纤维素基高分子表面活性剂的合成及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是地球上最为丰富的可再生资源,利用纤维素为原料开发一种无毒、无污染的环境友好的高分子表面活性剂,不仅可以解决当前石油工业的能源危机,而且可以为纤维素的合理利用开辟新的途径,同时得到的表面活性剂有望生物降解,因此具有重大的现实意义。本文以聚合度为280的纤维素为原料,溶液化后,与长链脂肪酰氯进行酯化反应,对纤维素主链引入疏水链段,得到的纤维素长链脂肪酸酯再进行硫酸酯化,以引入亲水链段,创造性地制备了一种新型结构的纤维素类高分子表面活性剂,并将纤维素的新溶剂体系LiCl/DMAc引入到高分子表面活性剂的合成当中,同时还测定了该表面活性剂临界聚集浓度下的表面张力、胶束形态与尺寸,主要内容及结论如下:
    1.选用聚合度分别为280、643、850三种纤维素为研究对象,经去离子水、甲醇、DMAc溶剂交换后,溶于LiCl/DMAc中,利用高级流变仪对三种纤维素LiCl/DMAc溶液的流变行为进行了研究,动态流变实验结果表明,在实验选择的频率范围,纤维素的LiCl/DMAc溶液体系基本呈粘弹体行为,即G′随频率的增加而增加, G″起初也增加,到G′变化最快的频率时, G″达到最大值;力学内耗tanδ随着频率的增大而降低直至趋于0;从G′与G″交点处的储量G_c ,可以推断出三种不同聚合度纤维素分子量的分散性次序:2#>3#>4#;纤维素溶液温度由50℃升高到80℃时,由于分子运动加快,储能模量G′和耗能模量G″交点处的储量G_c值较低,且频率也相应地降低, tanδ有不同程度地增大。这些研究结果为纤维素LiCl/DMAc溶液的实际应用提供理论基础。
    2.以辛酰氯为酰化试剂,三乙胺为缚酸剂,在纤维素的LiCl/DMAc均相溶液中,制备了DS=0.43的纤维素辛酰酯,FT-IR、元素分析、CP/MAS ~(13)C-NMR、X-ray及SEM等测试手段对其结构及性质进行了表征;得到的DS=0.43的纤维素辛酰酯作为原料,HClSO_3/DMF为硫酸化试剂,45℃左右,5.5h制备了纤维素辛酰酯硫酸钠,FT-IR和~(13)C-NMR的测试结果表明,纤维素辛酰酯硫酸钠(ESC)这种新型结构高分子表面活性剂的成功合成,ICP分析结果表明,硫酸钠的取代度可达0.543,基本可以满足表面活性剂的亲水性要求。本研究打破了传统纤维素类高分子表面活性剂先亲水后疏水改性的合成方法,并将纤维素的LiCl/DMAc溶剂体系引入到高分子表面活性剂的合成当中,成功地合成了纤维素辛酰酯硫酸钠这种结构新型的纤维素类高分子表面活性剂,为纤
Cellulose is one of the most abundant, naturally occurring polymers usedcommercially. In this paper, a new kind of cellulose-based polymeric surfactant wasdeveloped and synthesized. The potential of this project seems to be great in the viewof either the efficient use of energy and raw material, or the environmental protect.
    A kind of cellulose with DP=280 was employed as raw materials. After solventexchanged, cellulose was dissolved in LiCl/DMAc, then reacted with octanoylchloride to produce cellulose octanoate in homogeneous solution. The celluloseoctanoate obtained was sulfated with HClSO_3/DMF, after neutralizing with NaOH,the cellulose polymeric surfactant was obtained. And the surface tension, micellesconformation and size of polymeric surfactants were also investigated. This projectchanged the conventional synthesis pathway of cellulose-based polymeric surfactants,and the LiCl/DMAc solvent system was employed in the process of polymericsurfactant synthesis.
    The overall results as following:
    Three types of cellulose with different DPs (280, 643, 850) were used as raw material,after solvent-exchanged, dissolved in LiCl/DMAc. Rheological measurements wereused to characterize the behavior of cellulose solution. Results showed that in therange of experimental frequency, three cellulose solutions all showed viscoelasticbehavior. An important characteristic of cellulose solutions is the crossover point forG′ and G″ . At strain rates lower than the crossover strain rate, the G′ values are lessthan G″ , indicating the viscous response dominates. Above the crossover strain rate,the G′ values are greater than G″ . And with the increase of ω , tan δ decreased.From the G_c at the crossover point, the order of polydispersity of three cellulose canbe concluded as following: 2#>3#>4#. The temperature of cellulose solutionincreased from 50℃ to 80℃, the G_c values of decreased, but tan δincreased.
    Cellulose octanoate with DS=0.43 was synthesized in homogeneous solution usingLiCl/DMAc as solvent and TEA as acid-scavenger. The concentration of cellulosesolution was 2.5wt% with DP of 280. By the CP/MAS ~(13)C-NMR、FT-IR、X-ray、SEM、elemental analysis measurements,the cellulose octanoate was characterized. And thecellulose octanoate (DS=0.43) obtained was employed as raw material for furtherhydrophilization. By sulfating with HClSO_3/DMF, then neutralized, a new type of
    cellulose polymeric surfactant-cellulose octanoate sulfate was developed andsynthesized. By the FT-IR、13C-NMR measurements and ICP, the cellulose octanoatesulfate obtained was characterized with degree of sulfation as 0.543.By the measuring the surface tension of ESC,the critical congregate concentrationwas obtained as 0.04-0.2wt% and the corresponding surface tension was about 55mN/m. But critical congregate concentration of cellulose sulfate cannot be found in theplot of relationship between the concentration and surface tension. Results showed thatthe surface activity of ESC was superior to cellulose sulfate. In this paper, micellesconformation of polymeric surfactants ESC in aqueous solution was systemicallyinvestigated by dynamic scattering and environmental scanning electron microscopymeasurements. Results showed that polymeric surfactant could also form micellessimilar to conventional ones. When the concentration of ESC was low,the micelleswere spheroidal or ellipsoidal mono-molecule micelles. And at the low concentration,the normalized first-order autocorrelation function ( )g(t )1 of ESC can not berepresented by single-exponential decays. At the higher concentration the micelles inaqueous solution would aggregate and form network structure further, but thenormalized first-order autocorrelation function ( )g(t )1 of ESC represented bysingle-exponential decays. With the increasing of ESC concentration, the lower sizeregion remained from 50nm to 170nm. The results of rheology test of ESC in aqueoussolution showed that the surfactant had polymeric rheology.
引文
[1] Simon J, Muller H P, Koch R, et al. Thermoplastic and biodegradable polymers of cellulose, Polymer Degradation and Stability, 1998, 59 (1-3): 107-115
    [2] 陈家楠,纤维素化学的现状及发展趋势,纤维素科学与技术,1995,3(1):1~10
    [3] [日] 北原文雄,玉井康勝,甲野茂夫等著,孙绍曾等译. 表面活性剂. 北京:化学工业出版社,1984. 142-154
    [4] Revely A, Kennedy J F et al. Cellulose and Its Derivatives Chemistry, Biochemistry and Applications. Chichester: El-lis Horwood Publisher, 1985. 211
    [5] Landol L M. Modified nonionic cellulose surfactant, US 4228227. 1980-10-14
    [6] Landol L M. Use of hydrophobically modified water soluble polymers in suspension polymerization, US 4352916. 1982-10-05
    [7] Brauns F E, The Chemistry of Lignin, Academic Press Inc., New York, 1852, 5
    [8] Kassig H, In cellulose and its Derivatives, J. Kennedy, G Philips and P. Willianms Ed., Ellis Norwood, New York, 1985, 3-25
    [9]高洁,汤烈贵,纤维素科学,科学出版社,1999
    [10] Schurz J, A bright future for cellulose, Progress in Polymer Science, 1999,24 (4);481-483
    [11] Heinze T, Liebert T, unconventional methods in cellulose functionalization, Progress in Polymer Science, 2001, 26 (9): 1689-1762
    [12] Kamide K, Okajima K, Matsui T, et al. Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and ~(13)C-NMR, Polymer Journal, 1984, 16(12): 857-866
    [13] Kamide K, Saito M, Light scattering and viscometric study of cellulose in aqueous lithium hydroxide, Polymer Journal, 1986, 18(8): 569-579
    [14] Yamashiki T, Kamide K, Okajima K, et al. Some characteristic features of dilute aqueous alkali solution of specific alkali concentration which possess maximum solubility power against cellulose, Polymer Journal, 1988, 20(6): 447-457
    [15] Yamashiki T, Matsui T, Saitoh M, et al. Characterisation of cellulose treated by the steam explosion method. Part 1. Influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure Polymer Journal, 1990, 22(1): 73-83
    [16] Isogai A, Atalla RH, Dissolution of cellulose in aqueous NaOH solution, cellulose, 1998,5(4): 309-319
    [17] Cuculo J A, Smith C, Sangwatanaroj U, et al. Study on the mechanism of dissolution of the cellulose/NH_3/NH4SCN system. I, Journal of Polymer Science, Part A: Polymer Chemistry, 1994, 32(2): 229-239
    [18] Cuculo J A, Smith C, Sangwatanaroj U, et al. Study on the mechanism of dissolution of the cellulose /NH_3/ NH4SCN system.II, Journal of Polymer Science, Part A: Polymer Chemistry, 1994, 32(2): 241-247
    [19] Hattori M, Koga T, Shimaya Y, et al. Aqueous calcium thiocyanate solution as a cellulose solvent. Structure and interactions with cellulose, Polymer Journal, 1998, 30(1): 43-48
    [20] Hattori M, Shimaya Y, Saito M, Solubility and dissolved cellulose in aqueous calcium-and sodium-thiocyanate solution, Polymer Journal, 1998, 30(1): 49-55
    [21] Chen L F, "High strength cellulose fiber or film", US Patent 5290349, 1994
    [22] Xu Q, Chen L F, Ultraviolet spectra and structure of zinc-cellulose complexes in zinc chloride solution, Journal of Applied Polymer Science, 71 (9): 1441-1446
    [23] Graenacher G, Sallmann R, Cellulose solutions and process of making same, US2179181, 1939-11-07
    [24] Michael M, Ibbett RN, Howarth OW, Interaction of cellulose with amine oxide solvents, cellulose, 2000, 7 (1): 21-33
    [25] Heinze T, Liebert T, Klufers P, et al. Carboxymethylation of cellulose in unconventional media, cellulose, 1999, 6 (2): 153-165
    [26] FranksN E, Varga S K, Process for making precipitated cellulose, US4145532, 1979-03-20
    [27] McCorsley C C, Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent, US4246221, 1981-01-20
    [28] Chanzy H, Nawrot S, Peguy A, et al. Phase behavior of the quasiternary system N-methylmorpholine-N-oxide, water and cellulose, Journal of Polymer Science: Polymer Physics Edition, 1982,20 (10): 1909-1924
    [29] Williams H, Cellulose solutions in dimethyl sulfoxide and nitrogen dioxide, US3236669, 1966-02-22
    [30] MacDonald D M, In Solvent spun rayon, modified cellulose fibers and derivatives. Turbak AF Ed., American Chemical Society: Washington, DC, 1977, 25-39
    [31] Hummer R B, Turbak A F, In Solvent spun rayon, modified cellulose fibers and derivatives. Turbak A F Ed., American Chemical Society: Washington, DC, 1977,44-51
    [32] Kamide K, Okajima K, Matsui T, et al. Dissolution process and dissolved state of cellulose in dimethylformamide-chloral-pyridine system, Polymer Journal,
     1980, 12(8): 521-534
    [33] Hudson S, Cuculo J, Solubility of cellulose in liquid ammonia/salt solutions, Journal of Polymer Science, Polymer Chemistry Edition, 1980, 18 (2): 3469-3481
    [34] Chanzy H, Peguy A, Oriented cellulose films and fibers from a mesophase system, Journal of Polymer Science: Polymer Physics Edition, 1980, 18 (5): 1137-1141
    [35] Takaragi A, Minoda M, Miyamoto T, et al. Reaction characteristics of cellulose in the LiCl/1,3-dimethyl-2-imidazolidinone solvent system, cellulose, 1990, 6 (2): 93-102
    [36] Edgar J, Bogan T, A direct process for the production of cellulose esters, WO9620960, 1996-07-11.
    [37] McCormick C L, "Novel cellulose solution", US4278790, 1981-07-14
    [38] Turbak AF, El-Katrawy A, Synder F, et al. "Solvent system for cellulose", US Patent 4302252, 1981
    [39] McCormick C L, Calliais P A, Hutchinson B H Jr., Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide, Macromolecules, 1985, 18(12): 2394-2401
    [40] Dawsey T R, McCormick C L, Lithium chloride/dimethylacetamide solvent for cellulose. A literature review, Journal of Macromolecular Science -Reviews in Macromolecular Chemistry and Physics, 1990,C30 (3&4): 405-440
    [41] McCormick C L, Dawsey T R, Preparation of cellulose derivatives via ring-opening reaction with cyclic reagents in lithium chloride/N,N-dimethylacetamide, Macromolecules, 1990, 23 (15): 3606-3610
    [42] Striegel A, Theory and application of DMAc/LiCl in the analysis of polysaccharides, Carbohydrate polymer, 1997, 34(4): 261-21A
    [43] McCormick C L, Dawsey TR, Preparation of cellulose derivatives via ring-opening reactions with cyclic reagents in lithium chloride/N,N-dimethylacetamide, Macromolecules, 1990, 23 (15):3606-10. [44] McCormick C L, Lithatowich DK. Homogeneous solution reaction of cellulose, chitin, and other polysaccharides to produce controlled-activity pesticide system, Journal of Polymer Science, Polymer Letter Editor, 1979, 17: 479-484
    [45] McCormick C L, Chen TS. Cellulose dissolution and derivatization in lithium chloride/N,N-dimethylacetamide solutions. In: Symor RB, Stahl GA, editors. Macromolecular solutions, solvent-property ealationships in polymers. New York: Pergamon Press, 1982, p101
    [46] Charles L. McCormick, Peter A. Callais, Derivatization of cellulose in lithium chloride and N,N-dimethylacetamide solutions, polymer, 28,
     1987,2317-2323
    [47] Biranchinarayan Tosh , Chowdhury N. Saikia, Homogeneousesterification of cellulose in the lithium chloride-N,N-dimethylacetamide solventsystem: effect of temperature and catalyst, Carbohydrate research, 2000, 327 (3):345-352
    [48] Heinze T, Liebert T, Klufers P, et al. Carboxymethylation of cellulose in unconventional media, Cellulose, 1999, 6 (2): 153-165
    [49] Liu H, Zhang L, Minoda M, et al. Phase transition of 2,3-O-methylcellulose Polymer Bulletin, 1998, 40 (6): 741-747
    [50] Zhou Q, Zhang L, Minoda M, et al. Phase transition of thermosensitive amphiphilic cellulose esters bearing olig(oxyethylene)s, Polymer Bulletin, 2000, 45 (4&5): 381-388
    [51] Zhou Q, Zhang L, Okamura H, et al. Synthesis and Properties of O-2-[2-(2-Methoxyethoxy)ethoxy]acetyl Cellulose, Journal of Polymer Science, Part A: Polymer Chemistry, 2001, 39 (3): 376-382
    [52] Isogai A, Ishizu A, Nakano J, Preparation of tri-o-benzylcellulose by the use of nonaqueous cellulose solvents, Journal of Applied Polymer Science, 1984, 29 (6): 2097-2109
    [53] Rahn K, Diamantoglou M, Klemm D, et al. Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent syntem, Die Angewandte Makromolekulare Chemie, 1996, 238:143-16
    [54] 黄继才,大矢晴彦,根岸样一,醋酸纤维素衍生物反渗透膜对低分子量有机物分离特性研究, 纤维素科学与技术,1993,1(4):36-44
    [55] Sivakumar M, Mohanasundaram A K, Mohan D, et al. Modification of cellulose acetate: Its characterization and application as an ultrafiltration membrane, Journal of Applied Polymer Science, 1998, 67(11): 1939-1946
    [56] Fang J., Huang J C, Chen L K, et al. International Symposium on cellulose and lignocellulosice'96, Guangzhou, China, 1996,82-83
    [57] Sabine Inghelbrecht, Jean Paul Remon, Reducing dust and improving granule and tablet quality in the roller compaction process, 1998, 171 (2): 195-206
    [58] Miyagawa A. 纤维素会志,1992,48(10):566-567
    [59] 陈玉放,谢来苏,植物纤维用于新技术领域, 纸和造纸,1998,4:53-56
    [60] 印寿根,李朝兴,徐欢驰等,珠状纤维素的制备及其应用, 高分子通报,1996,2,100-104
    [61] 张中勤,宋清,球状再生纤维素离子交换剂的制备, 离子交换与吸附,1998,14(1):23-30
    [62] Morooka T, Okamoto M, Yamada T, Periodate oxidation of cellulose by homogeneous reaction,Journal of Applied Polymer Science,1989,38(5): 849-858
    [63] Rahn K, Heinze T H, New cellulosic polymers by subsequent modification of 2,3-dialdehyde cellulose, Cellulose Chemistry and Technology, 1998, 32 (3-4) , 173-183
    [64] 叶君,发光纤维素衍生物的研究,博士论文,华南理工大学,广州,1998
    [65] 熊犍,叶君,吴奏谦等,羧酸纤维素的制备及其抗凝血性能的研究,功能高分子学报,1997,10(4):559-563
    [66] Aoiki N, Sakamoto M, Furuhata K. Reaction of bromodeoxycellulose. In: Heinze T, Glasser WG, editors. Cellulose derivatives;modification, chracterization and nanostructure. Washington, DC: ACS Symposium Series 688, American Chemical Society, 1998. p83.
    [67] Furuhata K, Koganei K, Chang H S, et al. Dissolution of cellulose in lithium bromide-organic solvent systems and homogeneous bromination of cellulose with N-bromosuccinimide-triphenylphosphine in lithiumchloride-N,N-dimethylacetamide, Carbohydrate Research, 1992, 230(1): 165-177
    [68] Furuhata K, Chang H S, Aoki N, et al. Chlorination of cellulose with N-chlorosuccinimide-triphenylphosphine under homogeneous conditions in lithium chloride-N,N-dimethylacetamide, Carbohydrate Research, 1992, 230(1): 151-164
    [69] Kasuya N, Liyama K, Ishizu A, Synthesis and characterization of highly substituted deoxyfluorocellulose acetate, Carbohydrate Research, 1992, 229(1): 131-139
    [70] Aoki N, Koganei K, Hchang H S, et al. Gas chromatographic-mass spectrometric study of reactions of halodeoxycelluloses with thiols in aqueous solutions, Carbohydrate Polymers, 1995, 27 (1) : 13-21
    [71] Koschella A, Heinze T, Unconventional Cellulose products by fluorination of tosyl cellulose, Macromolecular Symposia, 2003, 197 (1) : 243-254
    [72] Nakamura S, Amano M, Preparation of hydrazinodeoxycellulose and carboxyalkyl hydrazinodeoxycelluloses and their adsorption behavior toward heavy metal ions, Journal of Polymer Science, Part A, Polymer Chemistry, 1997, 35 (16) : 3359-3363
    [73] Okieimen F Z, Ogbeifun D E, Graft copolymerizations of modified cellulose, grafting of acrylonitrile, and methyl methacrylate on carboxymethyl cellulose, Journal Applied Polymer Science, 1996, 59 (6) : 981-986
    [74] Chatterjee S, Sarkar S, Bhattacharyya S N, et al. Semiconductor photosensitized grafting: Physicochemical studies on acrylamide grafted CA
     films, Journal Applied Polymer Science, 1996, 59 (13) : 1973-1978
    [75] Tan Y B, Zhang L M, Li Z M, Synthesis and characterization of new amphoteric graft copolymer of sodium carboxymethyl cellulose with acrylamide and dimethylaminoethyl methylacrylate, Journal of Applied Polymer Science, 1998, 69(5): 879-885
    [76] Yin X C, Zhang L M, Li Z M, Studies on new ampholytic cellulose derivative as clay-hydration inhibitor in oil field drilling fluid, Journal of Applied Polymer Science, 1998, 70(5): 921-926
    [77] Xiao Y, Meshitsuka G, Development of super water-absorbent from cellulosic materials (3 ) -Improvement of water absorbency. Kami Pa Gikyoshi/ Japan Tappi Journal, 2002, 56 (3) : 104-111
    [78] Xiao Y, Meshitsuka G, Development of super water-absorbent from cellulosic materials(part 2)-properties and structure of water-absorbent, 2001, 55 (8) : 106-113
    [79] Lokhande H T, Varadarajan P V, New approach in the production of non-wood-based cellulosic superabsorbents through the PAN grafting method, Bioresource Technology: Biomass, Bioenergy, Biowastes, Convension Technologies, Biotransformations, Production Technologies, 1993, 45 (3) : 161-165
    [80] Esposito F, Nobile M A, Mensitieri G, et al. Water sorption in cellulose-based hydrogels, Journal of Applied Polymer Science, 1996, 60(13) : 2403-2407
    [81] Shin Kuwabara, Hitoshi Kubo, Water-absorbing characteristics of acrylic acid-grafted carboxymethyl cellulose synthesized by photografting, Journal of Applied Polymer Science, 1996, 60(11): 1965-1970
    [82] Masahiro Yoshinobu, Mitsuhiro Morita, Mitsuo Higuchi, et al. Morphological study of hydrogels of cellulosic super water absorbents by CRYO-SEM observation, Journal of Applied Polymer Science, 1994, 53(9): 1203-1209
    [83] Rezai E,Warner R R, Polymer-grafted cellulose fibers. I. Enhanced water absorbency and tensile strength, Journal of Applied Polymer Science, 1997, 65(8): 1463-1469
    [84] Hitoshi Kubota, Shin Kuwabara, Cellulosic absorbents for water synthesized by grafting of hydrophilic vinyl monomers on carboxymethyl cellulose, Journal of
     Applied Polymer Science, 1997, 64(11): 2259-2263
    [85] Lokhande H T, Gotmare V D, Utilization of textile loomwaste as a highlyabsorbent polymer through graft co-polymerization, Bioresource Technology,1999, 68 (3) : 283-286
    [86] Capitani D, Mensitieri G, Porro F, et al. NMR and calorimetric investigationof water in a superabsorbing crosslinked network based on cellulose derivatives,Polymer, 2003, 44 (21) : 6589-6598
    [87] Tyrone L V, Interaction of cellulose with other polymers: retrospective andprospective, Polymers for Advanced Technologies, 1998,9(9): 539-548
    [88] Allan S, Hoffman, P S, Stayton, V B, et al. Really smart bioconjugates ofsmart polymers and receptor proteins, Journal of Biomedical Materials Research,2000, 52 (4) : 577-586
    [89] Karlsson J O, Gatenholm P, Cellulose fibre-supported pH-sensitive hydrogels,Polymer, 40 (2) : 379-387
    [90] Rodriguez R, Alvarez L C, Concheiro A, Cationic cellulose hydrogels:kinetics of the cross-linking process and characterization as pH-/ion-sensitive drugdelivery systems, Journal of Controlled Release, 86 (2-3) : 253-265
    [91] Karlsson J O, Andersson M, Berntsson P, et al. Swelling behavior ofstimuli-responsive cellulose fibers, Polymer, 1998, 39 (16) : 3589-3595
    [92] Yue Z, Cowie JM G, Synthesis and characterization of ion conducting cellulose esters with PEO side chains, polymer, 2002, 43 (16), 4453-4460
    [93] Yue Zhilian, John M. G Cowie. Preparation and chiroptical properties of a regioselectively ether with PEO side chains, Macromolecules, 2002, 35(17), 6572-6577
    [94] Arai K, Satoh. Liquid crystalline phase-formation behavior of cellulose cinnamate, Journal of Applied Polymer Science, 1992, 45 (3): 387-390.
    [95] Marsano E, De Paz L, Tambuscio E, et al. Cellulose methacrlate: synthesis and liquid crystalline behavior of solution and gels, polymer, 1998, 39 (18): 4289-94
    [96] Landol L M. J. Nonionic polymer surfactants, Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20 (2): 443-455
    [97] Tanaka R, Meadows J. Phillips G O, Viscometric and spectroscopic studies on the solution behaviour of hydrophobically modified cellulosic polymers, Carbohydrate Polymer, 1990, 12 (4): 443-459
    [98] Meadows J, Willians P A, Tanaka R, Macromolecular Reports -International Rapid Publication Supplement to the Journal of Macromolecular Science-Pure and Applied Chemistry, A31 (suppl 6-7): 777-785
    [99] Tanaka R, Meadows J, Willians P. A et al. Interaction of hydrophobically modified hydroxyethyl cellulose with various added surfactants, Macromolecules. 1992,25(4): 1304-1310
    [100] Srokova, I., Talaba, P., Hodul, P., Balazova, A. Emulsifying agents based on O-(carboxymethyl)cellulose, Tenside, Surfactants, Detergents, 1998, 35(5): 342-344
    [101] Srokova I, Tomanova V, Ebringerova A, et al. Water-soluble Amphiphilic O-(Carboxymethyl)-cellulose Derivatives-Synthesis and properties , Macromolecular Material and Engineering, 2004, 289(1), 63-69
    [102] Blasutto M, Delben F, Milost R, et al. Novel cellulosic ethers with low degrees of subsititution-I . Preparation and analysis of long-chain alkyl ethers, carbohydrate polymers, 1995, 27 (1): 53-62
    [103] Rosilio, V, Albrecht, G, Baszkin, A, et al. Surface properties of hydrophobically modified carboxymethylcellulose derivatives. Effect of salt and proteins, 2000, 19(2): 163 -172
    [104] Merle L, Charpentier D, Mocanu G, et al. Comparison of the distribution pattern of associative carboxymethylcellulose derivatives, European Polymer Journal, 1999, 35(1): 1-7
    [105] Talaba P, Srokova I, Ebringerova A, et al. Cellulose-based biodegradable polymeric surfactants, Journal of Carbohydrate Chemistry, 1997, 16(4&5): 573-582
    [106] 蒋刚彪,周枝凤. 羧甲基纤维素接枝长链季铵盐合成两性高分子表面活性剂,精细石油化工, 2000, 1, 19-21
    [107] Hwang F S. Macromolecular Complexin Chemistry and Biology. New York: Springer-Verlag Heidelberg, 1994, 95-116
    [108] Hwang F S, Hogen-Esch T E, Fluorocarbon-modified water-soluble cellulose derivatives, Macromolecules. 1993, 26(12): 3156-3160
    [109] 曹亚,李惠林,左渠等,羧甲基纤维素—十二烷基醇聚氧乙烯醚丙烯酸酯共聚物表面活性剂在水溶液中的胶束形态,高分子学报,2000,3:345-349
    [110] 曹亚,李惠林, 徐僖,羧甲基纤维系列高分子表面活性剂的嵌段结构对其形态和性能的影响,高分子学报,2001,1:3-7
    [112] 曹亚,李惠林,严启团,CMC 系列高分子表面活性剂的胶束形态,物理化学学报,2000,16(6):553-558
    [113] 曹亚,李惠林,CMC 系列高分子表面活性剂与原油超低界面张力形成机理的研究,高等学校化学学报,2001,21(2):312-316
    [114] 曹亚,李惠林,张爱民,CMC 型高分子表面活性剂在固/液界面上的吸附,物理化学学报,1999,15(10):952-955
    [115] 杨金华,曹亚,李惠林,高分子表面活性剂与原油形成超低界面张力的研究,精细化工,1999,16:3-6
    [116] 曹亚,李惠林,高分子表面活性剂在固/液界面上的吸附形态,物理化学学报,1999,15(10):895-899
    [117] 曹亚,李惠林,严启团,羧甲基纤维素系列高分子表面活性剂在盐溶液中的胶束形态研究,高分子材料科学与工程,1999,15(3):71-74
    [118] 曹亚,李惠林,徐僖,羧甲基纤维素系列高分子表面活性剂结构与表面活性的研究,油田化学,1997,14(3):257-260
    [119] 曹亚,李惠林,徐僖,羧甲基纤维素系列高分子表面活性剂超声合成的研究,高等学校化学学报,1997,18(6):985-989
    [120] 曹亚,李惠林,羧甲基纤维素系列高分子表面活性剂形成微乳液的研究,高等学校化学学报,2000,21(1):160-164
    [121] 曹亚,李惠林,羧甲基纤维素系列高分子表面活性剂与大庆原油的界面活性研究,油田化学,1999,16(3):265-267 学与工程,1997,13(3):106-110
    [122] 曹亚,李惠林,徐僖,羧甲基纤维素系列高分子表面活性剂在溶液中分子形态的研究,高分子材料科
    [123] 曹亚,李惠林,徐僖,羧甲基纤维素系列高分子表面活性剂在溶液中胶束行为的研究,油田化学,1997,14(4):361-364
    [124] Cao Ya, Li Huilin, Synthesis of a novel family of polymeric surfactants with low interfacial tension by ultrasonic method, Polymer Journal, 1999, 31 (11): 920-923
    [125] Cao Ya, Li Huilin, Xu Xi, Mechanism of Forming Ultra-low Interfacial Tension of Polymeric Surfactants Based on Carboxy Methyl Cellulose , Chemical Journal of Chinese Universities, 2001, 22(2): 315-316
    [126] Cao Ya, Li Huilin, Interfacial activity of a novel family of polymeric surfactants, European Polymer Journal, 2002, 38(7): 1457-1463
    [127] Cao Ya, Li Huilin, Micellar solutions of amphipathic copolymers based on carboxymethyl cellulose, Polymer International, 2003, 52(6): 869-875
    [128] Werbowyj R, Gray D, Liquid crystalline structure in aqueous hydroxypropylcellulose solutions, Molecular Crystals and Liquid Crystals Letters, 1976, 34(4):97-103
    [129] Chung T S, The recent developments of thermotropic liquid crystallinepolymers, Polymer Engineering and Science, 1986, 26 (13): 901-919
    [130] 王家芳,章文贡,纤维素及其衍生物液晶研究近况,高分子通报,1999,1:51-59
    [131] Ritcey A, Gray D, Induced CD provides evidence for helical solutionconformation in cellulosic chains, Bioolvmers, 1988, 27 (3): 479-491
    [132] Steinmeier H, Zugenmainer P, "Homogeneous" and "heterogeneous"cellulose tri-esters and a cellulose triurethane: synthesis and structuralinvestigations of the crystalline state , Carbohydrate Research, 1987, 164: 97-105
    [133] Schweiger R, New cellulose sulfate derivatives and applications ,Carbohydrate Research, 1979, 70 (2): 185-198
    [134] Takahashi S, Susuki H, Miyamoto T, et al. in cellulose: Structure andfunctional aspects. Kennedy J, Phillips G, Williams P eds Ellis Horwood,Chichester, 1989, 403
    [135] Arai K, Satoh H, Liquid crystalline phase-formation behavior of cellulosecinnamate, Journal of Applied Polymer Science, 1992, 45 (3): 387-390
    [136] Viney C, Windle A , Ternary phase equilibria for anitrocellulose/solvent/non-solvent system, Liquid Crystal, 1986, 1(4): 379-396
    [137] Lemetre J, Dayan S, Sixou P, Anisotropic solution of cellulose acetate intrifluoroacetic acid, Proof of cholesteric order by circular dichroism, MolecularCrystals and Liquid Crystals, 1982,84(1-4): 267-273
    [138] Meeten G, Navard P, The cholesteric nature of cellulose triacetatesolutions , Polymers, 1982, 23 (12): 1727-1731
    [139] Pawlowski W, Gilbert R, Fornes R, et al. The thermotropic and lyotropicliquid-crystalline properties of acetoacetoxypropyl cellulose, Journal of PolymerScience: Polymer Physics Edition, 1987, 25 (11): 2293-2301
    [140] Harkness B, Gray D, Liquid crystalline properties of trityl-alkyl cellulosederivatives, Polymer Preprints, Division of Polymer Chemistry, AmericanChemical Society 1990, 31 (1): 644-645
    [141] Guo J, Gray D , Preparation and liquid-crystalline properties of(acetyl)(ethyl)cellulose, Macromolecules, 1989, 22 (5): 2082-2086
    [142] Haurand P, Zugenmaier P, Structure and phase behaviour of a lyotropicmesophase system. Cellulose tricarbanilate-methyl acetoacetate, Polymers, 1991,32 (16): 3026-3037
    [143] Danhelka J, Netopilik M, Bohdanecky M, Solution properties and chainconformation characteristic of cellulose tricarbanilate, Journal of Polymer Science,Part B: Polymer Physics, 1987, 25 (9): 1801-1815
    [144] Patel D, Gilbert R, Lyotropic mesomorphic formation of cellulose intrifluoroacetic acid-chlorinated-alkane solvent mixtures at room temperature,Journal of Polymer Science: Polymer Physics Edition, 1981, 19(8): 1231-1236
    [145] Bianchi E, Ciferri A, Conio G, et al. Mesophase formation and chain rigidityin cellulose and derivatives. 4. Cellulose in N,N-dimethylacetamide-lithiumchloride, Macromolecules, 1985, 18 (4): 646-650
    [146] Yamagishi T, Fukuda T, Miyamoto T, et al. Thermotropic cellulosederivatives with flexible substituents. III. Temperature dependence of cholestericpitches exhibiting a cholesteric sense inversion, Liquid Crystal, 1990, 7 (2):155-161
    [147] Zugenmaier P, Haurand P, Structural and rheological investigations on helyotropic, liquid-crystalline system: o-ethylcellulose-acetic acid-dichloroaceticacid, Carbohydrate Research, 1987, 160:369-380
    [148] Navard P, Haudin J, Rheology of mesomorphic solution of cellullose,British Polymer Journal, 1980, 12 (4): 174-178
    [149] Conio G, Corazzo P, Bianchi E, et al. Phase equilibria of cellulose inN,N-dimethylacetamide/LiCl solutions, Journal of Polymer Science: PolymerLetter Edition, 1984, 22 (5): 273-277
    [150] McCormick C, Callais P, Hutchinson B, Solution studies of cellulose inlithium chloride and N,N-dimethylacetamide, Macromolecules, 1985, 18(12):2394-2401
    [151] Terbijevick M, Ciferri A, Conio G, et al. Mesophase formation and chainrigidity in cellulose and derivatives. 3. Aggregation of cellulose inN,N-dimethylacetamide-lithium chloride, Macromolecules, 1985,18(4): 640-646
    [152] Chen Y , Cuculo J , Lyotropic mesophase of cellulose inammonia/ammonium thiocyanate solution, Journal of Polymer Science: Part A,Polymer Chemistry, 1983, 21 (3): 651-670
    [153] Yang K, Theil M, Cuculo J, Lyotropic mesophases of cellulose in theammonia/ammonium thiocyanate solvent system: phase relationships, Journal ofPolymer Science: Part B, Polymer Physics, 1992, 30(4): 315-324
    [154] Hudson S, Cuculo J, Solubility of cellulose in liquid ammonia/salt solutions,Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18 (12):3469-3481
    [155] Striegel AM, Timpa JD, Molecular Characterization of Polysaccharides dissolved in N,N-dimethylacatamide-lithium chloride by gel-permeation chromatography, Carbohydrate Research, 1995, 267(2): 271-290
    [156] McCormick C L, Shen T S, in macromolecular solution (R. B. Seymour and G S. Stahl, Ed.), Pergamon, New York, 1982, 101-107
    [157] McCormick C L, Callais PA, Hutchinson B H, Solution studies of cellulose in Lithium Chloride and N,N-dimethylacetamide, Macromolecules, 1985, 18(2): 2394-2401
    [158] Roder, T.;Morgenstern, B.;Schelosky, N, et al. Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods, polymer, 2001, 42 (16): 6765-6773
    [159] Terbojevich M, Cosani Alessandro, Conio G, et al. Mesophase formation and chain rigidity in cellulose and derivatives. 3. Aggregation of cellulose in N, N-dimethylacetamide-lithium chloride, Macromolecules, 1985;18(4): 640-646
    [160] Ekmains JL. Am Lab News. 1987a, Jan/Feb: 10-11
    [161] Bikova T, Treimanis A. Problems of the MMD analysis of cellulose by SEC using DMA/LiCl: A review, Carbohydrate Polymers, 2002, 48(1): 23-28 [ 162] MeibnerK, Wolf B A, Das Papier, 1998, 12, 749
    [163] Loske S, Lutz A, Striouk S, et al, Fractionation of unsubstituted cellulose from solutions in either Ni-tren or (N, N-dimethylacetamide + LiCl), Macromolecular Chemistry and Physics, 2000, 201 (15): 1940-1945
    [164] Striouk S, Wolf B A, Fractional dissolution of "solid" unsubstituted cellulose, Macromolecular Chemistry and Physics, 2000,201(15): 1946-1949
    [165] Ishii D, Tatsumi D, Matsumoto T, Effect of solvent exchange on the solid structure and dissolution behavior of cellulose, Biomacromolecules, 2003, 4(5), 1238-1243
    [166] Johnson D C, In Cellulose Chemistry and its Application;Nevell, T P, Zeronian S H, Ed.;Ellis Horwood: Chichester, U. K., 1985;185
    [167] Klemm D, Phlipp B, Heinze U, et al. In Comprehensive Cellulose Chemistry;Wiley-VCH: Weinheim, Germany.
    [168] He C J, Wang Q R, Viscometric study of cellulose in PF/DMSO solution , Journal of Macromolecular Science -Pure and Applied Chemistry, 1999, A36 (1) :105-114
    [169] Mohammad R. Kasaai, Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose, Journal of Applied Polymer Science, 2002, 86(9): 2189-2193
    [170] Nehls I, Wagenknecht B, Philipp D, et al. Characterization of cellulose and cellulose derivatives in solution by high resolution ~(13)C-NMR spectroscopy, Progress in Polymer Science, 1994, 19 (1): 29-78
    [171] Morgenstern B, Kammer H W, On the particulate structure of cellulose solutions, polymer, 1999, 40 (5): 1299-1304
    [172] Gupta A F, Cotton P J, Marchal E, et al. Persistence length of cellulose tricarbanilate by small-angle neutron scattering, Polymer, 1976,17 (5): 363-366
    [173] Sjoholm E, Gustafsson K, Eriksson B, et al. Aggregation of cellulose in lithium/N,N-dimethylacetamide, Carbohydrate Polymers, 2000, 41 (3): 153-161
    [174] Turbak AF, Recent developments in cellulose solvent systems. Tappi Journal, 1984, 67 (1), 94-96
    [175] Vincendon M, Proton NMR study of the chitin dissolution mechanism, Die Makromolekulare Chemie, 1985,186 (9) : 1787-1795.
    [ 176] Turbak A F, El-Katrawy A, Synder F, et al. Process for forming shaped cellulosic product, US4352770, 1982-10-05
    [177] Miyamoto T, Takahashi S, Ito H, et al. Tissue biocompatibility of cellulose and its derivatives, Journal of Biomedical Materials Research, 1989, 23 (1): 125-133
    [178]Matsuda M, Kanzawa C, Kobayashi R, Ibid, 1987, 107, 9085s
    [179] Nishio Y, John Manley R S, Cellulose-poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride, Macromolecules, 1988, 21 (5): 1270-1277
    [180] Masson J F, John Manley R St, Cellulose/poly(4-vinylpyridine) blends, Macromolecules, 1991, 24 (22): 5914-5921
    [181] Kondo T, Intermolecular hydrogen bonding in cellulose/poly(ethylene oxide) blends: Thermodynamic examination using 2,3-di-O-and 6-O-methylcelluloses as cellulose model compounds, Polymer, 1994, 35(20), 4423-4428
    [182] Williamson S L, Armentrout R S, Porter R S, et al. Microstructural Examination of Semi-Interpenetrating Networks of Poly(N,N-dimethylacrylamide) with Cellulose or Chitin Synthesized in Lithium Chloride/N,N-Dimethylacetamide, Macromolecules, 1998, 31 (23), 8134-8141
    [183] 王铁群,阮金月,颜少琼等,纤维素LiCl/DMAc体系的溶液特征,纤维素化学与技术,1996,4(3):7-13
    [184] 王铁群,阮金月,颜少琼等,纤维素LiCl/DMAc溶液流变性能研究,纤维素科学与技术,1996,4(4):32-37
    [185] McCormick C L, Dawsey T R, Newman J K, Competitive formation of cellulose p-toluenesulfonate and chlorodeoxycellulose during homogeneous reaction of p-toluenesulfonyl chloride with cellulose in N,N-dimethylacetamide-lithium chloride, Carbohydrate Research, 1990, 208: 183-191
    [195] Liang C Y, Marchessault R H, Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses, Journal of Polymer Sciece, 1959, 37 (132): 385-395
    [196] Ianova N V, Korolenko E A, Korolik R G, et al. Zumal Prikladnoj Spektrokopii, 1989, 51, 301
    [197] Collier B J, Dever M, Petrovan S, et al. Rheology of lyocell solution from different cellulose sources, Journal of Polymers and the Environment, 2000, 8 (3): 151-154
    [198] Malm C J, Mench J W, Kerdull D L, Aliphatic Acid Esters of Cellulose. Preparation by Acid-Chloride-Pyridine, Industrial & Engineering Chemistry, 1951, 43 (3): 684-691
    [199] Harpeet S, K watra and James M.Caruthers, synthesis of long-chain Fatty acids esterified onto cellulose via the vacuum-acid chloride process, Industrial & Engineering Chemistry Research, 1992, 31 (2): 2647-2651
    [200] Thiebaud S, Borredon M E, Solvent-free wood esterification with fatty acid chlorides Biores.Technol, 1995, 52 (2): 169-173.
    [201] Diamantoglou M, Kuhne H, Das Papier 1988, 42:690-696
    [202] Edgar K J, Pecorini T J, Glasser W G, Long-chain cellulose esters: preparation, properties, and perspective. In: Heinze T, Glasser W G, editors. Cellulose derivatives: modification, characterization, and nanostructures, ACS Symposium Series 688. Washington D C: American Chemical Society, 1998.p38-60.
    [203] Sealey J E, Samaranayake G, Todd J G, et al. Novel cellulose derivatives. IV Preparation and thermal analysis of waxy esters of cellulose, Journal of Polymer Science, Part B: Polymer Physics, 1996, 34(9), 1613-1620
    [204] Shimizu Y-I, Hayashi H, Cellulose Chemistry and technology, 1989, 23, 661-670.
    [205] Samaranayake G, Glasser W G, Cellulose derivatives with low DS. I. A novel acylation system, Carbohydrate Polymers, 1993, 22(1), 1-7
    [206] Edgar K J, Bogan R T, Direct process for the production of cellulose esters, US 5,750,677, 1998-05-12
    [207] Wang P L, Tao B Y, Synthesis and Characterization of Long-Chain Fatty Acid Cellulose Esters (FACE), Journal of Applied Polymer Science, 1994, 52 (6): 755-761
    [208] Yue Z L, Cowie John M G, Preparation and chiroptical properties of a regioselectively substituted cellulose ether with PEO side chains, Macromolecules, 2002,35 (17): 6572-6577
    [209] Baumann H, Richter A, Klemm D, et al. Concepts for preparation of novel regioselective modified cellulose derivatives sulfated, aminated, carboxylated and acetylated for hemocompatible ultrathin coatings on biomaterials, Macromolecular Chemistry and Physics, 2000, 201 (15): 1950-1962.
    [210] Nehls I, Wagenknecht W, Philipp B, et al. Characterization of cellulose and cellulose derivatives in solution by high resolution ~(13)C-NMR spectroscopy, Progress in Polymer Science, 1994, 19 (1): 29-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700