物流化床反应器处理垃圾渗滤液的理论与应用研究.广州:华南理工大学,2002.
    [24]马 勇.新型厌氧处理工艺-厌氧迁移式污泥床反应器.工业水处理,2003,23(10):17~19.
    [25]王建龙.折流式厌氧反应器的研究进展.应用与环境生物学报,2000,6(5):490~493.
    [26]吴静.新型高效内循环厌氧反应器.中国给水排水,2001,17(1):26~29.
    [27]左剑恶,王妍春,陈浩.膨胀颗粒污泥床(EGSB)反应器的研究进展.中国沼气,2000,18(4):3-8.
    [28]常海荣,张振家,王欣泽.厌氧膨胀颗粒污泥床(EGSB)在高浓度工业废水处理中的应用.环境工程,2004,22(3):14~16.
    [29]杨宝林.新型厌氧设备.上海环境科学,1990,9(11):47~48.
    [30]何建普,黄明.厌氧序批式反应器(ASBR)工艺研究进展.企业技术开发,2007,26(5):35~37.
    [31]郑铭.环保设备—原理·设计·应用.北京:化学工业出版社,2007.
    [32]陈家庆.环保设备原理与设计.北京:中国石化出版社,2008.
    [33]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998,9(13):111~165.
    [34]李慧婷,李永峰,王帅,等.厌氧折流板反应器及其废水处理工艺.辽宁化工,2010,39(1):102~105.
    [35]Lettinga G, Field J, Van J. Advanced anaerobic wastewater treatment in the near Future. Wat Sci&Tech,1997,35(10):5-12.
    [36]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998.
    [37]童昶,沈耀良,赵丹,等.厌氧反应器技术的发展及ABR反应器的工艺特点.江苏环境科技,2001,14(4):9-11.
    [38]赵一章.高活性厌氧颗粒污泥微生物特性和形成机理的研究.微生物学报,1994,34(1):45.
    [39]孙剑辉,张波,彭云辉.新型高效生物处理技术——厌氧折流板反应器.工业水处理,2002,22(4):58.
    [40]闵航,陈美慈,钱泽漱,等.厌氧微生物学.杭州:浙江大学出版社,1993:202-203.
    [41]AlpHenaar A. Anaerobic granular sludge characterization and factors affecting its functioning. The Netherlands WAU,1994:25~29.
    [42]陈洪斌.用厌氧折流板反应器处理豆制品废水的研究.中国沼气,1999,17(1):12~16.
    [43]胡纪萃.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003.
    [44]苏滕,陆中兴.混凝剂的研究应用与开发动向(一).净水技术,2000,18(3):7~9.
    [45]苏滕,陆中兴.混凝剂的研究应用与开发动向(二).净水技术,2000,19(4):8~12.
    [46]张瑛,阮晓红.水处理混凝剂及其发展方向.污染防治技术,2003,16(4):45~49.
    [47]傅源.大蒜加工废水的SBR工艺研究.南京:南京理工大学,2009.
    [48]孔祥西.ABR处理高浓度有机废水的特性及应用研究.西安:西安建筑科技大学,2004.
    [49]苏鸿洋.复合式厌氧折流板反应器处理城市生活污水试验研究.福州:福州大学,2002.
    [50]Fannin K F, Srivastra V J, Conrad J R, et al. Marine biomass program:anaerobic digester system development. Annual Report for General Electric Company, Institute of Gas Technology, Chicago, Illinois,1981.
    [51]McCarty P L. One hundred years of anaerobic treatment. Anaerobic Digestion 1981. Elsevier Biomedical Press B.V.,1981:3-21.
    [52]Yang P Y, Moengangongo T H. Operational stability of horizontally baffled anaerobic reactors for dilute swine wastewater in the tropics. Trans ASAE,1987,30(4): 1105~1110.
    [53]Xing J, Tichle A. The effect of hydraulic retention time on the hybrid anaerobic baffled reactor performance at constant loading. Biomass Bioenergy,1992,3(1):25~29.
    [54]Boopathy R. Biological treatment of swine waste using anaerobic baffled reactors. Bioresource Technology,1998,64:1-6.
    [55]Skiadas I.V., Lyberatos G. The periodic anaerobic baffled reactor. Wat Sci Tech,1998, 38(8~9):401~408.
    [56]Sinan U. A novel anaerobic reactonsplit fed anaerobic baffled reactor (SFABR). Turkish J Eng Env Sci,2003,27:339~345.
    [57]沈耀良.ABR反应器中污泥的特性及其分布.苏州城建环保学院院报,1998,12(2):1~7.
    [58]周 明,施永生,吕其军.厌氧折流板反应器的技术探讨.有色金属设计,2006,23(1):59~64.
    [59]沈耀良,王宝贞,杨铨大.厌氧折流板反应器处理垃圾渗滤液混合废水.中国给水排水,1999,15(5):10~20.
    [60]王宝贞,沈耀良.水解酸化—好氧工艺处理渗滤液与城市污水混合废水的研究.哈尔滨建筑大学学报,1999,32(1):57~61.
    [61]陈洪斌.厌氧折流板反应器处理豆制品废水的研究.中国沼气,1999,17(7):12~16.
    [62]黄永恒.折流式厌氧反应器的工艺特性及其运用.中国给水排水,1999,15(7):18~20.
    [63]沈耀良,王宝贞.废水生物处理新技术—理论与应用.北京:中国环境科学出版社,1999.
    [64]Orozco A. Pilot and full-scale anaerobic treatment of low-strength wastewater at sub-optimal temperature with a hybrid plug flow reactor. Eighth International Conference on Anaerobic Digestion. Sendai, Japan,1997,2:183~191.
    [65]Boopathy R, Tilche A. Anaerobic digestion of high strength molasses wastewater using a hybrid anaerobic baffled reactor. Water Research,1991.7,25(7):785~790.
    [66]Nachaiyasit S, Stuckey D C. The effect of low temperature on the performance of an anaerobic baffled reactor (ABR). Chem Tech Biotechnol,1997,69:276~284.
    [67]Chynoweth D P, Srivastra V J, Conrad J R. Research study to determine the feasibility of producing methane gas from sea kelp. Annual Report for General Electric Company, Institute of Gas Technology,1980.
    [68]戚以政,汪叔雄.生化反应动力学与反应器.北京:化学工业出版社,1999.
    [69]徐金兰,王志盈,杨永哲,等.ABR的启动与颗粒污泥形成特征.环境科学学报,2003,23(5):575~581.
    [70]国家环境保护总局.水质化学需氧量的测定-快速消解分光光度法.北京:中国环境科学出版社,2008.
    [71]仝斌.Fenton法处理垃圾渗滤液的实验研究及其工程设计.南京:南京理工大学,2008.
    [72]钟秦,俞马宏.化工数值计算.北京:化学工业出版社,2003.
    [73]董红星,杨晓光,王兴超,等.连续搅拌釜流场数值模拟及停留时间分布.石油和化工设备,2008,6:19~23.
    [74]陈甘棠.化学反应工程.北京:高等教育出版社,2007.
    [75]周律,王宝泉.投加颗粒活性炭加快UASB反应器内颗粒化进程的研究.中国给水排水,1996,12(5):16~19.
    [76]Sam-Soon P, Loewenthal R E, Dold P L, et al. HyPothesis for pelletisation in the upflow anaerobic sludge bed reacter. Water SA,1987,13(2):69~80.
    [77]芦家娟,王毅力,赵洪涛,等.ABR反应器的启动及颗粒污泥特征的研究.环境化学,2007.1,26(1),10~16.
    [78]杨百忍.ABR反应器颗粒污泥的培养及运行特性的研究.青岛:中国海洋大学,2005.
    [79]崔清洁.ABR反应器颗粒污泥的培养及其特性研究.济南:山东大学,2008.
    [80]洪铭媛,李清彪,邓旭.废水厌氧(水解)-好氧生物处理工艺研究进展.化工环保,2005,25(2):104~109.
    [81]丁志芬.厌氧-好氧组合生物技术在废水处理中的应用.化工设计,2003,13(5):26~28,49.
    [82]Bode H. Anaerobic-aerobic treatment of industrial wastewater. Wat Sci Tech,1988, 20(4~5):189~198.
    [83]Dienemann E A, Kosson D S, Ahlert R C. Evaluation of serial anaerobic/aerobic packed bed bioreactors for treatment of a superfund leachate. Journal of Hazardous Materials, 1990,23:21~42.
    [84]Rifaat A W, Hamdy M E A. An aerobic-aerobic treatment of meat processing wastewater. The Environmental List,1999,19(1):61~65.
    [85]Armenante P M, David K, Gordon L, et al. Integrated anaerobic-aerobic process for the biodegradation of chlorinated aromatic compounds. Environmental Process,1992, 11(2):113~122.
    [86]Atuanya E I, Purohit H J, Chakrabarti T. Anaerobic and aerobic biodegradation of chloropHenols using UASB and ASG bioreactors. World Journal of Microbiology & Biotechnology,2000,16:95~98.
    [87]Malaspina F. Cheese whey and cheese factory wastewater treatment with a biological anaerobic-aerobic process. Wat Sci Tech,1995,32(12):59~72.
    [88]Ciftci T. Nine years of full-scale anaerobic-aerobic treatment experiences with fermentation industry effluents. Wat Sci Tech,1995,32(12):131~139.
    [89]施玉书,徐健,马建萍.厌氧-好氧和生物净化工艺处理豆制品废水技术研究.中国沼气,1999,17(1):34~36.
    [90]郑京文.厌氧-好氧工艺处理酒厂生产废水.中国给水排水,2003,19(8):88~89.
    [91]张燕平,胡开堂,王然,等.箱板纸厂废水的厌氧-好氧处理.工业水处理,2005,25(5):69~71.
    [92]郑俊,程晓玲.厌氧好氧交替BAF生物除磷工艺处理生活污水研究.水处理技术,2009,35(5):101~104.
    [93]朱铁群,李凯慧,张杰.活性污泥驯化的微生物生态学原理.微生物学通报,2008,35(6):939~943.
    [94]奚旦立.环境监测.北京:高等教育出版社,1987:67~68.
    [95]许晓强.混凝剂在水处理中的应用.农机化研究,2005,2:208~209.
    [96]徐晓军.化学絮凝剂作用原理.北京:科学出版社,2005.
    [97]李风亭,张善发,赵艳.混凝剂与絮凝剂.北京:化学工业出版社,2005.
    [98]李道荣.水处理剂概论.北京:化学工业出版社,2005.
    [99]谭凤训,徐海龙,武道吉.复合混凝去除有机物试验研究.山东建筑大学学报,2009,24(1):18~21.
    [100]郑雅杰,陈白珍,龚竹青,等.硫铁矿烧渣制备聚合硫酸铁新工艺.中南工业大学学报,2001,32(2):142~145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700