氧化沟污水厂关键设备及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国污水处理普遍存在“重量轻质,重厂轻网,重水轻泥”的问题,为了克服这些问题带来的后果,解决氧化沟污水处理厂提标升级和节能降耗的关键设备及技术问题,以及正确应对氧化沟污水厂污泥处理处置的问题,对氧化沟曝气设备倒伞表面曝气机、预处理沉砂系统和氧化沟污水厂污泥特性进行了深入的试验及模拟研究,以指导关键设备的产品开发与运行优化。
     针对国内城镇污水处理厂能耗普遍较高的实际状况,开展污水处理厂高效曝气关键设备倒伞型表面曝气机的研究开发及相关技术研究。利用试验筛选方法,研制出氧化沟工艺关键设备——高效倒伞表面曝气机;并对倒伞表曝机设备的充氧性能及水力学性能进行测试研究,借助MATLAB计算机软件对充氧性能进行数值模拟研究,采用CFD技术对水力学特性进行数值模拟研究,建立了倒伞表面曝气机充氧性能数学模型,并利用此模型进行产品的设计、运行管理的精确曝气控制。
     我国的城市污水中砂粒的含量普遍偏高,砂粒粒径分布结构也与国外具有明显不同,目前污水除砂系统基本都是国外引进产品或者是国外产品的复制品,砂粒去除效果欠佳,因此,需要在传统沉砂池设备的基础上,利用试验研究和模拟分析方法,研究开发出新型或改进的高效沉砂除砂系统及成套设备并优化沉砂池的运行。
     针对主要分布在中国黄河以南7个省46座污水处理厂的数据基础上,用统计概率分布方法,重点对中国南方地区氧化沟污水厂的污泥特性、产生原因、处理处置现状进行深入分析,结合欧盟污泥处理处置现状和未来发展趋势,对中国南方地区污泥处理处置技术的未来发展趋势进行预测,并给出应对策略。
     取得的主要创新性成果如下:
     (1)开发出新型高效的大功率倒伞型表面曝气机,最大动力效率达到2.73kgO_2/kWh(行业标准(JB/T10670-2006)为2.1kgO_2/kWh)。
     (2)建立了倒伞表面曝气机充氧性能数学模型,并以此作为产品开发和运行控制的核心指导技术。
     利用此模型发现倒伞型表面曝气机存在1个最佳动力效率工况点,1个次佳动力效率工况点和1个动力效率凹谷,最佳工况点叶轮浸没深度为283.5mm,叶轮转速为29.73r/m(线速度5.06m/s),该点的动力效率为2.73kgO_2/kWh,在设计运行中,应以此点为控制目标;并对倒伞型表面曝气机的运行控制提出与过去完全不同的控制方式,建议运行稳定在最佳工况点,如果工艺运行需要对曝气量进行调整,推荐维持最佳液位不变,仅采用转速调整进行曝气量的控制,针对本次开发的倒伞型表面曝气机,叶轮转速建议控制在27.27r/m(线速度4.64m/s)~32.88r/m(线速度5.59m/s)之间,此运行区间内输入功率变化范围在81.3kW~131.4kW之间,动力效率变化范围在2.50kgO_2/kWh~2.73kgO_2/kWh之间。
     (3)采用一种用于评价污水预处理阶段沉砂池除砂效果的测试方法——连续取样沉降法,辅助沉砂池数值模拟手段,对新开发的新型旋流沉砂池性能进行评价,指导产品优化设计与优化运行。
     发现新型沉砂池除砂效率随水量增加逐渐减小,并存在一个突然下降的拐点;存在一个最佳搅拌桨片转速值,使得该点除砂效率最大。连续取样沉降法测试稳定快捷,能够很好地反映实际沉砂池运行效果,有助于对沉砂池运行进行优化与改进;利用一气体流量计通过对曝气支管间气体流量差来监测曝气沉砂池支管中气量的大小,以控制各支管间的启闭来有效的调整曝气量大小,同时利用上述测试方法研究出影响曝气沉砂池除砂性能的因素HRT、进水流速和曝气强度与除砂率之间的相互关系,有助于对曝气沉砂池运行的优化管理。
     (4)采用统计概率分布方法,对氧化沟污水厂的污泥特性、产生原因、处理处置现状进行深入分析,结合欧盟污泥处理处置现状和未来发展趋势,对中国氧化沟污泥处理处置技术的未来发展趋势进行预测,并给出应对策略。
     发现我国氧化沟污水厂污泥特性:污水厂最大概率密度脱水污泥含水率为78.73%;挥发分偏低,为43.21%;污泥高位热值偏低,为9.16MJ/kg-DS;污泥重金属除个别污水厂超标外,其他均能满足我国城镇污水处理厂污泥处置系列标准中相对较严的《城镇污水处理厂污泥处置园林绿化用泥质》(GBT23486-2009)标准。我国氧化沟污水厂污泥适合农用等资源化利用;污泥处置不适合采用独立焚烧处理工艺,有条件可采用高干脱水后制作燃料工艺。
“Look up to quantity and down on quality, up to plant and down on network, upto sewage treatment and down on sludge disposal” used to be a main thinking amongdecision makers in China. These have maken some problems in wastewater treatment.In order to solve these problems, upgrade the wastewater treatment plants with theprocess of Oxidation Ditches(OD) in water discharge quality, energy saving andsludge disposal. Our study is focused on surface aerator of OD, grit chamber andsludge treatment and disposal, so as to develop more efficient equipments and getoptimal operation.
     The aim of the study is to investigate the oxygen mass-transfer characteristics ofthe vertical shaft tubine surface arerator to upgrade its power efficiency. A new type ofhigh efficiency surface aerator was developed with methods of test and simulation. Anew model of oxygen transfer characteristics of the surface arerator was set up withaid of MATLAB and CFD simulator. The model was applied in equipment developing,optimal operating in prcise aeration.3patents were applied related to thesetechniques.
     The grit in wastewater is high in Chinese wastewater treatment plants (WWTPs).The particle size distribution is deferent to that of foreign contry. In China, most ofgrit removal equipments were introduced from overseas or copied from that of foreigncontrys, so the girt removal efficiency is very low. The study on the girt chamber wasfocused on developing a new high grit removal efficiency chamber and operatingoptimized with methods of tests and simulation.
     Using Statistical probability distribution method, analyze sludge characteristics,reasons, treatment and disposal situations of the sludge from the oxidation ditcheswastewater treatment plants in southern China,comparative study of the treatmentand disposal situations and future development trends of the sludge in EuropeanUnion,forecast future development trends of the methods used for treatment and finaldisposal of sewage sludge in southern China, and give some proposals for the sludgemanagement.
     As the results, it has been found that:
     1) A new type of high efficiency surface aerator was developed with powerefficiency of2.73kgO_2/kWh,however, the benchmarking is2.1kgO_2/kWh.
     2) A new model of oxygen transfer characteristics of the surface arerator was setup. The model can be applied in equipment developing, optimal operating in prciseaeration.
     With aid of this model, we found that: There is a maximum power efficiencypoint, a sub-maximum power efficiency point and a minimum power efficiency pointfor this type of surface aerator, the submergence is283.5mm and the rotational speedis29.73r/m at the maximum power efficiency point; This result shows that it shouldbe controlled at the maximum power efficiency point in operation, and should keepconstant depth of immersion at a range of rotational speed from27.27r/m to2.88r/mand input power from81.3kW to131.4kW for this aerator in some occasion so as toget high power efficiency in operation;The input power is101.5kW at the maximumpower efficiency point, and the maximum input power is131.4kW in high powerefficiency area.
     3) Used a new method—continue sampling settling method, with aid ofnumerical simulation, to evaluated the grit chamber system, so as to optimaldeveloping the equipment and operating the system.
     The results show: the grit removal rate of the rotational flow grit chamberdecreases with water flow increase, and exists a break point, exists a optimized bladerotating speed with maximum girt removal rate. Continue sampling settling method isstable and quick, can realy evaluate the efficiency of the grit chambar, help toopotimize the operation of the system. With the help of a kind of air flow meter, tometer the air flow of the branch pipes of the aeration grit chamber for controlling theair flow, so as to study the relationship between aeration intensity and grit removalrate, it has been found that it is helpful to optimal operating.
     4) Using Statistical probability distribution method, analyze sludgecharacteristics, reasons, treatment and disposal situations of the sludge from thewastewater treatment plants with process of oxidation ditches in southern China,forecast future development trends of the methods used for treatment and finaldisposal of sewage sludge in southern China, and give some proposals for the sludgemanagement.
     As the results, the characteristics of OD sludge has been found that:the watercontent of the sludge with maximum probability density is78.73%. Volatile matter ofthe sludge is low:43.21%. High heat value is low:9.169.16MJ/kg-DS. The content of heavy metals can meet the standards of “The disposal of sludge from municipalwastewater treatment plant-Sludge quality for afforestation in gardens or forests”(GBT23486-2009). The sludge from OD plants is suit for agricultural use, and cannot be used for incineration, but can be used for fuel after deeply dewatered.
引文
[1]侯宇轩,盘雨宏,2013-2017年中国污水处理行业投资分析及前景预测报告[M],前瞻资讯行业研究中心,2012.
    [2] Amit Sonune, Rupali Ghate. Developments in wastewater treatment methods[J],Desalination,2004,167(15):55~63.
    [3] PochanaK, Keller J. Model development for simultaneous nitrification and denitrification [J]. Water SciTech,1999.39(1):235-243.
    [4]卢培利,张代钧,等.活性污泥法动力学模型研究进展和展望[J].重庆大学学报,2002.25(3):109-114.
    [5]黄勇,杨铨大,王宝贞等,活性污泥生物反应动力学模型研究[J].环境科学研究,1995,8(4):23-27.
    [6]须藤隆一,水环境净化及废水处理微生物学[M],中国建筑工业出版社,1988,5:176-212,349-391。
    [7] Henze M,et al.1987.Activated sludge model No1.In:IAWPRC Scientific and Technical Report,No1.IAWPRC,London.
    [8]郝晓地,甘一萍,周军,数学模拟技术在污水处理工艺设计、优化、研发中的应用(上)[J].给水排水,2004,30(5):33-36.
    [9] Gujer W,et al. Activated sludge model No3[J]. Wat Sci Tech.,1999.183-193.
    [10] Gujer W, Henze M, Mino T, ea al. Wastewater and Biomass Characterization for the Activated SludgeModel No2:Biological Phosphonrus Removal[J]. Wat Sci Tech.,1995.31(2):12-22.
    [11]吴俊奇,汪慧贞,活性污泥法2号模型(ASM2)简介[J].给水排水,1998.24(6):13-18.
    [12]郝晓地等,欧洲城市污水处理新概念—可持续生物除磷脱氮技术(上)[J].给水排水,2002.28(6):6-11.
    [13]郝晓地等,欧洲城市污水处理新概念—可持续生物除磷脱氮技术(下)[J].给水排水,2002.28(7):5-8.
    [14] ER W, HENZE M, MINO T, ea al. Activated Sludge Model No.2d, ASM2d [J]. Wat Sci Tech.,1999.39(1):165-182.
    [15] Siegrist H. et al. The EAWAG Bio-P module for activated sludge model No.3[J]. Wat Sci. Tech.,2002.45(6):61-76.
    [16] Saida Ben Alaya, Latifa Haouech, Hayet Cherif, Hedi Shayeb et al. Aeration management in anoxidation ditch [J]. Desalination,2010.252:172-178.
    [17] N. LESAGE, M. SPE′RANDIO, C. LAFFORGUE and A. COCKX,et al. CALIBRATION ANDAPPLICATION OF A1-DMODEL FOR OXIDATION DITCHES [J]. Trans IChemE,81(A):0263–8762.
    [18] A. ABUSAM1*, K.J. KEESMAN1, K. MEINEMA2and G. VAN STRATEN,et al.2001. OXYGENTRANSFER RATE ESTIMATION IN OXIDATIONDITCHES FROM CLEAN WATERMEASUREMENTS [J]. Wat. Res.,2003.35(8):2058-2064.
    [19] M. Tiranuntakula, V. Jegatheesana, P.A. Schneidera, H.L. Fracchia,et al. Performance of an oxidationditch retrofitted with amembrane bioreactor during the start-up[J]. Desalination,2005.183:417-424.
    [20] J.DUDLEY. PROCESS TESTING OF AERATORS IN OXIDATION DITCHES[J]. War. Res.1995.,29(9):2217-2219..
    [21] F. Visscher, J. van der Schaaf, M.H.J.M. de Croon, J.C. Schouten. Liquid-liquid mass transfer in a rotor–stator spinning disc reactor [J]. Chemical Engineering Journal,2012.185-186,267-273.
    [22] Farshid Pajoum Shariati, Mohammad Reza Mehrnia, Mohammad Hossein Sarrafzadeh, SaraRezaee,Alain Grasmick, Marc Heran. Fouling in a novel airlift oxidation ditch membrane bioreactor(AOXMBR) at different high organic loading rate[J]. Separation and Purification Technology,2013.105:69-78.
    [23] Xiaodi Hao, Hans J. Doddema,Johan W van Groenestijn. CONDITIONS AND MECHANISMSAFFECTING SIMULTANEOUS NITRIFICATION AND DENITRIFICATION IN A PASVEEROXIDATION DITCH[J]. Bioresource Technology,1997.9:207-215.
    [24]刘俊新,王宝贞,J. W. van Groenestijin,H. J. Doddema.采用氧化沟从城市污水中去除氮和磷的研究[J]. Journal of Har bin Univer sity of C. E.&Ar chit ect ur e,1997.30(5):36-39.
    [25]高守有,彭永臻,胡天红,李帅军.氧化沟工艺及其生物脱氮原理[J]. Journal of Harbin University ofCommerce (Natural Sciences Edition),2005.21(4):435-439.
    [26]侯红勋,施汉昌,王颖哲等.间歇曝气氧化沟工艺脱氮除磷和节能研究[J].给水排水,2009.35(9):34-38.
    [27]刘艳臣,范茏,王志强等. Carrousel氧化沟内特性参数的分布[J].中国环境科学,2007,27(6):792-796.
    [28]蒋成义,黄卫东,王淦,王颖哲,谢荣焕.氧化沟流场的计算流体力学数值模型研究[J].环境科学与技术,2010,33(8):135-139.
    [29]邓荣森.氧化沟污水处理理念与技术[M].化学工业出版社.2006.
    [30]米克尔G·曼特.污水处理的氧化沟技术[M].中国建筑工业出版社.1988.
    [31] Beatriz Cancino. Design of high efficiency surface aerators Part2. Ratng of surface aerators[J].Aquacultural Engineering,2004,31:99-115.
    [32] Sanjib Moulick,B.C. Mal,S. Bandyopadhyay. Prediction of aeration performance of paddle wheelaerators[J]. Aquacultural Engineering,2002,25:217-237.
    [33] P.C. LINES. GAS-LIQUID MASS TRANSFER USING SURFACE-AERATION IN STIRREDVESSELS, WITH DUAL IMPELLERS[J]. Institution of Chemical Engineers, Trans IChemE,2000.78(A).
    [34] Ryuichi Yatoma, Katsuhide Takenaka, Koji Takahashi, Philippe A. Tanguy. Mass-transfer characteristicsby surface aeration of large paddle impeller:Application to a polymerization reactor with liquid levelchange[J]. CHEMICAL ENGINEERING RESEARCH AND DESIGN,2008.86:1345-1349.
    [35] Achanta Ramakrishna Rao, Bimlesh Kumar. Simulating Surface Aeration Systems at Different Scale ofMix-ing Time[J]. Chinese Jounal of Chemical Engineering,2009.17(2):355-358.
    [36] Diego Rosso, Michael K. Stenstrom. Surface effects on α-factors in aeration systems[J]. WATERRESEARCH,2006.40:1397-1404.
    [37] George J. Selembo Jr. Predicting the effect of tank geometry on surface aeration system performance[D].The Pennsylvania State University, for the degree of doctor of philosophy.2005.
    [38]曹瑞钰,陈秀成,张焕文.大功率倒伞型表面曝气机性能检测和研究[J].给水排水,2002,28(10):67-70.
    [39] J.R.BACKHURST J.H.HARKER and S.N.KAUL. The performance of pilot and full-scale vertical shaftaerators[J]. Water.Research,1988.22(10):1239-1243.
    [40] TEODOR OGNEAN. Relationship between ovygen mass transfer rate and power consumption byvertical shaft aerators[J]. Water.Research,1997.31(6):1325-1332.
    [41] S.B.Thakre L.B.Bhuyar et al. Oxidation ditch process using curved blade rotor as aerator[J]. Environ.Sci. Tech.,2009.6(1):113-121.
    [42] Keller R J. Hydraulics of grit chamber (Lecture)[R]. Introduction to Wastewater System Design andPractice.2001.
    [43] Bache J C. Vortex grit trap for separating grit from sewage flow comprises tank having grit separationand collection zones, and divider having skirt with perforations to generate air bubbles and impeller togenerate rotational flow in separation zone [P]. WO2005035093-A1.2003.
    [44] Kaibara K. Precipitator used for sedimentation of suspended solids wastewater, has rotary bladeprovided between deposition region of suspended solid, and natural-water introducing portion, andproduces rotational flow of natural water [P]. JP2009082959-A.2007.
    [45] Weis F G, Davis R, Weis F. Grit removal unit for waste system e.g. municipal wastewater system,comprises a grit size restrictor including a shear having a plate, and two sets of bars arranged at specificlocations [P]. US2008105604-A1.2006.
    [46] Brian F. McNamara, Charles Bott, Mathew Hyre, et al. How to baffle a vortex [Z].86th Annual WaterEnvironment Federation Technical Exhibition and Conference,Chicago USA.2012.
    [47] Arthur C.Lind, William J.Katz, Fox Point, Wis. Aerated grit chamber: United States,[P].88105607.31989.
    [48] Joel C.Rife,Lucas Botero.Last of the manual of practice No.8section on grit removal.
    [49] Liliana Morales, Debra Reinhart. Full-Scale Evaluation of Aerated Grit Chambers[J]. Water PollutionControl Federation,1984.56(4):337-343.
    [50] Jerzy M. Sawicki. Aerated grit chambers hydraulic design equation [J]. Journal of EnvironmentalEngineering,2004.130(9):1050-1058.
    [51] Alex Munoz, Stephanie Young. Two-dimensional model for predicting perform-ance of aerated gritchambers [J]. Canadian Journal of Civil Engineering,2009.36(9):1567-1578.
    [52] Jeff Sober, Steve Kramer, Jeff Ray, et al. A side by comparison of grit removal technologies: mechanically induced vortex vs. stacked tray [Z].86th Annual Water Environment Federation TechnicalExhibition and Conference, Chicago USA.2012.
    [53] Moss Kelley, Inc. Grit characterization in Florida wastewater plants [R].2006.
    [54] McNamara, Kochaba, T., B.F, Griffiths, J., Book, D. A pilot evaluation comparing two grit removaltechnologies [Z]. Proceedings of the2009Conference and Exhibition of the Water EnvironmentFederation.2009.
    [55]唐建国,林洁梅.曝气沉砂池的设计计算[J].给水排水,1997.23(10):15-17.
    [56]吕乃熙.曝气沉砂池的适用条件[J].排水工程,1993.3:15-19.
    [57]甄培玲.浅议上海合流污水二期工程预处理厂曝气沉砂池设计[J].中国市政工程,1996.(4):47-55.
    [58]李涛.沉砂池的设计及不同池型的选择[J].中国给水排水,2001.17(9):37-42.
    [59]邱峰,汪家权,王淦.新型旋流沉砂池除砂和有机物分离效果的研究[J].工业用水与废水,2008.39(3):84-87.
    [60]邱峰.新型旋流沉砂池砂粒和有机物去除效率的研究[D].合肥工业大学资源与环境工程学院.2007.
    [61]汪家权,蒋文韬,王淦.新型高效旋流沉砂池除砂效果研究[J].中国给水排水,2007.23(15):98-100.
    [62]蒋文韬.新型高效旋流沉砂池的模型试验研究[D].合肥工业大学资源与环境工程学院.2006.
    [63]叶瑞.2009.新型旋流沉砂池砂粒去除效果的数值模拟[D].合肥工业大学资源与环境工程学院.
    [64]邵超,叶勇,汪家权,等.2012.新型旋流沉砂池砂粒去除效果的数值模拟[J].环境工程技术学报,2(5):373-379.
    [65]叶勇.新型旋流沉砂池固液两相流数值模拟研究[D].合肥工业大学资源与环境工程学院.2012.
    [66] Wang X. L., Zhou S. S. The numerical computation of grit chamber with rotational flow[C].Bioinformatics and Biomedical Engineering (iCBBE),20104th International Conference on.Chengdu,China.2010.
    [67]李涛.处理砂石废水的旋流沉砂池内高浓度固液两相流数值模拟[D].天津大学环境科学与工程学院.2010.
    [68]栾闯.基于CFD的水电工程砂石废水旋流沉砂池的优化设计[D].天津大学环境科学与工程学院.2009.
    [69]王晓玲,周莎莎,郎建,等.旋流沉砂池除砂废水流场与结构参数优化模拟[J].工程力学,2012.29(6):300-307.
    [70]张西林,刘如玲,华风山,等.曝气沉砂池浮渣收集系统的技术改造[J].中国给水排水,2005.21(1):70-71.
    [71]马强,尹君贤,张立文,等.曝气沉砂池的设计改进[J].工业用水与废水,2005.36(3):60-61.
    [72]黄志华,王长平,张金松,等.曝气沉砂池除油刮渣系统的技术改造[J].中国给水排水,2009.25(12):50-52.
    [73]武鹏崑,于澎学,安洪金,等.污水处理厂曝气沉砂池浮渣处理系统改造[J].中国给水排水,2006.22(16):23-24.
    [74]陈政,韩朝光,林静.曝气沉砂池的运行管理与技术改造[J],中国给水排水,2002.19(8):100-102.
    [75]王宝良,王利,胡小珊,等.曝气沉砂池提砂系统故障分析及解决办法[J].中国给水排水,2009.25(12):96-97.
    [76]高明泉,赵润兴.用气提法取代曝气沉砂池吸砂泵的工程改造[J].给水排水,2006.32(9):84-85.
    [77]曹佳红,赵丁.沉砂池除砂效果测定与评价[J].中国给水排水,2005.21(10):96-98.
    [78] Alexandros Kelessidis, Athanasios S. Stasinakis. Comparative study of the methods used for treatmentand final disposal of sewage sludge in European countires [J]. Waste Management,2012.32:1186-1195.
    [79] G.W.Strunkmann, J.A. Muller, F. Albert and J. Schwedes. Redution of excess sludge production usingmechanical disntegration devices[J]. Water Sciencs&Technology,2006.54(5):69-76.
    [80]吴敬东,熊建新等.北京市污泥现状及对策[J].北京水务,2010.5:4–6.
    [81]周军.北京市污泥现状及处理处置技术策略[J].水工业市场,2011.4:30–32.
    [82]刘娜,梁延华,张双丽.天津城市污泥的研究及处置方向[J].中国环境科学学会学术年会优秀论文集,2006.891-895.
    [83]齐同湘,吴思.武汉市污泥处理处置面临的基本形势及对策探讨[J].绿色科技,2012.12:74-77.
    [84]刘思宇,汪汀,李媛等.成都市某污水处理厂污泥处理与处置方法探讨[J].四川环境,2012.12:80–83.
    [85]刘一威.辽宁省污水处理厂剩余污泥现状及处置对策研究[J].中国环境科学学会学术年会优秀论文集,2009.154–158.
    [86]戴晓虎.我国城镇污泥处理处置现状及思考[J].给水排水,2012.38(2):1-5.
    [87]杭世珺.污泥处理处置的认识误区与控制对策[J].中国给水排水,2004.20(12):89-92.
    [88]张辰.城镇污水处理厂污泥处置标准系列标准实施指南[M],北京:中国标准出版社.2010.
    [89]王凯军.中国城市污水污泥处理处置问题的探讨[J].中国水污染防治装备技术论文集,2005.12:142-146.
    [90]王洪臣.中国污泥处理处置技术路线的初步分析[J].水工业市场,2010.7:12-14.
    [91]姚金玲,王海燕,于云江等.城市污水厂污泥处理处置技术评估及工艺选择[J].环境工程,2010.28(1):81-84.
    [92]付融冰,杨海真,甘明强.中国城市污水厂污泥处理处置现状及其进展[J].环境科学与技术,2004.27(5):81-84.
    [93]王淦.倒伞型表面曝气机[S], JB/T10670-2006.北京:中华人民共和国机械行业标准.2006.
    [94]李圭白.水质工程学[M].北京:中国建筑工业出版社.2005.
    [95] Reardon, D.J. Turning down the power[J]. Civ. Eng.,1995.65(8):54-56.
    [96] N. A. DESHMUKH, J. B. JOSHI. SURFACE AERATORS Power Number, Mass Transfer Coefficient,Gas Hold up Profiles and Flow Patterns[J]. Chemical Engineering Research and Design,2006.84(A11):977-992.
    [97]许保玖.当代给水与废水处理原理[M],第2版.北京:高等教育出版社.1999.
    [98] Joseph Charles Hutter. Improved Analysis and Modeling of the Oxygen Mass Transfer Process inAeration Systems[D]. The Pennsylvania State University.1990.
    [99] Stamou A I. Modeling of oxidation ditches using an open channel flow1-D advection dispersion quationand ASM1processdescription [J]. Water ScienceandTechnology,1997.36(5):269-276.
    [100]魏辉.氧化沟数学模型的初步研究[D].长沙:湖南大学,2002.42-68.
    [101] Littleton H.X,Daigger G.T.,Application of computational fluid dynamics to closed loop bioreactors—Analysis of macro-environment variations in simultaneous biological nutrient removal systems[C]. In:Proceedings of the Water Environment Federation74th Annual Conference&Exposition on WaterQuality and Wastewater Treatment,Atlanta,GA.
    [102]罗麟,李伟民,邓荣森,何泽超,王涛,一体化氧化沟的三维流场模拟与分析[J].中国给水排水,2003,19(12):15~18.
    [103]张宗才,张新申,张铭让.氧化沟水力学分析及流场计算[J].中国皮革,2004.33(11):27-30.
    [104]许丹宇,张代钧,艾海男.氧化沟反应器流体力学特性的数值模拟与实验研究[J].环境工程学报,2007.12:20-26.
    [105] Yang Y, Yang J, Zuo J. Study on two operating conditions of a full scale oxidation ditch foroptimization of energy consumption and effluent quality by using CFD model [J]. Water Research,2011.45:3439-3452.
    [106]李媛. AIRE-O-2充氧机性能浅析与Orbal氧化沟流态测试及三维模拟[D].重庆:重庆大学,2005.63-66.
    [107] Le Moullec Y,Olivier P,C aroline G,et al.2008. Flow field and residence time distribution simulationof across-flow gas-liquid wastewater treatmentreactor using CFD[J]. Chemical Engineering Science,63(9):2436-2449.
    [108]郭丽莎.卡鲁塞尔氧化沟污水-污泥两相模型及液-气两相模型[D].重庆:重庆大学.2010.
    [109] Thak re S B,Bhuyar L B,Deshmukh S J. Oxidation ditchprocess using curved blade rotor asaerator[J].InternationalJournalofEnvironmentScienceand Technology,2009.6(1):113-122.
    [110]陈光,赵贺芳.曝气机叶片形状对氧化沟流动特性的影响[J].水资源与水工程学报,2010.21(6):57-61.
    [111]施慧明,刘艳臣,施汉昌.深水型表面曝气机的模拟计算与构型比较[J].环境工程学报,2008,2(2):54-159.
    [112]赵贺芳.氧化沟流动特性的CFD模拟[D].合肥:安徽工业大学,2011.18-63.
    [113] Fan L, Xu N, Wang Z, et al. PDA experiments and CFD simulation of a lab scale oxidation ditch withsurface aerators [J]. ChemicalEngineeringResearchand Design,2010.88:23-33.
    [114]吴莹莹.氧化沟流场和溶解氧CFD模拟研究——以平顶山污水处理厂为例[D].武汉:华中科技大学,2009.23-64.
    [115]许丹宇,张代钧,陈园.卡鲁塞尔氧化沟液-固两相流动混合物模型与两相水力特性模拟[J].环境科学学报,2008.28(12):2622-2627.
    [116]陈园.氧化沟液固两相湍流反应动力学仿真系统[D].重庆:重庆大学,2008.29-70.
    [117]许丹宇.卡鲁塞尔氧化沟液固两相湍流与生物反应动力学研究[D].重庆:重庆大学,2008.72-125.
    [118]徐良,黄锦叙,刘广立. Orbal氧化沟流场模拟计算及溶解氧的影响[R].广州:中山大学,2007.31-32.
    [119] Susan Kitching, Chris Denton. Characterisation of grit to develop an integrated plant solution[Z].86thAnnual Water Environment Federation Technical Exhibition and Conference, Chicago USA.2012.
    [120]李中天,蒋伟文.城市污水处理中砂的影响及对策[J].给水排水,2004.30(6):26-27.
    [121]邹启贤,张金松,曲志军.沉砂池类型及其应用[J].西南给排水,2005.27(4):8-11.
    [122] Joel C. Rife, Lucas Botero. Last of the Neglected Treatment Processes Rewriting the Manual ofPractice No.8Section on Grit Removal[Z].86th Annual Water Environ-ment Federation TechnicalExhibition and Conference, Chicago USA.2012.
    [123]王淦,李涛,谢萌,等.一种旋流沉砂装置[P].2003.
    [124]王福军.计算流体动力学分析:CFD软件原理与分析[M].北京:清华大学出版社.2007.
    [125] ANIL W D. Introduction to computational fluid dynamics[M]. New York: Camb ridge University Press.2005.
    [126] ANDERSON J D. Computational fluid dynamics: The Basics with Applications [M]. New York:McGraw Hill.1995.
    [127] V. Yakhot, S.A. Orzag. Renormalization group analysis of turbulence: basic theory [M]. J ScientComput,1986.1:3-11.
    [128] Fluent Inc. Fluent6.3User’s Guide[M]. Harrison-burg: Fluent Inc.2006.
    [129] Luo J V, Issa R I, Gosman A D. Prediction of impeller induced flows in mixing vessels using multipleframes of reference[J]. ICHEME Symposium Series,1994.136:399-406.
    [130] Macias-Garcia A,Cuerda-Correa Eduardo M,Diaz-Diez M A. Applicatiob of the Rosin-Rammler andGates-Gaudin-Schuhmann models to the particle size distribution analysis of agglomerated cork[J].Materials Characterization,2004.(52):159-164.
    [131] Sebastian Werle, Ryszard K. Wilk. A review of methods for the thermal utilization of sewage sludge:The Polish perpective[J]. Renewable Energy,2010.35:1914-1919.
    [132] Spinoss L et al. Sludge into Bio-solids: Processing, Disposal and Utilization[M]. London: IWAPublishing,2001.
    [133]杨慧芬.固体废物处理技术及工程应用[M].北京:机械工业出版社.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700