环境友好型阻燃纤维素纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业上生产纤维素纤维的传统方法为粘胶法,该法虽然历史悠久、工艺成熟,但工艺路线复杂,能耗多,特别是生产中对环境造成严重的污染。因此改革传统的粘胶生产工艺,开发对环境无污染的制造纤维素纤维新技术受到了国内外专家的广泛重视。此外,对纤维素纤维的阻燃改性,特别是结合环境友好特点采用无卤、低毒、低烟雾、高效阻燃剂更是纤维素纤维研究领域中的热点之一。
     通过纤维素氨基甲酸酯法(Cellulose Carbamate 简称CC)纺制纤维素纤维被誉为环境友好型纤维素纤维。本文采用环境友好的纤维素氨基甲酸酯法生产阻燃纤维素纤维,首先研究了碱法、液氨法、电子束辐射法、蒸汽闪爆和氨闪爆法及超声波法活化纤维素后其结构的变化,在此基础上探讨了纤维素氨基甲酸酯的合成方法及其条件,又自己合成了三种纤维素用磷系阻燃剂。最后,通过共混纺丝制得了阻燃纤维素纤维,并对阻燃纤维素的阻燃性能及膨胀阻燃作用机理进行了探讨和研究。
     本论文研究的主要创新内容为:
     1.通过物理或化学的方法对纤维素进行预处理以增加其活性表面积、改善其微孔结构,提高纤维素的可及度,促进试剂在其中的渗透、扩散和润胀,提高纤维素的反应性能是本论文研究的重要方面。关于活化的方法有很多种,本研究在国内首次用电子束辐射、蒸汽闪爆和氨闪爆法活化纤维素浆粕后用于制备纤维素氨基甲酸酯,并通过扫描电镜、X-射线衍射、红外光谱及其它手段对处理后纤维素的结构及性能进行了研究。其中氨闪爆法活化纤维素浆粕制备纤维素氨基甲酸酯在国外也未见报导。研究结果表明,在辐射后纤维素的聚合度降低,分子量分布变窄,反应性能提高,电子辐射对晶型和结晶度影响不大;蒸汽闪爆/氨闪爆处理纤维素浆粕增大了纤维素之间的空隙和纤维素中的孔隙,大大提高了试剂对纤维素的可及度,聚合度略有下降,纤维素的反应性能也明显提高,蒸汽闪爆后纤维素的晶型和结晶度基本没有变化,氨闪爆后纤维素的结晶度有所降低,结晶结构有部分由纤维素Ⅰ转变为纤维素Ⅲ,纤维素的反应性能也明显提高。
     2.本论文通过三氯氧磷(POCl_3)或三氯硫磷(PSCl_3)与新戊二醇反应,再与乙二胺反应,合成了高效的纤维素用阻燃剂2,2′—氧代双(5,5—二甲基—11l,3,2—二噁磷烷—2,2′—二硫化物)(DDPS)、1,2—二(2—氧代—5,5—二甲基—1,3,2—二氧磷杂环己—2—氨基)乙烷(DDPN)以及1,2—二(2—硫代—5,5—二甲基—1,3,2
    
     天津工业大学博士学位论文 摘要
    一二氧磷杂环己一2一氨基)乙烷山DPSN)。对合成工艺进行了改进和优化,使产率
    均在85 %以上。采用元素分析、FTIR、核磁共振、质谱等分析方法对所合成的H种
    阻燃剂进行了结构鉴定。三种阻燃剂的TG—DTA与DSC结果显示,DDPS阻燃剂
    的起始分解温度为205‘’C,成炭速度快,800丫时的降解残留量高达32见DDPS阻燃
    剂具有优良的成炭性。DDPN阻燃剂的起始分解温度为 285’C,600’C时的降解残留
    量为 4%,成炭性不好。DDPSN阻燃剂急剧分解区为 120’C—270‘C,800‘C时的成炭
    性为10%,成炭性比DDPN好,但比DDPS差,这一方面可能与DDPSN合成的纯
    度不高有关。其中DDPSN阻燃剂的合成不仅填补了该领域的合成空白,而且对纤
    维素的阻燃性能优良,为无卤膨胀阻燃体系的研究开辟了新途经,因此,具有重要
    的理论意义和现实意义。
    3.采用动态热失重法对DDPS阻燃剂进行了非等温动力学研究,利用Kissinger法
    和积分法分别计算了DDPS阻燃剂的表观活化能和表观指前因子,并以升温速率为
    10℃/*n 的DDPS阻燃剂热重曲线为基础,利用9种常见的机理函数进行曲线拟合,
    判断得出 DDPS阻燃剂的热分解机理函数为卜(l-刀‘’‘=hi,表明 DDPS阻燃剂
    的热分解反应机理是随机成核和生长(n—3)。
    4.将自己合成的阻燃剂加入到纤维素氨基甲酸酯(CC)溶液中纺丝得到环境友好型
    阻燃纤维素纤维及阻燃纤维素薄膜,并研究了它们的热裂解、阻燃性能及阻燃机理,
    研究结果显示:阻燃纤维素膜的初始热失重温度提前,热失重速率最大时对应的温
    度减小,800 t时的炭量增加。阻燃剂中阻燃效率的大小依次为
    **PSN>**PS>**PN。随着阻燃剂含量增加,阻燃纤维素的成炭速度(*FR)和残
    炭率(CY)都增加。当阻燃剂含量大于 18%时,纤维素膜均能够达到阻燃要求。三种
    阻燃剂和纤维素氨基甲酸酯阻燃体系的研究在国内外也未见报道。
     本人还在前人研究的基础上利用傅立叶红外(FTIR)谱图、广角X光衍射
     (WAXD)、扫描电子显微镜(SEM)、光学显微镜、差示扫描量热仪(DSC)、克达
    尔定氮元素分析、铜氨溶液测定纤维素聚合度等多种手段对纤维素的碱法、液氨法、
    超声彼法活化纤维素后其结构的变化和合成纤维素衍生物过程中结构及性能的变化 旬
    进行了较为系统地研究。探讨了纤维素氨基甲酸酯的合成方法及工艺条件,并通过
    在纤维素氨基甲酸酯与粘胶的共混纺丝纺丝液中加入阻燃剂纺制得到了阻燃纤维素
    纤维,对纤维的各种性能进行了测试分析。
The technology for manufacturing cellulose fiber traditionally by Viscose spinning is of long history and well-developed in industry, but it has many disadvantages such as complex process, large energy consume, and serious pollution to the environment during it production process. The innovation on the traditional technology to develop new ones for manufacturing cellulose fiber with non-pollute to the environment is, therefore, drawing great attentions of the experts. In addition, modifications in fire-retardant on cellulose fiber, especially by employing non-halogen containing, little toxic, little smoke and high effective fire retardants is also one of hot research pot in the art.
    Cellulose fiber made from cellulose carbamate(CC) is named eco-friendly cellulose fiber. In this paper, an eco-friendly fire-retardant cellulose fiber was prepared. Based on the investigation on the changes of the cellulose structure after its activation by alkali, ammonia, electronic beam radiation, steam explosion, ammonia explosion and ultrasonic respectively, the synthesis of the cellulose carbamate was discussed. In addition, three phosphorus based fire retardants were synthesis. Thus, the fire retardant cellulose fiber was prepared by blending spinning. And at last, the fire retardant properties of the fiber and the fire retardant mechanism were discussed.
    The innovated content in this paper are as follows:
    1 . The important aspect of this paper is that through physical or chemical pretreatment to cellulose, the active surface was increased, the micro-cavity structure was improved, the penetration, diffusion and swelling of the agent to it was promoted, and therefore the activity of the cellulose was enhanced. The active methods of electronic beam radiation, steam explosion, ammonia explosion are firstly employed in domestic to activate the cellulose and follow to prepare CC, among which ammonia explosion method has not been reported yet abroad. We comprehensively and systematically studied the changes of the structures and properties of cellulose in the process of cellulose activation and reaction by means of various techniques, including Fourier Transform Infrared Absorption Spectrum(FTIR),Wide-angle X-ray
    IV
    
    
    
    
    
    Diffraction(WAXD?Scanning Electron Microscopy(SEM?Optical Microscopy, Differential Scanning Calorimetry(DSC),Kjeldahl Nitrogen Element Analysis, Degree of Polymerization of Cellulose and Fiber Mechanical Property Measurement etc. The results show that the degree of the polymerization decreases, the distribution of molecular weight gets narrow, and its reactivity rises. Electronic radiation has hardly effects on the lattice and crystallinity, but the lattice form converted from cellulose I to cellulose II and the crystallinity of cellulose decreased after ammonia explosion.
    2. Three phosphorus based fire retardants, l,2-bis(2-oxy-5,5- dimethyl-l,3,2-dioxaphosphorinane-2,2'-disulfide)(DDPS),l,2-bis(2-oxy-5,5-dimethyl-l,3,2-di oxaphosphorinane phosphoryl amide) ethane (DDPN) and l,2-bis(2-oxy-5,5-dimethyl-l,3,2- dioxaphosphorinane -2,2- disulfide phosphoryl amide) ethane (DDPSN) , were synthesized. All the three fire retardants were identified by elemental analysis > TG-DTA, DSC, FTIR,'HNMR, MS. Among them, DDPS is the best with an initial decomposition temperature of 205癈 and good carbon-forming ability, and DDPN is the worst with an initial decomposition temperature of 285癈 and bad carbon-forming ability. In addition, the synthesis technology was optimized and the yields are all above 85%.
    3. Nonisothermal kinetics researches on DDPS were carried out using dynamic thermalgravity. The aspect activation energy and A was calculated using Kissinger and integral methods. Based on the thermalgravity line of DDPS at an elevating rate
    of 1 0癈/min, its thermal decomposition function was set up as [- ln(l - a)]1/3 =kt ,
    which shows that the mechanism of thermal decomposition of DDPS is random nuclear f
引文
[1] Nevell, T.P., Zeronian, S.H., Cellulose Chemistry and Its Application, New York, John Willy & Sons, 1985: 9,15
    [2] David N S Hon. Polymer News, 1988; 1(13): 134—140
    [3] Simon J., Mueller H.P., Koch R., Mueller V., Polymer Degradation and Stability, 1998,59:107-115
    [4] O'Sullivan, A, Cellulose: the structure slowly unravels, Cellulose, 1997,4,174-207
    [5] 陈家楠,纤维素结构研究进展,纤维素科学与技术,1993,1(4):1—11
    [6] Earl, W.L., Vanderhart, D.L., Observations by high-resolution C-13 NMR of cellulose Ⅰ related to morphology and crystal-structure, Macromoleeules, 1981(14):570-574
    [6] Horii,F., Hirai,A., and Kitamaru, R., Solid-state high-resolution 13C NMR studies of regenerated cellulose samples with different crystallites, Polymer Bulletin, 1982(8):163
    [7] Horii, F., Hirai,A., and Kitamaru, R., CP/MAS C-13 NMR approach to the structural analysis of cellulose, Polymer for Fid:rs and Elastomers, 1987,260,27,ACS Symposium Series, Am. Chem. Soc.
    [8] Horii, F., Hirai,A., and Kitamaru, R., CP/MAS C-13 NMR spectra of the crystalline components of native cellulose, Macromolecules, 1987,20,2117-2120
    [9] Dudley, R.L., Fyfe, C.A., Stephenson, P.J., Deslandes, Y., Hamer, G.K. and Marchessault, R.H., High-resolution 13C CP/MAS/NMR spectra of solid cellulose oligomers and the structure of cellulose. J. Am. Chem. Soc. 1983(105):2469-2472
    [10] Atalla, R.H., Vanderhart, D.L.,, Studies on the structure of cellulose using Raman spectroscopy and solid state 13C NMR, Cellulose and Wood: Chem. and Technol., Proceedings of the tenth cellulose conference, New York, John Willy and Sons, 169-187
    [11] Yamamoto, H., Horri, F., CP/MAS ~3C NMR analysis of the crystal transformation induced for valonia cellulose by annealing at high temp., Macromolecules, 1993(26): 1313-1317
    
    
    [12] Gardner, K.H., Blackwell, J.,The structure of native cellulose, Biopolymer, 1974(13): 1975-2001
    [13] Rajai, Atalla H. The Structure of Cellulose. American Chemical Society, 1987
    [14] Sarko. Antole, Cellulose -- How much do we know about its structure, in Wood and Cellulosics: Industrial Utilization, Biotechnology, Structure and Properties(J.F. Kennedy ed.), Chichester, UK: Ellis Horwc. od, 1987:55-69
    [15] Brewer, at al. USP 4314056, 1982
    [16] Ikemoto. USP 4306060, 1981
    [17] Davidson R L. Handbook of Water Soluble Gums, Polysaccharides and their Derivatives. 2nd, New York and London: Academic Press, 1973
    [18] Kennedy J F, Phillips G O, Wedlockand D J, Williams P A. Cellulose and Its Derivatives. Chemistry, Biochemistry and Application. Eltis Horwood Ltd, 1981:211
    [19] Kamide K, Okajima K, Matsui T, et al. Parmacodynamic properties of sodium cellulose sulfate. Polym J, 1984(16):259-265
    [20] 陈家楠,纤维素化学的现状与发展趋势,纤维素科学与技术,1995,3(1):1-10
    [21] Kamide, K., New Cellulose Membrane, Nisshibo Inter. Confer. on Celluloses Utilization, 1989,Japan.
    [22] Kamide, K., Manabe, S., Role of microphase separation phenomena in the formation of porous polymeric membrane, in Material Science of Synthetic Membrane, Lioyd, D.R., ed., ,Am. Chem. Soc. Symp. Ser. 269, 1985,197-228;
    [23] Kamide, K., Iijima, H., Iwata, M., Effect of preparing conditions on supermolccular structure of cellulose micro,porous membrane, Polymer Preprints, Japan(English Edition), 1988,37,e419;
    [24] Kamide, K., Kamata, Y., lijima, H., Manabe, S., Some morphological characteristics of porous polymeric membranes prepared by "micro-phase separation method", Polymer J., 1987,19,391-404;
    [25] Leob, S., The ieob-sourirajan membrane: How it came about, in Synthetic Membranes: Desalination, Am. Chem. Soc. Syrup, Ser. 153, 1981,Ⅰ-9;
    [26] Crull, A.W. Business opportunity report, P-041U, Membranes Separation
    
    Markets and Technologies, Business Communications Co., Inc., Stamford, 1986,14;
    [27] Yamazaki, Z., Inoue, N., Fujimori, Y., et al, An improvement cellulose acetate hollow fiber, in Plasma Exchange Plasmapheresis-Plasma Separation, Sieberth, H.G., Sehattauer, Stuttgart Edition, New York, 1980,45-51;
    [28] Akizawa, T., Kitaoka, T., Koshikawa, S., et al, Development of a regenerated cellulose non-complement activating membrane for hemodialysis, Trans. Am. Soc. Artif Intern. Organs, 1986,32,76-80;
    [29] H.-J. Koslowski. Chemiefaser-Lexikon. Deutscher Fachverlag, Frankfurt a M.(D), 1997,11
    [30] 杨之礼,王庆瑞,邬国铭著,粘胶纤维工艺学,北京:纺织工业出版社,1989
    [31] 严瑞芳,胡汉杰,梁锋,等.高分子通报,1994,(3):143
    [32] 唐爱民,梁文芷.高分子通报,2000,(4):1
    [33] 梁锋.纤维素科学与技术进展,纤维素科学与技术,1993,(3):5-9
    [34] 胡学超,宋丽贞.二十一世纪的宠儿—纤维素纤维.纺织学报,1998,(1):62-63
    [35] J.A.Cuculo,S.M.Hudson.,et al. Internation fibre Journal, 1993,(6):50-57
    [36] H.Liickert等.非粘胶法工艺生产纤维素纤维的技术进展.国外纺织技术,1994,(5):7-10
    [37] 杨明山,杨丽庭,新型再生纤维素纤维的生产工艺、结构及性能.人造纤维,1999,(1):16-19
    [38] 吕洪,吴江.我国发展环保型再生纤维素纤维的探讨.合成技术及应用,2001,(2):11-14
    [39] W. Berger, et al, Neue Ergebnisse auf dem Gebiet der Regeneratfaserforschung. Lenzinger Berchte , 1984, 57(3): 43-49
    [40] G.Jayme, Methods in Carbohydrate Chemistry, Ⅲ Cellulose, Ed by R. L. Wister, 1963, P77
    [41] 秦邦男,横田金吾,纤维学会志,1972,(22):219
    [42] K. H.Meyer, et al, Am. chem. Soc. Meeting, 1952
    [43] 日本化学纤维协会技术部,纤维素化学纤维新技术(上),化纤月报,1986,
    
    (7):17-23
    [44] 日本化学纤维协会技术部,纤维素化学纤维新技术(下),化纤月报,1986,(8):14—20
    [45] N. R. Portnoy, D. P. Andson, Solvent Spun Ravon. Modified Cellulose Fibers and Derivatives, Chapter 5 in 11, 1977.
    [46] R. B. Hammer, A. F. Turbak, et al, Solvent Spun Rayon, Modified Cellulose Fibers and Derivatives, Chapter 6 in 11, 1977.
    [47] G. Prati, B.Focher et al. Celluloseaktivierung: Geeignete Behandlungen und Strukturveraederungen. Lenzinger Berchte, 1985, 59(8): 118-123
    [48] Turbak,A.F, et al. U.S.P. 302,252(1981)
    [49] Adel Ei-Kafrawy et al. Untersung der Cellulose/LiCl/Dimethylacetamid und Cellulose/LiCl/N-Methyl-2-Phyrrolidinon-Loesungendurch ~(13)C-NMR-Spektroskopie. Lenzinger Berchte , 1983, 55(10): 44-47
    [50] H.Herlinger et al. Verhalten von Cellulose in nichtkonventionellen Loesungsmitteln. Lenzinger Berchte, 1985, 59(8): 96-103
    [51] 杨克萱、梁锋,高分子学报,1990,(1):25
    [52] B.Morgenstern et al. Untersung der Cellulose/LiCl/Dimethylacetamid Loesungen durch ~7Li NMR-Spektroskopie. Acta Polymer, 1992, 43(10): 356-357
    [53] 罗孟奎,梁锋,合成纤维工业,1989,12(1):32.
    [54] Yoshiyuki Nishio, et al, Polymer, 1987, 128(7):1385-1390
    [55] 程博闻,纤维素在LiCl/极性溶剂中溶解性能的研究.天津纺织工学院学报,2000,(2):1
    [56] 程博闻.Lyocell纤维的现状及其发展趁势.人造纤维,1999,(6):26
    [57] 宋荷花,程博闻,Lyocell纤维及织物整理和应用开发.人造纤维,2001,(2):26
    [58] W. Albrecht, Lyocell-Fasern. Milland Textilbericht, 1997,(9):575-589
    [59] Weigel P. Fink. Lenzinger Berchte, 1997, (76): 115-118
    [60] Eibe, M. Lyocell-The Cellulose fibre Chameleon. Lenzinger Berchte, 1997,(76):89-91
    [61] Walker, M. NMMO-Die Entwicklung eines losemittels zur industriellenproduktion
    
    von zellulosefasern. Lenzinger Berchte, 1997, (76): 76-80
    [62] Vorbach D. DE 19542533
    [63] Zhang J.C. Chem. Fibers Int .,1999, 49,(4):314-315
    [64] Mortimer S.A. Cell. Chem. Technol.,1996,30,(1/2):117—132
    [65] Lenzinger AG. Lyocell fibre .Lenzinger Ber., 1995,(75):69-72
    [66] Lenzinger AG.Lyocell fibre. Chem. Fibers Int., 1996,46,(1): 26,28-30
    [67] Mortimer S.A. J. Appl. polym. Sci., 1996,60(10): 1747-1756
    [68] Lotz C.; Chem. Fibers Intern., 1996,46 (2):99-100
    [69] Lenzinger AG. Chem. Fibers Int., 1996,46(1):26-30
    [70] W. Feilmair. Lenzinger. Lyocell-Technologie. Lenzinger. Berichte 1997,(76): 92
    [71] Diener A. Chem. Fibers Intern., 1999,49(1):40-43
    [72] Mason W. H. US Patent, 1 655 618(1928)
    [73] 田家伟译,纤维素纤维技术与发展的情况预测,人造纤维,1997,(5):32-36
    [74] Kenji Kamide et al ,CP/MASS 13C NMR Spectra of Cellulose Solids:an Explanation by the Intramolecular Hydrogen Bond Concepts , Polymer J., 1985,17(5),701-706
    [75] Yamashiki, T., Matsui, T., Saitoh, M., Okajima, K., Kamide, K., Characterization of cellulose treated by the steam explosion method. Part 1: Influence of cellulose resources on changes in morphology, degree of polymerization, solubility and solid structure, British Polymer J., 1990, 22,73-83;
    [76] Yamashiki, T., Matsui, T., Saitoh, M., Okajima, K., Kamide, K., Characterization of cellulose treated by the steam explosion method. Part 2: Effects of treatment conditions on changes in morphology, degree of polymerization, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion, British Polymer J., 1990,22,121-128
    [77] Yamashiki, T., Matsui, T., Saitoh, M., Okajima, K., Kamide, K., Characterization of cellulose treated by the steam explosion method. Part 3: Effect of crystal forms of original cellulose on changes in morphology, degree of
    
    polymerization, solubility and supermolecular structure by steam explosion, British Polymer J., 1990,(22):201-212
    [78] Yamashiki, T., Kamide, K., Okajima, K., Kowsaka, K., Matsui, T, Some characteristic features of dilute aqueous solutions of specific alkali concentration(2.Smol 1-1) which possesses maximum solubility power against cellulose, Polymer J., 1988, 20, 447-457
    [79] Yamane, C., Mori, M., Saito, M., Okajima, K., Structures and mechanical roperties of cellulose filament spun from cellulose/aqueous sodium solution system, Polymer J., 1996,(28): 1039-1047
    [80] Yamashiki, T., Matsui, T., Kowsaka, K., Saitoh, M., Okajima, K., Kamide, K., New class of cellulose fiber spun from the novel solution of cellulose by wet spinning method, J. Appl. Polymer Sci., 1992,(44): 691-698
    [81] R. S. Schreiber US 2,129,708(1938)
    [82] J. W. Hill US 2, 134,825(1938)
    [83] L. Segal, F. Eggerton; Text. Res. J. 1961, (31): 460,990
    [84] Y. Nozawa and F. Higashide, J. Appl. Polym. Sci., 1981(26):2103
    [85] J. I. Huttunen et al. FI 810226 (1981)
    [86] K. Ekman et al., Chemiefasern/Textilindustrie ,1984 (34):399
    [87] H. Griesser et al. EP 0178292 (1986)
    [88] H. Lang, F. Loth DD 259533 (1988)
    [89] D. J. Bridgeford et al. US 5,295,514 (1988)
    [90] Kurt Ekman, Vidar Eklund et al.Regenerated Cellulose Fibers From Cellulose Carbamate Solutions.Lenzinger Berichte, 1984, (3): 38-40
    [91] Finnish Pat. 61033 (1982), 62318 (1984)
    [92] Domasik Barbara. Preparation of Cellulose Carbamate: its properties and applications. Polimery, 1990, (7): 233-236
    [93] U.S.Pat. 4486585 (1984)
    [94] Polish Pat. 296210 (1992), 296252 (1992), 310288 (1995)
    [95] German Pat. Appl. DE 4242437 A1 (1994)
    [96] G. Keunecke et al. DE 4417140 (1994)
    
    
    [97] 何春菊,王庆瑞.纤维素纤维生产新方法.中国纺织大学学报,1998,(4):111—114
    [98] 陈广美,黄毅萍等.新型纤维素衍生物——纤维素氨基甲酸酯概述.安徽化工,2001,(2):6-7
    [99] 张旺玺,王艳芝.纤维素氨基甲酸酯的合成.江苏化工,1998,(6):26—27
    [100] 陈广美等.纤维素氨基甲酸酯的合成研究.精细化工,2000,(6):356—357
    [101] 眭伟民,黄象安等编著.阻燃纤维及织物.纺织工业出版社,北京:1990
    [102] 欧育湘,陈宇等编著.阻燃高分子材料.国际工业出版社,北京:2001
    [103] W.A.Reeves, G.L.Drake, and R.M.Perkins, Fire Resistant Textiles Handbook,Technomic,Westport,U. S.A., 1974
    [104] R.H.Barker and M .J.Drews in "Flame Retardants for Cellulosic Materials," in Cellulose Chemistry and Its Applications (T.P. Nevell and S.H.Zeronian ,Eds.), Ellis Horwood Ltd.,Chichester, 1985,Chapter 17,p.423
    [105] M..Lewin, "Flame Retardence of Fabrics" in Handbook of Fibre Science and Technology, Vol. Ⅱ,ChemicalProcessing of Fibres and Fabrics,Functionsal Finishes,Part B (M. Lewin and S. B. Sello, Eds.), Ddkker, New York, NY, 1984,Chapter 1,p.79
    [106] 欧育湘等编.实用阻燃技术.化学工业出版社,北京:2002
    [107] 蔡永源,刘静娴.高分子材料阻燃技术手册.化学工业出版社,北京:1993
    [108] 薛恩钰,增敏修.阻燃科学及应用[M].北京:国防工业出版社,1988
    [109] 徐应麟等.高分子材料的实用阻燃技术.北京:化学工业出版社,1987
    [110] 于永忠,吴启鸿,葛世成等编著.阻燃材料手册.群众出版社,北京:1997
    [111] Vapaaoksa P.; Intern. Text. Bull., Nonwovs/Ind. Text., 1994,40,(2):14-15
    [112] Heidari S,; J.Soc. Dyers Colour., 1993,109,(7-8):261-263
    [113] HeidariS,; Visil-eine neue technische Hybridfaser. Industrie-Textilien/Technische Textilien, 1991 ,(11):224-225
    [114] Hall M.E.; Pdym. Degrad. Stab., 1999,64(3):505-510
    [115] 程博闻.粘胶纤维的阻燃改性.人造纤维,1998,(4):1-5
    [116] 张志德等.溴系阻燃剂的国内外新进展.精细石油化工,1999,(5):59-62
    
    
    [117] 欧育湘.国外无卤阻燃剂最新研究进展.精细与专用化学品,2000,(9):6-8
    [118] M.A.Kasem and H.K.Rouette,J.Fire Flammability,3,316(1972)
    [119] 欧育湘,新世纪前10年全球阻燃剂发展预测,化工进展,1999,18(6):29-32
    [120] 欧育湘.阻燃剂-制造、性能及应用.北京:兵器工业出版社,1997
    [121] Schuyten H A, Weaver J W, Reid J D. Fire retardants paints, advances in chemical series[M]. American Chemical Society, Washington D C, 1954:7-20
    [122] William C, Kuryla, Papa A J. Flame retardancy of polymeric materials[M]. New York, Marcel Dekke, 1973: 133-134
    [123] 张树均等编.改性纤维与特种纤维.北京:中国石化出版社,1995
    [124] B.B Koutu , R. K Sharma.; Synthesis of flam-retardant dope additive dithiopyrophosphate and its effect on viscose rayon fibres. Indian Journal of Fibre and Textile Research. 1996,21(6): 140-142
    [125] 王积涛.高等有机化学.北京:人民教育出版社,1980
    [126] 崔永芳等.实用有机物波谱分析.北京:中国纺织出版社,1994
    [127] Gilbert R.D., Patton P.A. et al. Polym. Sci., 1983, (9): 114-117
    [128] R.Nelson, O.W. Oliver. J.Appl. Polym. Sci. Part C, 1971:305-320
    [129] T. Okano and A.Sarko. J.Appl. Polym. Sci., 1985, (30): 325-329
    [130] Zeronians H. [J]. J Appl. Polym. Sci., 1970, (14): 365
    [131] Buschle-Dller G, Zeronians H. J. Appl. Polym. Sci., 1992, 45(6): 967—979
    [132] Forcher B, Marzettia, Cattanev M. J. Appl. Polym. Sci., 1981, (6): 1989—1999
    [133] Shukia R, Gopalarao R. J. Appl. Pdym. Sci., 1992, 45(8): 1341—1354.
    [134] 王黎明.人造纤维,1992,(5):1—6
    [135] Pavlov P, et al. Cellul. Chem. Technol., 1992, 26(2): 151—160.
    [136] 华坚.人造纤维,1990,(3):1—6
    [137] 高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996:47—48.
    [138] 苏茂尧,由利丽.[J].纤维素科学与技术,1997,5(3):7—12.
    
    
    [139] Franklin. W. J. Appl. Pdym. Sci., Appl. Polym. Symposium, 1983, (37): 577—592.
    [140] Philipp B. Lignocellulosics-science, techndogy development and use, eds. KENNEDY. Ellis Horwood Limited, 1992: 467—477.
    [141] T. Lokhande,S.R. Shukln,P.K.Chidambareswaran and N.B.Patil,N.B.Patil, J.Appl.Polym, Sci, Lett. Ed., 1976,(14): 147
    [142] J.O.Warwicker, A.C.Wright,J.Appl.Polym. Sci. 1967,(11):659
    [143] Isogaia, et al. Seni Gakkaishi, 1992, (48): 487—492.
    [144] Awdel-Karims, et al. Holzforschung, 1998, 52(1): 67—70.
    [145] D.N-S. Hon, in Cellulose and its derivatives,J.F. Bennedy, G.O.Phillips,D.J.Wedlock and P.A.Williams(Ed.),E Uis Horwood Limited, New York, 1985:71-86
    [146] L.F. MC Burney, in Cellulose and its derivatives,Part 1,E.dt.H.M.Spurlin and M.W. Grafflin(Ed.),interscience, New York, 1954:191-196
    [147] Abramovich. R .A, et al. Holzforschung, 1994, 48(4): 349—354.
    [148] 熊健,等..功能材料,1998,(10):555.
    [149] 熊健.华南理工大学博士论文[D].广州:华南理工大学,1998.
    [150] Philipp Burkart; Polym. News, 1999,24,(6): 194-197
    [151] Akzo Nobel Chemistry AB; WO98-47924
    [152] Raiagopal S.; Lenzinger Berichte, 1997,(76):37-41
    [153] FischerK, et al. Acta Polym., 1990, 41(5): 279—284.
    [154] Stavtsov A. K,; Chem. Fibers International ,1996,46(2):92-94
    [155] Impela AG. Chem. Fibers International, 1995,45(6):454
    [156] Stavtsov A. K, Chem. Fibers Intern., 1996,46,(3): 169-172
    [157] 宫宁瑞,刘继华.辐射降解纤维素的研究现状.火炸药学报,1999(1):70-72
    [158] Samaranayake G, Li Xiaoming, et al. Holzforschung, 1994, (48): 69—71.
    [159] Kamide K. et aL. Polymer J., 1984, 16(12): 857—866.
    [160 许正宏,孙微,史劲松,等.制浆生物技术的研究与工业应用.林产化学与工业,1998,18(3):89—94.
    
    
    [161] Gusakov A, Bioechn. Bioeng., 1987, (29): 906.
    [162] 于海洋译.酶在纺织工业中的应用.国外纺织技术,1998,(1):29—31
    [163] 贺长城.天津工业大学博士论文.天津:天津工业大学,2001
    [164] 孔行权.粘胶纤维生产分析检验,北京:纺织工业出版社,1985:93-99
    [165] Shukry. N..Acta Polymer, 1985, (36): 53
    [166] Pandey S N. Text Res. J. 1975,(45):648-653
    [167] Lewin M, et al. J.Polym. Sci, 1971,(36):213-229
    [168] 陈洪章等编.纤维素科学与技术,1999,(2):60—67
    [169] 叶君,熊犍.广东造纸.1999(2):6
    [170] Weise U. Hornification-Mechanisms and Terminology. Paperi Ja Puu-Paper and Timber. 1998,80(2):110
    [171] 唐爱民等.纤维素预处理技术的发展.林产化学与工业,1999,(4):85—88
    [172] 陈国符,邬义明.植物纤维化学,北京:轻工业出版社,1980:124
    [173] 有机物分离分析讲义.天津工业大学精细化工系编,1999
    [174] A.T.谢尔柯夫著.粘胶纤维.北京:纺织工业出版社,1985:137
    [175] T.K.Wu. Macromolecules, 1980, (13): 74
    [176] S.Kramer, R.Dietel et al.Characterization of chloroacetylated/sulfonated cellulose memberanes for hemodialysis by spectroscopical methods. Acta polymer, 1992,43:58-60
    [177] 陈希等.化学纤维实验教程,北京:纺织工业出版社,1988
    [178] Mikolajiczyk W. Fibre and Textiles in Eastern Europe, 1998,(2): 53-55
    [179] Mikolajiczyk W. Fibre and Textiles in Eastern Europe, 1998,(2):56-58
    [180] Ryttel A. Fire Retardant Polymers, Poly. Degrad. Stab., 1995,(47):67-72
    [181] B.K. Kandola et al. Flame-Retardant Treatments of Cellulose and Their Influence on the Mechanism of Cellulose Pyrolysis. Rev. macromol. Chem. Phys., 1996,C6 (4): 721-794
    [182] Langley J T., et al., J. Appl. Polym. Sci., 1980,(25):243-246
    [183] Brauman S K.et al. Phosporus flame retardance in Polymers, J. Fire Retard. Chem., 1977,(4):93
    [184] Bakos D.et al. The role of nitrogen in nitrogen-phosphorus Synergism, Fire and
    
    Materials,1982,(6): 10
    [185] Shigeko N.et al. Textile Res. J. 1998,68(11):807-813
    [186] 张美珍等.聚合物研究方法.北京:中国轻工出版社,2000
    [187] 于伯凝等.实用热分析.北京:纺织工业出版社,1990
    [188] 李巧玲.新型磷—氮阻燃剂的合成、应用及其阻燃机理的研究[博士学位论文].北京:北京理工大学,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700