倾斜结晶塔内有机物结晶纯化过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熔融结晶过程是一种分离提纯有机物的有效方法,它不仅能制备高纯度的有机物,而且还能分离其它分离方法难以分离的特种有机物系,如同分异构体、同系物和热敏性有机物。同时,在熔融结晶装置中,塔式结晶器由于能在同一设备中同时实现洗涤、重结晶和发汗提纯机理而被广泛使用。因此,开发具有自主知识产权的新型结晶分离技术,设计一个高效连续的熔融结晶装置就具有非常重要的意义。本文的研究目标是采用针对有机物系固液相间密度差较小而设计的倾斜结晶塔,研究有机物的分离提纯规律,开发出具有自主知识产权的倾斜型结晶塔,并通过对结晶过程的数学建模以及流体模拟,以获得结晶塔的设计放大规律。
     为了便于实验现象的观察,首先制作一个长为1200mm,内径为50mm的玻璃制倾斜结晶塔,研究对二氯苯一邻二氯苯低共熔体系在倾斜结晶塔中的分离规律。正交实验结果表明:结晶塔中固液二相的传质和传热较慢,所需的稳定时间约为600min,进料浓度和搅拌速率对稳定时间的影响不明显;进料浓度对结晶塔提纯段的浓度分布和结晶床层高度有显著影响,进料浓度增加,结晶床层越高,提纯段各点的浓度也升高,且晶体床层区域的熔融液处于过饱和状态,但是,进料浓度对产品纯度的影响不大,因为实验体系为低共熔物系,进料浓度为62%~86%时,产品纯度都达到了99.9%以上;搅拌对结晶塔分离提纯效果的影响表现在它可以提供足够的扰动,推动熔融液与晶体之间的逆流接触,促进两相之间的传质和传热,避免出现晶体悬浮密度分布不均匀和熔融液出现沟流的现象,还可以有效地防止塔壁晶体结块现象的发生,搅拌速率对晶体床层高度并没有影响;晶体床层的存在是结晶塔实现分离提纯的必要条件,且可以分为二段,上端为晶体沉降区,晶体量较少,固液二相混合较好;下端为紧密晶体床层区,晶体堆积紧密,需要有足够的搅拌速率,来保证固液二相的充分混合,开始出现结晶床层的部分,熔融液浓度上升很快,提纯效果十分明显,之后熔融液浓度的上升趋势变缓,发汗提纯机理在发挥作用。
     为进一步考察倾斜结晶塔对有机物分离提纯的适应性,在增加结晶段长度后,使用丙烯酸-丙酸部分固体溶液体系,研究了加热功率、返流比和晶体悬浮密度对结晶塔分离提纯效果的影响。实验结果表明:对于现有的玻璃制结晶塔,进料浓度为90%是一个合适的进料浓度;由于降温温差的增大,结晶塔到达稳定的时间为1200min;回流比越大,产品纯度越高,所需理论塔板数就越多;但是晶体床层是分离提纯过程的基础,如果悬浮密度较小,则即使回流比较大,也难以制得较高纯度的产品;理论塔板数反应了结晶塔的分离提纯效率,理论塔板数越多,则结晶塔的分离效率越高,在一定的悬浮密度范围内,回流比与理论塔板数呈线性关系;加热功率对产品纯度和浓度分布的影响,是通过其对回流比和悬浮密度的改变而实现的,回流比越大,晶体悬浮密度通常也较大。
     通过前期的实验观察,发现搅拌桨相邻桨叶之间容易聚集晶体造成结晶塔的堵塞,因而对结晶塔进行了重新设计,使用不锈钢制倾斜结晶塔,考察了搅拌方式与转速、加热和冷却功率、进料浓度和倾斜角度对结晶塔分离提纯效果的影响。实验结果表明:通过对结晶塔测温口的重新设计,消除了两相邻桨叶之间的晶体聚集,确保了结晶塔的连续操作,不锈钢制倾斜结晶塔已经可以运转30个小时以上;结晶塔的倾斜角度对结晶塔的分离提纯效果有明显的影响,倾斜角度为45度时分离效果最好;加热功率和冷却功率需要匹配,有效加热功率为10w时结晶塔能稳定操作,结晶塔的分离提纯效果较好;搅拌方式的影响主要是通过调节搅拌轴的正转和反转来防止结晶塔内的堵塞,保证了分离过程的连续进行;使用不锈钢制倾斜结晶塔分离提纯对二氯苯—邻二氯苯低共熔体系,塔底的产品纯度可以达到99.99%以上,且能够长时间连续运转。
     改进后的不锈钢制倾斜结晶塔,在倾斜角度为45°,搅拌速率为15r/min,进料浓度为80~93%,冷却循环水冷却温度为25~30℃时,能连续运转48小时以上,塔底产品纯度可达到99.997%;出料速率大于1.7g/min时,结晶塔的提纯效率开始下降,出料速率在0.4~O.9g/min之间,结晶塔能稳定高效地运转;在连续实验中,增加返流比,能显著提高结晶塔的分离效果和产品的纯度;加热功率和冷冻功率对结晶塔分离提纯效果的影响,是通过改变返流比和晶体悬浮密度来实现的。为了模拟工业装置的运行情况,还重新设计了新型的结晶塔,此结晶塔使用双螺旋输送桨来输送晶体,取消了提纯段的取样口和测温口,所设计的结晶塔已经获得了专利授权。
     为了更好地描述结晶塔内固液两相的传质和传热过程,综合各种提纯机理的数学描述,对结晶塔提纯段建立通用的数学模型,此通用数学模型能够经化简得到文献中已报导的各种数学模型。
     使用相同的边界条件,比较了各种数学模型,数学模型的计算结果表明,发汗一传热模型最能反映重力沉降型结晶塔内的提纯过程。使用发汗一传热模型,系统地分析了各种因素对结晶塔分离提纯过程的影响。使用简化的发汗模型,计算了结晶塔提纯段的熔融液浓度分布,计算结果与实验值一致,证实了该模型的有效性。
     使用Fluent软件对结晶塔内固液两相的流动过程进行了流体模拟,计算所得结果证实了结晶塔提纯段内晶体悬浮密度的分布经历了三个不同的区域,即熔融液占据区、晶体沉降区和紧密晶体床层区,模拟结果与实验观察到的现象完全吻合,且与一维数学模型的计算结果也一致。
     通过对结晶塔的进一步数学分析,从产品纯度、回收率、产量、结晶塔稳定性和设备投资五个角度,探讨了结晶塔的放大规律,研究了各操作条件对结晶塔设计放大的影响,这些影响因素包括返流比,回流比,加热和冷冻功率,熔融液轴向扩散系数,晶体发汗提纯速率,晶体沉降速率,晶体尺寸及形状和倾斜角度。
Melt crystallization is a green technology for separating and purifying organic compounds; it not only can produce high purity products but also can separate isomers and heat-sensitive organic compounds which can't be separated economically by other methods. Meanwhile, among crystallization devices, column crystallizer is widely used because it realizes washing, recrystallization and sweating mechanisms at the same time in one single piece of equipment. Therefore, the development of a new crystallization technology with independent intellectual property rights and the design of a continuous column crystallizer with high efficiency, have a very important significance. The object of this study is to study the separation characteristics of an inclined column crystallizer, which is design for the organic systems according to its relatively small density difference between solid and liquid phase, to develop a new type inclined column crystallizer with independent intellectual property rights, and to discuss the scaling up of the inclined column crystallizer through mathematical analysis and CFD modeling.
     In order to facilitate the experimental observations, a glass column crystallizer (1200mm×50mm i.d.) with an inclination angle of 45 degrees is used to separate p-dichlorobenzene-o-dichlorobenzene simple eutectic system. The experimental results show that the rates of heat and mass transfer in inclined column crystallizer are slow, time for reaching steady state is about 600 minutes, and feed concentration and stirring rate had no significant effect on it. Feed concentration has a significant impact on the height of crystal bed and the melt concentration profile in purification section, and both of them increase with the increasing of feed concentration, and the melt in crystal bed is supersaturated. However, feed concentration had no significant effect on product purity, because the system forming eutectic mixture. Purity of product can easily reach 99.9% with a feed concentration between 62% and 86%.The main effect of stirring is to provide enough disturbances to promote countercurrent contact between melt and crystal phase which is good for heat transfer and mass transfer. It also prevents the uneven flow of melt and the caking on column wall, but has no effect on the height of crystal bed. Height of crystal bed is a necessary condition for purification, and can be divided into two parts, the settlement section at the top and the packed section at the bottom. In packed zone, there is a need for adequate stirring rate to ensure the well mixing. Melt concentration increases sharply when the crystal bed appears, and in packed zone, concentration increases slowly because sweat mechanism plays the dominant role.
     Further inspection of the inclined column crystallizer is performed by increasing the length of cooling section of the previous glass column crystallizer. The column crystallizer is operated in a continuous manner with the acrylic acid-propionic acid partial solid solution system, the effects of heating power, reflux ratio and suspension density are investigated. The experimental results show that the feed concentration of 90% is suitable for present glass column crystallizer, and the stable time is about 1200 minutes due to the increased temperature difference. Reflux ratio is the most import factor influencing the product purity, the bigger the reflux ratio, the higher the product purity, and the more the necessary theoretical plates. But the crystal bed is the basis for purification, it is necessary to maintain a sufficient suspension density. With a smaller suspension density, it is also difficult to produce high purity products even with a greater reflux ratio. Theoretical plates can be a measure of the separation efficiency of column crystallizer, the more the theoretical plates number, the higher the separation efficiency of the column crystallizer. In a specific range of suspension density, reflux ratio is linear with the number of the theoretical plates. The effect of heating power on product purity and melt concentration profile is realized by the changing of suspension density and reflux ratio, in most cases suspension density increases with reflux ratio.
     Through the above preliminary experiments, the agglomeration of crystals between adjacent scrapers which easily causing the blocking of the column crystallizer is observed. Therefore, a new designed stainless column crystallizer is used to separate the p-dichlorobenzene-o-dichlorobenzene simple eutectic system. Effects of stirring rate and manner, heating and cooling power, feed concentration and inclination angle are studied. The experimental results show that the accumulation of crystals between two adjacent blades is well eliminated by redesign of the temperature measuring taps, and the improved column crystallizer can be operated more than 30 hours. Inclination angle has a very significant effect on purification performance, and the best separation efficiency is achieved with the inclination angle of 45 degrees. Heating and cooling power have influences on suspension density, and they need a match. An effective heating power of 10w can stabilize the column operation. The stirring pattern, which is represented by the adjustment of rotating direction, is mainly to prevent column blocking, thus to guarantee the continuous operation of the column. With the stainless steel column crystallizer, the product purity of p-dichlorobenzene can reach 99.99%.
     The continuous operation of the improved stainless steel column crystallizer is carried out under the following conditions, inclination angle: 45 degrees, stirring rate: 15r/min, feed concentration: 80~93%, circulating cooling water temperature: 25~30°C. The column crystallizer can be continuously operated for more than 48 hours and the product purity can reach 99.997%.The purification efficiency of column crystallizer starts to decline when the product rate is larger than 1.7g/min. The column crystallizer can be stably operated with the product rate of 0.4-0.9g/min.During the experiments, increasing the reflux ratio can significantly improve the efficiency of the column crystallizer and the product purity. The effects of heating and freezing power are realized by changing the reflux ratio and suspension density. In order to simulate plant operation, another new type of column crystallizer is designed. It abolishes the temperature measuring taps and sampling taps, and uses a double screw propeller to transport crystals, this column crystallize has been authorized by two patents.
     In order to better describe the mass transfer and heat transfer processes between two phases in column crystallizer, a general mathematical model is developed by considering the various purification mechanisms. All the reported models in literatures can be formulated by simplifying the common model.
     With the same boundary conditions, a comparison of various mathematical models is performed. The computation results show that sweating-heat transfer model can best reflect the purification process in gravity column crystallizer. A systematic analysis of the impacts of various factors on the purification process is carried out by using the sweating-heat transfer model. The calculated concentration profile by simplified sweating-heat transfer model consist with the experimental results, thus confirm the Validity of the model.
     The solid-liquid two-phase fluid flow in column crystallizer is simulated by Fluent software. Calculation results confirm that the distribution of suspension density undergone three different regions, which coincide with the experimental observation, and with the one-dimensional mathematical model.
     The scaling up of column crystallizer is also discussed from the aspects of product purity, recovery, production yield, operation stability and equipment investment. Through mathematical analysis, the effects of operating conditions on scaling up are studied. These factors are reflux ratio, heating and freezing power, axial dispersion coefficient of melt, sweating rate, crystal settlement rate, crystal size and shape, and inclination angle.
引文
[1] 王静康.化学工程手册—结晶[M].北京:化学工业出版社,1996.
    [2] 王静康.工业结晶新技术[J].国际学术动态.2002,5:37~38.
    [3] 韩金玉,颜迎春,常贺英等.新型药物结晶技术[J].化工进展.2002,21(12):945~948.
    [4] 郝常明,黄雪菊.浅谈结晶及其在医药生产中的应用[J].医药工程设计杂志.2003,24(3):1~4.
    [5] 鲍颖,王永莉,王静康.溶析结晶研究进展[J].化学工业与工程.2004,21(6):438~443.
    [6] 伍川,岳云平,杨红群等.溶液结晶研究进展[J].江西化工.2003,4:7~1.
    [7] Matsuoka M. Melt suspension crystallization [M]//Van der Eerden J. P., Bruinsma O. S. L. Science and technology of crystal growth. Dordrecht: Kluwer Academic Publishers, 1995.
    [8] Arkenbout G. J. Progress in continuous fractional crystallization [J].Separation and purification methods. 1978, 7(1):99~134.
    [9] 高玮,古宏晨,胡英.面向21世纪的化工沉淀技术[J].化学工业与工程技术.2000,21(1):1~4.
    [10] 陆杰,王静康.反应结晶(沉淀)研究进展[J].化学工程.1999,27(4):24~27.
    [11] 吴鑫干,莫馗.高纯度苯甲酸精制工艺述评[J].湖南化工.2000,30(6):1~3.
    [12] 陈冬秀,尹秋响,李良龙.结晶分离技术在香料生产中的应用[J].香料香精化妆品.2004,4:19~21.
    [13] 张伟君,高军.升华精制工艺进展[J].中国石油和化工.1996,11:27~28.
    [14] 王静康,张远谋.熔融结晶过程的新进展[J].化工进展,1991,1:35~40.
    [15] 王静康.工业结晶的现在与未来[J].化学工程,1992,20(2):57~63.
    [16] 王静康.工业结晶技术前沿[J].现代化工,1996,10:19~22.
    [17] Ulrich J. Is Melt Crystallization a Green Technology [J]. Crystal Growth & Design. 2004, 4(5): 879~880.
    [18] 朱洪涛.工业结晶分离技术研究新进展[J].石油化工,1999,28(7):493~498.
    [19] 丁绪淮,谈道.工业结晶[M].北京:化学工业出版社,1985.
    [20] 古涛,叶铁林译.化学工业中的结晶[M].北京:化学工业出版社,1984.
    [21] Mullin J.W. Crystallization[M].北京:世界图书出版公司,2000.
    [22] Goede de. Crystallization of paraxylene with scraped surface heat exchanges [D]. Delft Univ. of Technology, 1988.
    [23] 牛自得,程芳琴.水盐体系相图及其应用[M].天津:天津大学出版社,2002.
    [24] 郭志琴.水盐体系相平衡[M].成都:成都科技大学出版社,1995.
    [25] 赵天源,曾之平,任保增等.水盐体系相图[M].北京:化学工业出版社,1995.
    [26] 曲红梅,周立山,王文喜等.有机物系固—液相平衡理论研究进展[J].化学推进剂与高分子材料.2002,6:10~13.
    [27] 曲红梅,周立山,杨志才等.有机物系固-液相平衡理论研究评述[J].天然气化工.2004,29(6):57~60.
    [28] 刘海岛.辛基酚熔融结晶过程的研究[D].天津大学,2004.
    [29] 金克新,谢朝刚.对叔丁基苯酚/苯酚等六个二元有机物系固液平衡的测定[J].天津大学学报,1988,2:98~104.
    [30] Matsuoka M., Ozawa R. Determination of solid-liquid phase equilibria of binary organic systems by differential scanning calorimeter [J]. Journal of Crystal Growth. 1989, 96: 596~604.
    [31] Takiyama H., Suzuki H., Uchida H., et al. Determination of solid-liquid phase equilibria by using measured DSC curves. Fluid phase equilibria. 2002, (194-197): 1107~1117.
    [32] Matsuoka M. Developments in melt crystallization [M]//Garside J., Davey R., Jones A.G. Advances in industrial crystallization. Oxford: Butterworth Heinemann, 1991.
    [33] Silcock H. L. Solubilities of inorganic and organic compounds [M]. Oxford: Pergamon, 1979.
    [34] Linke W. F., Seidell A. Solubilities of inorganic and metal organic compounds (4th edition) [M]. New York: Van Nostrand, 1965.
    [35] Kerters A.S. IUPAC Solubility data series [M]. Oxford: Pergamon Press, 1979.
    [36] Knovel E. W. International critical tables of numerical data, physics, chemistry and technology [M].New York: Washbrun, 2003.
    [37] Prausnitz J. M., Lichtenthaler R. N., Azevedo E. G. Molecular thermodynamics of fluid-phase equilibria (2nd edition) [M]. NewYork: Prentice-Hall, 1986.
    [38] Nyvlt J. Solid-liquid phase equilibrium [M]. Amsterdam: Elsevier, 1979.
    [39] Muir R. F., Howat Ⅲ C. S. Predicting solid-liquid equilibrium data from vapor-liquid data [J]. Chemical Engineering, 1982, 89(4): 89~92.
    [40] Shibuya H., Suzuki Y., Yamaguchi K., et al. Measurement and prediction of solid-liquid phase equilibria of organic compound mixtures [J]. Fluid Phase Equilibria. 1993, 82(1): 397~405.
    [41] Huang C. C., Chen Y. P. Measurements and model prediction of the solid-liquid equilibria of organic binary mixtures [J]. Chemical Engineering Science. 2000, 55(16):3175~3185.
    [42] 许文.高等化工热力学[M].天津:天津大学出版社,2004.
    [43] 陈新志,蔡振云,胡望明.化工热力学[M].北京:化学工业出版社,2001.
    [44] 李彬.熔融结晶分离技术的开发及应用[J].辽宁化工.1992,4:28~30.
    [45] 曹贵安.结晶精制技术进展[J].现代化工.1994,8:12~15.
    [46] Arkenbout G. F. Melt Crystallization Technology [M]. Pennsylvania, Technomic Publishing Co., Inc., 1995.
    [47] Mersmann A. Crystallization Technology Handbook (2nd edition) [M]. New York: Marcell Dekker Inc., 2001.
    [48] Herington E. F. G. Zone melting of organic compounds [M]. London: Blackwell, 1963.
    [49] 焦淑清.熔融静态结晶的优越性[J].医药工程设计.1996,6:12~15.
    [50] Hassene M., Drouglazet G. Attractions of melt static crystallization [J]. Chemical Engineering. 1995, 9: 108~110.
    [51] Rousseau R. W. Handbook of separation process technology [M]. New York: John Wiley & Sons, Inc., 1987.
    [52] Ulrich J. Kirk-Othrner Encyclopedia of Chemical. Technology (Online) [M]. New York: John Wiley & Sons, 2002.
    [53] 张海德,李琳,郭祀远.结晶分离技术新进展[J].现代化工,2001,21(5):13~16.
    [54] 黎常宏,万真.结晶工艺及设备的最新进展[J].江西化工,2006,1:37~39.
    [55] Koenig A., Ulrich J. Process and apparatus for cleaning chemical substances [P] DE4415 845, 1995.
    [56] Ossipov P. Continuous fractional crystallization on a moving cooled belt [J]. Int. J. Heat Mass Transfer. 1998, 41(4-5):691~697.
    [57] Konig A., Schreiner A. Purification potential of melt crystallization [J]. Powder Technology. 2001,121:88~92.
    [58] Kim K. J., Lee J.M., Mersmann A. Separation of Organics by Melt Crystallization with Direct Contact Cooling [J]. Sep. Sci. Tech. 1996, 31:1859~1875.
    [59] Kim K. J., Mersmann A. Melt crystallization with direct contact cooling techniques [J]. Chem. Eng. Res. Des. 1997, 75:176~183.
    [60] Bartosch K., Mersmann A. Direct contact cooling techniques in melt suspension crystallization and their effect on the product purity [J]. Chemical Engineering Science. 2001, 56: 2347~2356.
    [61] 刘海岛,尹秋响.熔融结晶及其耦合技术研究的进展[J].化学工业与工程.2004,21(5):367~371.
    [62] 叶青,王车礼,裘兆蓉.精馏—熔融结晶耦合工艺[J].江苏石油化工学院学报.2000,12(3):46~49.
    [63] 叶青,王车礼,裘兆蓉.减压精馏—熔融结晶耦合装置提纯人造麝香的研究[J].现代化工.2001,1:32~35.
    [64] Berry D. A., Ng K.M. Synthesis of crystallizationdistillation hybrid separation process [J]. AIChE J. 1997, 43(7): 1751~1762.
    [65] Meyer D. W. Using crystallization for organic separations [J]. Chem Proc. 1990, 53(1): 50~60.
    [66] Wynn N. P. Separation Organics by Melt Crystallization [J].Chemical Engineering Progress, 1992, 88(3): 52~63.
    [67] 董文智.结晶法分离和纯化有机化合物[J].低温与特气.1995,4:18~22.
    [68] 顾鸣海.用熔融结晶法分离有机物[J].上海化工.2003,12:26~29.
    [69] Perry R. H., Green D. W. Perry's chemical engineers' handbook (7th edition) [M]. New York: McGraw-Hill, 1999.
    [70] Matsuoka M., Ohishi M., Kasama S. Purification of p-dichlorobenzene and m-chloronitrobenzene crystalline particles by sweating [J]. Journal of Chemical Engineering of Japan. 1986,19(3): 181-185.
    [71] Matsuoka M, Sumitani A. Rate of composition changes of organic solid solution crystals in sweating operations [J]. Journal of Chemical Engineering of Japan. 1988, 21(1):6— 10.
    [72] Matsuoka M., Fukuda T., Takagi Y., et al. Purification by Sweating of Organic Solid Solutions by Layer and Suspension Type Melt Crystallization Operations. Journal of Chemical Engineering of Japan [J]. 1995,28 (5):562~569.
    [73] Matsuoka M., Fukuda T., Takagi Y, et al. Purification of organic solid solutions by melt crystallization: Comparison between layer and suspended crystallization [J].Journal of Crystal Growth.1996,166(1):1035~1039.
    
    [74] Arnold P. M. Continuous extractive crystallization process [P].US540083,1951.
    [75] Arnold P. M. Continuous fractional crystallization process [P] .US2540977, 1951.
    [76] Schmidt J. Process and apparatus for concentrating solutions [P]. US2617274, 1952.
    [77] Weedman J. A. Crystal purification process [P]. US2747001, 1956.
    [78] Thomas R. W. Process for purification of crystals [P]. US2854494,1958.
    [79] McKay D. L., Dale G H., Weedman J. A. A Bench-Scale Crystallization Purification Column [J]. Ind. Eng. Chem. 1960, 52:197-200.
    [80] McKay D. L., Dale G H., Tabler D. C. Para-xylene via Fractional Crystallization [J]. Chem. Eng. Prog. 1966,62:104-112.
    [81] McKay D. L., Goard H. W. Crystal Purification Column with Cyclic Solid Movement [J]. Ind. Eng .Chem. Proc. Des. Devel. 1967, 6:16—21.
    [82] Marwil S. J., Kolner S. J. Pulsed Column Purification of Para-xylene [J]. Chem. Eng. Prog. 1963, 59:60-65.
    [83] McKay D. L., Goard H. W. Continuous Fractional Crystallization [J]. Chem. Eng. Prog. 1965,61:99-104.
    [84] Schildknecht H., Mass K. Method for the transportation of crystals and melt [P]. US3630685,1969.
    [85] Schildknecht H., Mass K. Method and device for feeding crystals and melts [P]. US US3660043, 1972.
    [86] Betts W.D., Freeman, J.W., McNEIL D. Continuous multistage fractional crystallization I.laboratory investigation [J]. J. Appl. Chem. 1968,17(6):180—187.
    [87] Hayashi Y., Kodama k., Ohta M., et al. Apparatus for purifying crystals comprising a stirrer with fins forming a discontinuous spiral [P]. US3770386,1973.
    [88] Brodie J. A. Solid-liquid continuous countercurrent purifier method and apparatus [P].US3645699,1972
    [89] Brodie, J. A. A Continuous Multi-Stage Melt Purification Process [J]. Mechanical & Chemical Engineering Transaction. 1971, 5:37-44.
    [90] Molinar J. G. D., Dodgson B. V. Theory and Practice related to the Brodie Purifier [J]. The Chemical Engineer. 1974, 7-8:460—464.
    [91] Arkenbout G. J. Crystallization column [P] .US4257796, 1981.
    [92] Arkenbout G. J., Van Kuijk A., Van der Meer J., et al. Pulsed crystallization column and method of countercurrent crystallization [P].US4400189, 1984.
    [93] Arkenbout G. J., Kuijk A. V, Smit W. M. New simple crystallization column. Chemistry and Industry. 1973, 3(2):139-142.
    [94] Thijssen H. A. C, Arkenbout G. J. Process for concentrating a suspension [P]. US4734102, 1988.
    
    [95] Saxer K. Fractional crystallization process [P]. US3621664, 1971.
    [96] Saxer K., Papp A. The MWB Crystallization Process. Chemical Engineering Progress [J]. 1980, 76(4):64-66.
    [97] Takegami K., Morita M., Nakamaru K., et al. Countercurrent cooling crystallization and purification method for multi-component molten mixture [P]. US4588414, 1986.
    [98] Roodenrijs J. P. Installation for separating and purifying solids [P].US6241101, 2001.
    [99] 王静康, 张远谋等.具有填料管板的塔式液膜结晶装置[P] . CN89204218.4, 1989.
    [100] Matsuoka M., Takiyama H., Ishikawa K., et al. Purification of acrylic acid [P], JP2000-290220, 2000.
    [101] Boycott A. E. Sedimentation of blood corpuscles [J]. Nature, 1920, 104:532.
    [102] Nakamura, H., Kuroda, K. The factors which determine sedimentation rate of erythrocytes in s simple medium of known chemical and physical properties [J]. Keijo J. Med. 1937, 8:256-296.
    [103] Zahavi E., Rubin E. Settling of solid suspensions under and between inclined surfaces. Ind. Eng. Chem., Process Des. Develop. 1975, 14(1):34-41.
    [104] 丁晓玲,丁洁.改良型道尔澄清桶的设计理论基础及应用[J].氯碱工业,2003,8:4-6.
    [105] 蒲晓林,魏治明.水平井加重钻井液垂沉规律实验研究[J].天然气工业,1996,5: 45-48.
    [106] Matsuoka M., Takiyama H., Soutome O. Separation characteristics of an inclined column crystallizer [J]. Chem. Eng. Res. Des. Trans. Inst. Chem. Eng. PtA. 1997, 75:206-212.
    [107] Funakoshi K., Uchida H., Takiyama H., Matsuoka M. Influence of reflux ratio on seperation and purification of acrylic acid by inclined column crystallizer [J]. J. Cryst. Growth. 2002, 237:2251-2256.
    [1] Matsuoka M., Takiyama H., Soutome O. Separation characteristics of an inclined column crystallizer [J]. Chem. Eng. Res. Des. Trans. Inst. Chem. Eng. PtA. 1997, 75:206 - 212.
    [2] 金克新,谢朝刚.对叔丁基苯酚/苯酚等六个二元有机物系固液平衡的测定[J].天津大学学报,1988,2:98-104.
    [3] 朱旭容,陈鸣德.零过冷度法测定对二氯苯/邻二氯苯二元系.南京化工学院学报,1992,4:66-69.
    [4] 王静康,朱向前,任宝山等.芳烃衍生物同分异构体低共熔物系固液相平衡研究[J].化学工程,1999,27(2):41-45.
    [5] 孟翠敏.对二氯苯的生产技术及应用前景[J].中国氯碱,2006,6:14-16.
    [6] 茅惠萍.对二氯苯生产技术及市场应用概述[J].中国氯碱,2000,9:20-21.
    [7] 李士雨,秦文军,王静康.熔融结晶技术用于制备高纯对二氯苯[J].化工装备技术,1994,4:1~4..
    [8] 王训道,周彩荣.新型分步结晶法精制对二氯苯的研究[J].河南化工,1994,1:10~12.
    [9] 叶青,裘兆蓉,钟秦等.用精馏~降膜结晶耦合技术提纯对二氯苯[J].精细化工,2005,5:362~364.
    [10] 乐清华,苏继新,涂晋林.溶析结晶法分离提纯对二氯苯的研究[J].高校化学工程学报,2001,1:11~16.
    [11] 乐清华,涂晋林.对二氯苯精制新工艺[J].上海化工,1993,5:12~15.
    [12] 乐清华,苏继新.分离提纯对二氯苯的新工艺:萃取结晶[J].现代化工,1993,6:21~23.
    [13] 徐滨滨,石秋忠.对二氯苯的溶析结晶分离法:溶剂组份控制[J].苏州大学学报:自然科学版,1999,4:97~102..
    [14] 陈玉胜,李建勋.水析结晶精制对二氯苯研究[J].化学工程,2000,4:25~27.
    [15] 鲍时翔,吕亚平.晶体填充床结晶器分离提纯对二氯苯[J].化工学报,1993,5:531~535.
    [16] 吕亚平,张永春.结晶法提纯对二氯苯的研究[J].氯碱工业,1991,3:30~33.
    [17] 吕亚平,鲍时翔.结晶法从苯及其氯化物中提纯对二氯苯的研究[J].大连化工,1991,2:13~16.
    [18] 洪金明.乳化法分离精制对二氯苯的研究[J].表面活性剂工业,1998,4:34~36.
    [19] 王勤.乳化—结晶法精制对二氯苯[J].武汉化工学院学报,1996,2:33~36.
    [20] 王训道,周彩荣.气泡结晶法精制对二氯苯的研究[J].郑州工学院学报,1994,1:84~88.
    [21] Lide D. R. CRC handbook of chemistry and physics (85th Edition) [M]. New York: CRC Press. 2005.
    [22] 对二氯苯[S].江苏扬农化工集团有限公司,Q/321001GNA25-2003,2003.
    [23] 邻二氯苯[S].国家石油和化学工业局,HGFF 3602-1999,1999.
    [1] Funakoshi K., Uchida H., Takiyama H., Matsuoka M. Influence of reflux ratio on seperation and purification of acrylic acid by inclined column crystallizer [J]. J. Cryst. Growth. 2002, 237:2251 - 2256.
    [2] Lide D. R. CRC handbook of chemistry and physics (85th Edition) [M]. New York: CRC Press. 2005.
    [3] Lohmam J., Thorsten R., Gemhling J. Solid-liquid equlibria of several binary systems with organic compounds [J]. J Chem. Eng. Data, 1998, 43:856 - 860.
    [4] 国家质量技术监督局.工业丙烯酸纯度的测定:气相色谱法[P],GB/T17530.1.1998,1998.
    [1] Boycott A. E. Sedimentation of blood corpuscles [J]. Nature, 1920, 104:532.
    [1] Mullin J. W., Nyvlt J. Programmed cooling of batch crystallizers [J]. Chemical Engineering Science. 1971, 26:369~377.
    [2] Jones A.G., Mullin J.W. Programmed cooling crystallization of potassium sulphate solutions [J].Chemical Engineering Science. 1974, 29:105~118.
    [3] Jones A.G Optimal operation of a batch cooling crystallizer [J].Chemical Engineering Science, 1974, 29:1075~1087.
    [4] Mullin J. W. Crystallization [M].北京:世界图书出版公司,2000.
    [5] 陈亮,李军.酒石酸钾钠结晶工艺优化[J].精细化工,2005,22(9):691~693.
    [6] 李军,陈亮,钟本和等.熔融结晶法制备高纯有机物的装置[P].CN28346592006,2006.
    [7] 李军,陈亮,钟本和等.熔融结晶法制备高纯有机物的装置[P].CN1792406,2005.
    [1] Tavare N.S., Matsuoka M., Garside J. Modelling a continuous column crystallizer: dispersion and growth characteristics of a cooling section [J]. Journal Crystal Growth. 1990, 99(1-4): 1151~1155.
    [2] Mechlenburgh J. C., Hantland S.The Theory of Backmixing [M].New York: Wilely Interscience Press, 1975.
    [3] 金涌,祝京旭等.流态化工程原理[M].北京:清华大学出版社,2001.
    [4] Miller S. E, King C. J. Axial Dispersion in Liquid Flow through Packed Beds [J]. AIChE J. 1966, 12(4): 767~773.
    [5] McKay D. L., Goard H. W. Crystal Purification Column with Cyclic Solid Movement [J]. Ind. Eng. Chem. Proc. Des. Devel. 1967, 6: 16~21.
    [6] McKay D. L., Goard H. W. Continuous Fractional Crystallization [J]. Chem. Eng. Prog. 1965, 61: 99~104.
    [7] McKay D. L., Dale G. H., Tabler D. C. Para-xylene via Fractional Crystallization [J]. Chem. Eng. Prog. 1966, 62: 104~112.
    [8] Svarovsky L. Solid liquid Separation [M]. London: Butterworth Heinemann, 1977.
    [9] Carslaw H. S., Jaeger J. C. Conduction of heat in solid (2nd edition) [M].London: Oxford University Press, 1959.
    [10] Bird R. B., Stewart W. E., Lightfoot E. N. Transport Phenomena (2nd edition) [M]. New York: John Wiley, 2002.
    [11] Jansens P. J., Van Der Ham R., Bruinsma O. S. L., et al. The purification process in hydraulic packed-bed wash columns [J]. Chem. Eng. Sci. 1995, 50(17): 2717~2729.
    [12] Player M. R. Mathematical analysis of column crystallization. I&EC, Process Des. Dev. 1969, 8(2): 210~217.
    [13] Albertins R., Powers J. E. Experimental and theoretical investigation of purification in a column crystallizer of material with impurities of the eutectic forming type [J]. AIChE J. 1969, 15(4): 554~60.
    [14] Henry Jr. J. D., Powers J. E. Experimental and theoretical investigation of continuous flow column crystallization [J]. AIChE Journal. 1970. 16(6): 1055~1063.
    [15] 李群生,张远谋.低共熔型物系连续多级逆流分步结晶提纯塔的研究[J].化工学报.1993,44(4):472~479.
    [16] 李群生,张远谋.连续多级逆流分步结晶的研究[J].北京化工大学学报,1997,24(1):1~8.
    [17] Li Q., Liu H., Wang B.,et al. High purity separation of eutectic mixture in a continuous moving crystal bed column crystallization [J]. Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A.2003,81(11): 1373~1378.
    [18] Gates Jr. W. C., Powers J. E. Determination of the mechanisms causing and limiting separations by column crystallization [J]. AIChE J. 1970, 16(4): 648~658.
    [19] Matsuoka M., Kiyomura M. Separation of organic solid solution mixtures by column crystallization [J]. BIWIC. 1990, 50~57.
    [20] Otawara K., Matsuoka T. Axial dispersion in a Kureha Crystal Purifier (KCP) [J]. Journal of Crystal Growth. 2002, 237-239: 2246~2250.
    [21] Van Der Gun M. A., Bruinsma O. S. L., VanRosmalen G. M. Pastille Purification in a Gravity Wash Column [J].Chemical Engineering Science. 2001, 56: 2381~2388.
    [1] 薛定于,陈明泉.高等应用数学问题的Matlab求解[M].北京:清华大学出版社,2004.
    [2] 吴剑,胡波.掌握和精通Mathematica 4.0[M].北京:机械工业出版社,2001.
    [3] Jansens P. J., Van Der Ham R., Bruinsma O. S. L., et al. The purification process in hydraulic packed-bed wash columns [J]. Chem. Eng. Sci. 1995, 50(17): 2717~2729.
    [4] Wolfram Research, Inc. Mathematica5.2 help [M]. 2005.
    [5] 荀飞.Mathematica 4 实例教程[M].中国电力出版社,2000.
    [6] 丁大正.科学计算强档Mathematica 4 教程[M].电子工业出版社,2002.
    [7] Matsuoka M., Kiyomura M. Separation of organic solid solution mixtures by column crystallization [J]. BIWIC, 1990.
    [8] Liang Chen, Jun Li, Masukuni Matsuoka. Experimental and theoretical investigation on purification process of organic materials in a continuous inclined column crystallizer [J]. Ind. Eng. Chem. Res. 2006, 45 (8): 2818~2823.
    [9] 陈亮,李军,刘逸飞等.倾斜晶析塔内有机物纯化过程的理论与实验研究[J].四川大学学报(工程科学版),2006,38(3):54~58.
    [1] 王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [2] 韩占军,王敬,兰小平.Fluent—流体工程仿真计算机实例与应用[M].北京:北京理工大学出版社,2004.
    [3] Wei H.Y., Garside J. Application of CFD modelling to precipitation systems [J]. Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A. 1997, 75(A2):219~227.
    [4] Wei H.Y., Zhou W., Garside J. Computational Fluid Dynamics Modeling of the Precipitation Process in a Semibatch Crystallizer [J]. Industrial and Engineering Chemistry Research. 2001, 40(23):5255~5261.
    [5] Gong J.B., Wei H.Y., Wang J.K., et al. Simulation and scale-up of barium sulphate precipitation process using CFD modeling [J].Chin. J. Chem. Eng. 2005, 13(2):167~172.
    [6] Fluent Inc. Using the Eulerian Multiphase Model for Granular Flow. Fluent 6.2 Documentation [M], Fluent Inc., 2005.
    [7] Fluent Inc. Gambit 2.3 Documentation [M], Fluent Inc., 2006.
    [8] 苏尔皇.液体的粘度计算和测量[M].北京:国防工业出版社,1986.
    [9] 童景山,李敬.流体热物理性质的计算[M].北京:清华大学出版社,1982.
    [10] Fluent Inc.Using the Eulerian Granular Multiphase Model with Heat Transfer. Fluent 6.0 Documentation [M], Fluent Inc., 2005.
    [1] 叶世超,夏素兰,易美桂等.化工原理(下册)[M].北京:科学出版社,2002.
    [2] 王静康.化学工程手册—结晶[M].北京:化学工业出版社,1996.
    [3] Baird M. H. I., Rice R.G. Axial dispersion in large unbaffled columns [J]. The Chemical Engineering Journal. 1975, 9:171~174.
    [4] 袁一.化工原理(上册)[M].大连:大连理工大学出版社,1993.
    [5] Richardson I. F., Zaki W. N. Sedimentation and Fluidization: Part I [J]. Trans. Inst. Chem. Eng. 1954, 32:35~53.
    [6] 陈甘棠,王樟茂.流态化技术的理论和应用[M].北京:中国石化出版社,1996.
    [7] Garside J., AI-Dlbounl M. R. Velocity-voidage relationship for fluidization and sedimentation in solid-liquid system. Ind. Eng. Chem., Process Des. Dev. 1977,16(2):206~214.
    [8] Garrett D. E. Chemical Engineering Economics [M]. New York: Van Nostrand Reinhold,1989.
    [9] Peters M. S., Timmerhaus K. D. Plant design and economics for chemical engineering(4th editon)[M]. New York: McGraw-Hill, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700